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Introduction

We have spent quite some time and effort building up our toolbox of
logic reasoning.

We are now ready to apply that toolbox to something — the prop-

erties of integers, rational, and real numbers.

We are going to try to establish the truth or falsity of mathematical

statements.

Let the floor of x, denoted | x|, be the integer part of z, e.g. [7] = 3.
Consider the two statements:

1. VzeR lx — 1| = [z] — 1.
2. VzeR VYyeR |z—y|=|z]— |yl

It turns out statement 1. is true, and 2. is false... We are going to
look at methods for proving this.
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Basic Building Blocks — Definitions

Mathematicians define terms very carefully and precisely, most of the

time every word and symbol in a definition is there for a reason.

We are going to start from a few definitions, and use our logic toolbox
to evaluate the truth or falsity of mathematical statements.

Definition: Even and Odd Integers —
An integer n is even if, and only if, n = 2k for some integer k.
An integer n is odd if, and only if, n = 2k + 1 for some integer k.
Symbolically, if n € Z, then

nis even < Jk € Z such that n = 2k

nisodd <« 3k € Z such that n = 2k 4 1.
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Deductions

Now,

If we know... Then we can deduce...

a particular integer n is even n has the form 2k

a particular integer n is odd n has the form 2k + 1

a particular integer n has the form 2k n is even

a particular integer n has the form 2k + 1 n is odd

We can now answer the following questions:

Is 0 even? Yes, 0=2-0

Is —301 odd? Yes, —301 =2-[-151] + 1
If a € Z and b € Z, is 6a2b even?
Ifa€Zand beZ, is 10a+8b+ 1 odd? Yes, 10a + 8 + 1 = 2(5a + 4b) + 1

Yes, 6a%b = 2 - 3a2b

Here, we have also use the fact that sums and products of integers

are integers.
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Prime Numbers

Definition: Prime / Composite Integers —

An integer n is prime if, and only if, n > 1 and for all positive
integers r and s, if n =7 -5, then r =1 or s = 1. An integer n
is composite if, and only if n = r - s for some positive integers r
and s with » #£ 1 and s # 1.

Symbolically, if n € N\ {1}, then

n is prime & VroseNifn=r-s,thenr=1ors=1
n is composite < dr,s € Nsuch thatn=1r"-s

and r #1and s #1

Notice that the definitions of prime and composite are negations of
each other... Hence every integer (greater than 1) is either a prime or

a composite.
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Writing Proofs: Existential Statements

There are two ways of proving the statement

Jdx € D such that Q(z)
“There is an SDSU student interested in Mathematics”

1. Find an x € D such that Q(x) is true. (Find an SDSU student
interested in Mathematics).

2. Give a set of directions for finding such an = € D. Important:

— The directions must guarantee that we find x € D.

Both these methods are called constructive proofs of existence. —
They tell us something exists, and tell us how to find it.
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Non-constructive Proofs of Existence

It is also possible to prove the existence of an x € D such that Q(x)

is true by: —

1. Showing that the existence of a value of = that makes Q(z) true

is guaranteed by an axiom or a previously proved theorem.

2. Showing that the assumption that there is no such z leads to a

contradiction.

These proofs give us no information about how to find such a value,

hence they are called non-constructive.

Clearly, if you are looking for a value making Q(z) true, a non-
constructive proof is a disadvantage. Such a proof is still useful, since
it tells us there is indeed something to look for.
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Proving Universal Statements Method of Exhaustion

The vast majority of mathematical statements to be proved are uni-

versal, basically on the form

Vx € D, if P(x) then Q(x)
The method of exhaustion can be used in two situations:
1. When D contains a finite number of elements

2. When there are only a finite number of elements in the truth set
of P(x)

The method of exhaustion will make you exhausted quickly: you have
to plug in every possible value of z € D (or from the truth set of
P(x)) and then check P(z) — Q(x).

This is sometimes called a brute force method and quickly becomes

infeasible!
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Proving Universal Statements A Tool for a Better Method

Clearly, we would like a method of proving universal statements which
works regardless of the size of the domain over which the statement

is quantified.

The underlying idea of the method of generalizing from the

generic particular:

To show that every element of a domain satisfies a certain prop-
erty, suppose x is a particular but arbitrarily chosen element

of the domain and show that x satisfies the property.

We will use this tool in the Method of Direct Proof...
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The Method of Direct Proof

Method of Direct Proof

1. Express the statement to be proved in the form “Vx € D, if
P(z) then Q(x)."

2. Start the proof by supposing x is a particular but arbitrarily
chosen element of D for which the hypothesis P(z) is true.
[Abbreviated: “suppose x € D and P(x)."]

3. Show that the conclusion Q(z) is true by using definitions,
previously established results, and the rules for logical infer-

ence.

Note: The point of selecting x arbitrarily is that everything you
deduce about a generic element in D will be true for every

other element in D.
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Let's Try It...

Theorem: “If the sum of two integers is even, so is their difference.”
Restatement: Vm,n € Z, if (m +n) is even, then (m — n) is even.

1. (m+n) =2k, for some k € Z. solve for m...
2. m =2k —n. substitute into (m —n)...
3. (m—n)=2k—n)—n=2k—-2n=2(k—n).

We're done! (Sort of... Let’s clean it up and make it more readable.)
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Our First Theorem with Proof

Theorem: |If the sum of any two integers is even, then so is their

difference.

Proof: Suppose m and n are integers so that m + n is even. By
definition of even m + n = 2k for some integer k. Subtracting n

from both side gives m = 2k — n, then

m—n = (2k—mn)—mn by substiution
= 2k—2n by combining terms / basic algebra
= 2(k—n) by factoring out a 2 / basic algebra

But k—n is an integer because it is the difference between integers,
Hence m — n equals 2 times an integer, and so by the definition

of even, m — n is even. OJ
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How to Write a Proof

1. Write the theorem to be proved.
2. Clearly mark the beginning of the proof with the word proof.
3. Make your proof self-contained:

— In the body (text) of the proof, identify each variable
used in the proof. The reader should not have to guess, or

assume anything.
4. \Write proofs in complete (English) sentences.

This does not mean that you should avoid using symbols and
shorthand abbreviations, just that you should incorporate then

into sentences.

Your proofs: It's better you are too detailed, but don't be ridiculous!
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Common Mistakes 1 of 2

1. Arguing from Examples

Examples help understanding, but special cases do not prove
general statements. — Think of the statement “All odd number

integers greater than 1 are prime” and the examples 3, 5, 7...

2. Using the same letter to mean two things
For instance, if m and n are two even integers, don't say m = 2r
and n = 2r... Disasterl You're saying m = nlll (Use, e.g.
m = 2r and n = 2s.)

3. Jumping to a Conclusion

To state that something is true without giving adequate reason.
“cuz I say so!!!” is not sufficient logical argument!
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Common Mistakes 2 of 2

4. Begging the Question
To assume what it to be proved. — Usually in a logically

equivalent form that looks different...

5. Misuse of the Word “if”

Using the word “if” instead of “since” or “because”. Consider
“Suppose p is a prime. If p is prime, then p cannot be written
as a product of two smaller numbers.”

and

“Suppose p is a prime. Since p is prime, p cannot be written

as a product of two smaller numbers.”

In the first formulation, the primeness of p seems to be in doubt
in the second sentence... Such imprecise use of language can

cascade through the proof and generate problems later.
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Comic Relief — The Odd Prime Number Theory

An engineer, a mathematician, and a physicist are testing the theory
that all odd numbers are prime: —

Physicist: "1 is prime, 3 is prime, 5 is prime, 7 is prime, 9 — must
be experimental error, 11 is prime, 13 is prime. That's enough data
points; the theory is true.”

Mathematician: "By convention, 1 is not prime, but 3 is a prime, 5
is a prime, 7 is a prime, 9 is not a prime — counterexample — claim
is false.”

Engineer: “1 is prime, 3 is prime, 5 is prime, 7 is prime, 9 is prime, 11
is prime, 13 is prime, 15 is prime, 17 is prime, 19 is prime... Hmmm,
theory appears to be true.”

Second Engineer, who slept through some early math classes: “What

do you mean, ‘1 is not prime?"”
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Disproof By Counterexample

Disproving a statement of the form
Vx € D, if P(x) then Q(x)

amounts to proving that the negation of the statement is true

3z € D such that P(z) and ~ Q(x)

Disproof by Counterexample

To disprove a statement of the form “Va € D, if P(z) then Q(z)"
find a value of = in D for which P(x) is true and Q(x) is false.
Such an z is called a counterexample.
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Examples: Disproofs

Bogus Theorem #1: “All odd integers greater than 1 are prime.”

Disproof: Since 9 = 2.4+ 1 it is odd. Further, 9 = 3 -3 which
shows that 9 is a composite number, hence not a prime.

Bogus Theorem #2: Va ¢ R, b € R, if a? = b2, then a = b.

Disproof: Leta=1,and b= —1,a®> =b%> =1, but a # b.
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Famous Proofs and Disproofs

Fermat’'s Last Theorem: If n is an integer greater than 2, then
the equation x™ + y™ = 2™ has no solutions where z, y, and z are
positive integers. (Pierre de Fermat lived 1601-1665)

Euler’'s Conjecture: a* + b* + ¢* = d* has no integer solutions.
(Leonhard Euler lived 1707-1783)

Fermat’'s Last Theorem was finally proved by Andrew Wiles in
September 1994,

Euler's Conjecture was disproved by Noam Elkie (Harvard Uni-
versity) in 1986. One counterexample is 95,800% + 217,519% +
414,560* = 422,481* — found by Roger Frye of Thinking Machines

Corporation.

Elementary Number Theory and Methods of Proof: Direct Proof and Counterexample — p. 19/53

Homework #4 — Due 10/6/2006, 12noon, GMCS-587  version i

3

3rd Edition \ 2nd Edition
Problems

3.1: 27, 31, 37, 49 ‘ 3.1: 12, - 24, 35

Please use the 3rd Edition numbering when handing in your solutions.
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Divisibility and Number Theory — Introduction

Epp-§3.2: skip.

Divisibility of the central concept of number theory — the study of

properties of integers.

Important applications of number theory include keeping your credit

card number safe when you hit “buy now” in your web browser.

We look at some more statements about integers, and prove a few of

them...
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Divisibility of an Integer

Definition: Divisibility —
If n and d are integers and d # 0, then
n is divisible by d if, and only if, n = d - k for some integer k
Alternatively, we say that
n is a multiple of d, or
d is a factor of n, or
d is a divisor of n, or

d divides n.
The notation d|n is read “d divides n.” Symbolically if n and d
are integers and d # 0,

dn <& 3JkeZ :n=d-k
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Divisibility: Examples

Example #1: Suppose a and b are positive integers, and alb. Is

Solution:

a < b?

alb means that b = k - a for some positive integer k
(since both a and b are positive). Therefore &k > 1. This
shows that b = k- a > a (by multiplying both sides of
the inequality by the positive integer a). Hence we can
conclude that a < b.
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Divisibility: Examples

Example #2:

a. If a and b are integers, is 3a + 3b divisible by 37

b. If k and m are integers, is 10km divisible by 57

Solution:

a. By basic algebra (the distributive law) we can write
3a + 3b = 3(a + b), and since a + b is an integer (being
a sum of integers), we have shown that 3|(3a + 3b).

b. By basic algebra (the associative law) we can write

10km = 5 - 2km, where 2km is an integer (being a prod-
uct of integers). We have shown 5|10km.
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Divisibility — Primeness, and Transitivity

We can use the concept of divisibility to define primeness:

Definition: Prime Integer (Alternative) —
A positive integer n > 1 is prime, if and only if, its only divisors

are 1 and n.

Divisibility is transitive: If one number a divides a second number b
(alb) and the second number divides a third number ¢ (b|c), then the
first number divides the third (alc).

This is an important fact, lets prove it!
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Proof: Divisibility is a Transitive Property

Theorem:
For all integers a, b and ¢, if a|b and b|c, then ac.

Proof: Suppose a, b and ¢ are particular but arbitrarily chosen
integers such that a|b and blc. By the definition of divisibility we
know that

alb < b=a-r, for some integer r, and
ble < c¢=0b-t, for some integer t.

Combining these two, we have

c=b-t=a-r-t, forsome integers r and t.

Hence, we can write

c=a-(r-t), where r-tis an integer,

which shows that a|c. [J
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Does a|b and bla imply a = b?

Question: s it true that for all integers a and b, if a|b and b|a then
a=>b?

Solution: Suppose a and b are integers such that a|b and bla, then

we must have
b=a-r, reZ, a=b-s, sel.

By substitution
b=a-r=b-(s-r)

which is true if and only if (s-r) =1, i.e. both r and s are divisors
of 1.
The only divisors of 1 are 1 and —1. r = s = —1 gives us infinitely

many counterexamples (a = —b), thus we conclude

alb and bla # a=hb.
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The Unique Factorization Theorem

Theorem: The Unique Factorization Theorem —
Given any integer n > 1, there exists a positive integer k, distinct
prime numbers py, ps, ..., pr, and positive integers e1, e, ...,
e, such that

n=p§l . pg .. poh
and any other expression of n as a product of prime numbers is
identical to this (except, possibly, for the order in which the factors

are written).

The proof is beyond the scope of this class, but the theorem is impor-

tant enough that you should know it!

If you write the factors such that p; < pa < -+ < pg, then the form
is called the standard factored form.
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Using the Unique Factorization Theorem

Question: Suppose m is an integer such that
8:7-6:-5-4-3-2-m=17-16-15-14-13-12-11-10
Does 17|m?

Solution: 17 is a prime number. Since it is a factor on the right
side of the equation, it must also be a factor on the left
side of the equation, by the Unique Factorization Theorem
(UFT). But 17 cannot factor any of the numbers 8, 7, 6,
5, 4, 3, 2 — since it is too large. Hence it must factor

m, so 17|m.
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The Quotient-Remainder Theorem

Theorem: Quotient-Remainder —
Given any integer n and a positive integer d, there exist unique
integers ¢ (the quotient) and r (the remainder) such that

n=d-qg+r, and 0<r <d.

Example: Say you have 10 cookies (n = 10), and you want to dis-
tribute as many of them as possible among 3 children (d = 3) (so that
each child receives the same number of cookies, of course!)... After
you have distributed 3 sets (¢ = 3) of 3 cookies, you have one (r = 1)
remaining... By the quotient-remainder theorem you got it right —

there is only one (unique) way of solving the problem.

We are going to need more tools before we can prove this theorem

(we'll get to it in a couple of weeks), for now we take it as given.
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Notation: div and mod

Definition:
Given a non-negative integer n and a positive integer d, we define
ndivd = q the integer quotient
obtained when n is divided by d
nmodd = r theinteger remainder

obtained when n is divided by d

The quotient-remainder theorem tells us that
nmodd € {0,1,...,d— 1}

and
nmodd=0 < dn
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Using div and mod

Example: February 17, 2005 was a Thursday. What day was it one

year earlier?

Solution: 366 days passed since February 17 2004, and each week

has seven days. Since
366 div 7=52, and 366 mod 7 =2

it follows that exactly 52 weeks and 2 days passed between
the two dates. Thus 2/17/2004 was a Tuesday.
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The Parity of an Integer

The parity property is the fact that an integer is either even or odd
(but not both).

We use the quotient-remainder theorem, and and our new operation

mod to classify the integers:

For an integer n
If n mod 2=0 then n is even

If n mod 2=1 then n is odd
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Proof by Dividing into Cases

Theorem: Any two consecutive integers have opposite parity.

Proof: Let* m and m + 1 be two consecutive integers. By the parity

property, m is even, or m is odd.

case 1: (m is even) In this case, m = 2k for some k € Z, and so
m+1 =2k +1, which is odd by the definition
of odd. In this case, m is even and m~+1 is odd.

case 2: (mis odd) In this case, m = 2k + 1 for some k € Z, and
som+1=2k+2=2(k+ 1), which is even
by the definition of even. In this case, m is odd
and m + 1 is even.

It follows that regardless of which case occurs for the particular choice

of m and m + 1, one of them is even and the other one is odd. Hence

we have proved the theorem. [
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Homework #4 — Due 10/6/2006, 12noon, GMCS-587  version 2

3

3rd Edition | 2nd Edition
Problems
3.1: 27, 31, 37, 49 3.1: 12, -, 24, 35
3.3: 17, 25, 26, 36a, 36b | 3.3: 16, 24, 25, 35, -

Please use the 3rd Edition numbering when handing in your solutions.

Elementary Number Theory and Methods of Proof: Direct Proof and Counterexample — p. 35/53

Checking the Road Map

Where are we? Are we lost?

In chapters 1 and 2 we talked about logic in its purest form; learning
about logic operator and connectives; truth tables; compound state-
ments; conditional statements; quantified statements; predicates. —
Things were pretty good (some of y'all fell asleep since things were

quite cozy and familiar).

Now, in chapter 3 we are talking about different methods of proof;
where we must use our logic toolbox from chapters 1 and 2 to prove

that certain mathematical statements are true.

We are working in the context of number theory — the study of

the properties of integers.

We are introducing both proof-methodologies and number theory at

the same time, maybe a source of confusion?!?
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Review: Proof Techniques — The Method of Direct Proof Review: Proof Techniques — Disproof by Counterexample

Method of Direct Proof Disproof by Counterexample
1. Express the statement to be proved in the form “Vz € D, if To disprove a statement of the form “Va € D, if P(z) then Q(z)"
P(z) then Q(z)" find a value of = in D for which P(x) is true and Q(z) is false.
Such an z is called a counterexample.
2. Start the proof by supposing x is a particular but arbitrarily

chosen element of D for which the hypothesis P(z) is true.

[Abbreviated: “suppose = € D and P(z)."] Example: Disproof of “a* 4 b* + c* = d* does not have any positive

integer solutions.”
3. Show that the conclusion Q(z) is true by using definitions,
previously established results, and the rules for logical infer-

€nce.
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Review: Proof Techniques — Division into Cases Review: Number Theory — Divisibility

Proof by Division into Cases Definition: Divisibility —

Conjectures can often be simplified by dividing a proof into cases. If nand d are integers and d # 0, then

When a conjecture is true in all cases, it is a theorem. If a con- n is divisible by d if, and only if, n = d - k for some integer k
jecture is a theorem, a proof by cases may simplify the argument, Alternatively, we say that

since each case is a simpler form of the conjecture. n is a multiple of d, or

Also, if a conjecture is not a theorem, an attempted proof by dis a factor of n. or

cases may simplify the conjecture and make it easier to understand . ..
d is a divisor of n, or

d divides n.
The notation d|n is read “d divides n.” Symbolically if n and d

why the proof is not succeeding.

Example: The successful proof of “Any two integers consecutive are integers and d % 0,

have opposite parity.”
dn & 3ke€Z :n=d-k
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Review: Number Theory — Primeness, Two Definitions Review: Number Theory — Integer Division and Modulus

Definition: Prime / Composite Integers — Definition: Integer Division and Modulus —

An integer n is prime if, and only if, n > 1 and for all positive Given a non-negative integer n and a positive integer d, we define
integers r and s, if n =7 -5, then r =1 or s = 1. An integer n ndivd = q the integer quotient

is composite if, and only if n = r - s for some positive integers r obtained when n is divided by d

and s with » #£ 1 and s # 1.
Symbolically, if n € N\ {1}, then

n is prime & VroseNifn=r-s,thenr=1ors=1

nmodd =r the integer remainder

obtained when n is divided by d

n is composite < dr,s € Nsuch thatn=1r"-s

and r #1and s #1

Definition: Prime (Alternative) —

A positive integer n > 1 is prime, if and only if, its only divisors

are 1 and n.
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Review: Number Theory — Unique Factorization Theorem Review: Number Theory — Quotient-Remainder Theorem
Theorem: The Unique Factorization Theorem — Theorem: Quotient-Remainder —
Given any integer n > 1, there exists a positive integer k, distinct Given any integer n and a positive integer d, there exist unique
prime numbers p1, po, ..., pr, and positive integers ey, es, ..., integers ¢ (the quotient) and r (the remainder) such that
e, such that d
e e er n=d-q+r, and 0<r <d.
n = pl . p2 e pk

and any other expression of n as a product of prime numbers is

identical to this (except, possibly, for the order in which the factors Those are our theoretical “toys" so far...

are written).

Now, lets move forward...

The proof is beyond the scope of this class, but the theorem is impor-
tant enough that you should know it! — Know the statement, and
how to use it.

If you write the factors such that p; < ps < -+ < py, then the form
is called the standard factored form.
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Exercise: Representation of Integers Modulo 4

Conjecture: All integers can be written in one of the forms

n=4q or n=4g+1 or n=4¢9+2 or n=4qg+3.

Solution: Let* n be an integer. We apply the quotient-remainder
theorem with d = 4, this implies there exists a unique pair

of quotient-remainder pair ¢ and r such that
n=4-q+r, wherer e {0,1,2,3}.

This shows that the conjecture is true.

This (seemingly simple) result will be useful in a few slides...
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The Mathematical “Let”

The statement “Let n be an integer” means: “Suppose n is a

particular but arbitrarily chosen integer.”
That is, we randomly select an integer from Z.

The statement may look casual, but it means something very

specific in the language of mathematics.
You will see similar statements all over the math-literature:

e ‘“Let p be a prime such that p = 2™ — 1, for somen € Z."”

o ‘letr and s be two real numbers such that....”

Elementary Number Theory and Methods of Proof: Direct Proof and Counterexample — p. 46/53

Exercise: The form of the Square of an Odd Integer 1 of 2

Conjecture: The square of any odd integer has the form 8m + 1

for some integer m.

Solution: Let n be an odd integer. By the quotient-remainder theo-
rem, n can be written in one of the forms (see previous exercise):

n=4q or n=4¢g+1 or n=49+2 or n=4qg+3.
Now, since n is odd, this reduces the possibilities to the forms

n=4q9+1 or n=4q+ 3.
case-1: We have that n = 4q 4+ 1 for some integer ¢, therefore
2 _ 2 1p,2 _ 2
n®=(4¢g+1)° =16¢" +8¢+1=8(2¢"+q) +1
N—_——
integer

Identifying m = 2¢® + q shows that n? = 8m + 1 for some integer m.
[end case-1].
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Exercise: The form of the Square of an Odd Integer 2 of 2

case-2: We have that n = 4¢ + 3 for some integer ¢, therefore
n? = (4g+3)2 =16¢> + 24+ 9 =8(2¢* + 3¢+ 1) +1
—_——
integer

Identifying m = 2¢® + 3¢ + 1 shows that n? = 8m + 1 for some

integer m. [end case-2].

case-1 and case-2 shows that given any odd integer n, whether of
the form 4q + 1 or 4q + 3, its square can be written on the form

n? = 8m + 1 for some integer m. OJ
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Exercise: Making Change

The following algorithms gives makes change: it determines how
many quarters (25¢) ¢, dimes (10¢) d, nickels (5¢), and pennies (1c)

p equals ¢ (the total amount of change).

Exercise: (n mod 3) € {0, 1, 2}

Conjecture: Any integer n can be written in one of the three forms:

n=3¢g or n=3¢g+1 or n=3q¢+2.

Solution: Let n be an integer. By the quotient-remainder theorem

Given ¢ c=99 | c=69 | c=283 with d = 3 there exist unique integers ¢ and r such that
= c¢div 25 3 2 3
q n=3-qg+r, where0<r<d
co = cmod 25 24 19 8
) This shows that n can be written in one of the forms
d = codiv 10 2 1 0
above. .
c3 = co mod 10 4 9 8
n = c3divh 0 1 1 We are now going to use this result to show something a little more
complicated. ..
p = cgmodbH 4 4 3
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Exercise: The Product of Three Consecutive Integers 1 of 2 Exercise: The Product of Three Consecutive Integers 2 of 2

Conjecture: The product of three consecutive integers is divisible
by 3.

Solution: Let n, n+ 1 and n + 2 be three consecutive integers.
By the quotient-remainder theorem (see previous exercise), n can be
written in one of the forms

n=3qg or n=3¢g+1 or n=3¢+2

case-1: n = 3q for some integer g, in this case the product

nn+1)(n+2)=3¢(3¢+1)(3¢+2)=3-(¢(3¢+1)(3¢ + 2))

integer

which shows that 3|n(n + 1)(n + 2).
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case-2: n = 3q + 1 for some integer g, in this case the product

n(n+1)(n+2) = (3¢+1)(3¢+2)(3¢+3) = 3-((3¢ + 1)(3¢ + 2)(¢ + 1))

integer

which shows that 3|n(n + 1)(n + 2).

case-3: n = 3q + 2 for some integer ¢, in this case the product

n(n+1)(n4+2) = (3¢+2)(3¢+3)(3¢+4) = 3-((3¢ +2)(¢ + 1)(3¢ + 4))

integer

which shows that 3|n(n + 1)(n + 2).

In all three cases we have 3|n(n+1)(n+2), thus we have shown that

the product of any three consecutive integers is divisible by 3. [

Elementary Number Theory and Methods of Proof: Direct Proof and Counterexample — p. 52/53




Homework #4 — Due 10/6/2006, 12noon, GMCS-587 Final Version

3rd Edition | 2nd Edition
Problems
3.1: 27, 31, 37, 49 3.1: 12, -, 24, 35
3.3: 17, 25, 26, 36a, 36b | 3.3: 16, 24, 25, 35, -
3.4:7,8,9,10,24,29,43 | 3.4: 7, -, - — 18, —, 30

Please use the 3rd Edition numbering when handing in your solutions.

Writing your name on, and stapling your homework is highly rec-

ommended.
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