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Introdu
tionWe have spent quite some time and e�ort building up our toolbox oflogi
 reasoning.We are now ready to apply that toolbox to something � the prop-erties of integers, rational, and real numbers.We are going to try to establish the truth or falsity of mathemati
alstatements.Let the �oor of x, denoted ⌊x⌋, be the integer part of x, e.g. ⌊π⌋ = 3.Consider the two statements:1. ∀x ∈ R ⌊x − 1⌋ = ⌊x⌋ − 1.2. ∀x ∈ R, ∀y ∈ R ⌊x − y⌋ = ⌊x⌋ − ⌊y⌋.It turns out statement 1. is true, and 2. is false... We are going tolook at methods for proving this.
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Basi
 Building Blo
ks � De�nitionsMathemati
ians de�ne terms very 
arefully and pre
isely, most of thetime every word and symbol in a de�nition is there for a reason.We are going to start from a few de�nitions, and use our logi
 toolboxto evaluate the truth or falsity of mathemati
al statements.

De�nition: Even and Odd Integers �An integer n is even if, and only if, n = 2k for some integer k.An integer n is odd if, and only if, n = 2k + 1 for some integer k.Symboli
ally, if n ∈ Z, then
n is even ⇔ ∃k ∈ Z su
h that n = 2k

n is odd ⇔ ∃k ∈ Z su
h that n = 2k + 1.
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Dedu
tionsNow,If we know... Then we 
an dedu
e...a parti
ular integer n is even n has the form 2ka parti
ular integer n is odd n has the form 2k + 1a parti
ular integer n has the form 2k n is evena parti
ular integer n has the form 2k + 1 n is oddWe 
an now answer the following questions:
• Is 0 even?
• Is −301 odd?
• If a and b are integers, is 6a2b even?

• If a and b are integers, is 10a + 8b + 1 odd?
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Dedu
tionsNow,If we know... Then we 
an dedu
e...a parti
ular integer n is even n has the form 2ka parti
ular integer n is odd n has the form 2k + 1a parti
ular integer n has the form 2k n is evena parti
ular integer n has the form 2k + 1 n is oddWe 
an now answer the following questions:Is 0 even? Yes, 0 = 2 · 0Is −301 odd? Yes, −301 = 2 · [−151] + 1If a ∈ Z and b ∈ Z, is 6a2b even? Yes, 6a2b = 2 · 3a2bIf a ∈ Z and b ∈ Z, is 10a + 8b + 1 odd? Yes, 10a + 8b + 1 = 2(5a + 4b) + 1Here, we have also use the fa
t that sums and produ
ts of integersare integers.
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Prime Numbers

De�nition: Prime / Composite Integers �An integer n is prime if, and only if, n > 1 and for all positiveintegers r and s, if n = r · s, then r = 1 or s = 1. An integer nis 
omposite if, and only if n = r · s for some positive integers rand s with r 6= 1 and s 6= 1.Symboli
ally, if n ∈ N \ {1}, then
n is prime ⇔ ∀r, s ∈ N if n = r · s, then r = 1 or s = 1

n is 
omposite ⇔ ∃r, s ∈ N su
h that n = r · sand r 6= 1 and s 6= 1

Noti
e that the de�nitions of prime and 
omposite are negations ofea
h other... Hen
e every integer (greater than 1) is either a prime ora 
omposite.
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Writing Proofs: Existential StatementsThere are two ways of proving the statement

∃x ∈ D su
h that Q(x)�There is an SDSU student interested in Mathemati
s�1. Find an x ∈ D su
h that Q(x) is true. (Find an SDSU studentinterested in Mathemati
s).2. Give a set of dire
tions for �nding su
h an x ∈ D. Important:� The dire
tions must guarantee that we �nd x ∈ D.

Both these methods are 
alled 
onstru
tive proofs of existen
e. �They tell us something exists, and tell us how to �nd it.
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Non-
onstru
tive Proofs of Existen
eIt is also possible to prove the existen
e of an x ∈ D su
h that Q(x)is true by: �1. Showing that the existen
e of a value of x that makes Q(x) trueis guaranteed by an axiom or a previously proved theorem.2. Showing that the assumption that there is no su
h x leads to a
ontradi
tion.These proofs give us no information about how to �nd su
h a value,hen
e they are 
alled non-
onstru
tive.

Clearly, if you are looking for a value making Q(x) true, a non-
onstru
tive proof is a disadvantage. Su
h a proof is still useful, sin
eit tells us there is indeed something to look for.
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Proving Universal Statements Method of ExhaustionThe vast majority of mathemati
al statements to be proved are uni-versal, basi
ally on the form

∀x ∈ D, if P (x) then Q(x)The method of exhaustion 
an be used in two situations:1. When D 
ontains a �nite number of elements2. When there are only a �nite number of elements in the truth setof P (x)The method of exhaustion will make you exhausted qui
kly: you haveto plug in every possible value of x ∈ D (or from the truth set of

P (x)) and then 
he
k P (x) → Q(x).This is sometimes 
alled a brute for
e method and qui
kly be
omesinfeasible!
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Proving Universal Statements A Tool for a Better MethodClearly, we would like a method of proving universal statements whi
hworks regardless of the size of the domain over whi
h the statementis quanti�ed.
The underlying idea of the method of generalizing from thegeneri
 parti
ular:

To show that every element of a domain satis�es a 
ertain prop-erty, suppose x is a parti
ular but arbitrarily 
hosen elementof the domain and show that x satis�es the property.

We will use this tool in the Method of Dire
t Proof...
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The Method of Dire
t Proof

Method of Direct Proof1. Express the statement to be proved in the form �∀x ∈ D, if
P (x) then Q(x).�2. Start the proof by supposing x is a parti
ular but arbitrarily
hosen element of D for whi
h the hypothesis P (x) is true.[Abbreviated: �suppose x ∈ D and P (x).�℄3. Show that the 
on
lusion Q(x) is true by using de�nitions,previously established results, and the rules for logi
al infer-en
e.

Note: The point of sele
ting x arbitrarily is that everything youdedu
e about a generi
 element in D will be true for everyother element in D.
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Let's Try It...Theorem: �If the sum of two integers is even, so is their di�eren
e.�

Restatement: ∀m,n ∈ Z, if (m + n) is even, then (m − n) is even.

1. (m + n) = 2k, for some k ∈ Z. solve for m...2. m = 2k − n. substitute into (m − n)...3. (m − n) = (2k − n) − n = 2k − 2n = 2(k − n).We're done! (Sort of... Let's 
lean it up and make it more readable.)
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Our First Theorem with Proof

Theorem: If the sum of any two integers is even, then so is theirdi�eren
e.
Proof: Suppose m and n are integers so that m +n is even. Byde�nition of even m + n = 2k for some integer k. Subtra
ting nfrom both side gives m = 2k − n, then

m − n = (2k − n) − n by substitution= 2k − 2n by combining terms / basic algebra= 2(k − n) by factoring out a 2 / basic algebraBut k−n is an integer be
ause it is the di�eren
e between integers,Hen
e m − n equals 2 times an integer, and so by the de�nitionof even, m − n is even. �
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How to Write a Proof1. Write the theorem to be proved.2. Clearly mark the beginning of the proof with the word proof .3. Make your proof self-
ontained:� In the body (text) of the proof, identify ea
h variableused in the proof. The reader should not have to guess, orassume anything.4. Write proofs in 
omplete (English) senten
es.This does not mean that you should avoid using symbols andshorthand abbreviations, just that you should in
orporate theninto senten
es.Your proofs: It's better you are too detailed, but don't be ridi
ulous!
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Common Mistakes 1 of 21. Arguing from ExamplesExamples help understanding, but spe
ial 
ases do not provegeneral statements. � Think of the statement �All odd numberintegers greater than 1 are prime� and the examples 3, 5, 7...2. Using the same letter to mean two thingsFor instan
e, if m and n are two even integers, don't say m = 2rand n = 2r... Disaster! You're saying m = n!!! (Use, e.g.

m = 2r and n = 2s.)3. Jumping to a Con
lusionTo state that something is true without giving adequate reason.�
uz I say so!!!� is not su�
ient logi
al argument!
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Common Mistakes 2 of 24. Begging the QuestionTo assume what it to be proved. � Usually in a logi
allyequivalent form that looks di�erent...5. Misuse of the Word �if�Using the word �if� instead of �sin
e� or �be
ause�. Consider�Suppose p is a prime. If p is prime, then p 
annot be writtenas a produ
t of two smaller numbers.�and�Suppose p is a prime. Sin
e p is prime, p 
annot be writtenas a produ
t of two smaller numbers.�In the �rst formulation, the primeness of p seems to be in doubtin the se
ond senten
e... Su
h impre
ise use of language 
an
as
ade through the proof and generate problems later.

Elementary Number Theory and Methods of Proof: Direct Proof and Counterexample – p. 15/53



Comi
 Relief � The Odd Prime Number TheoryAn engineer, a mathemati
ian, and a physi
ist are testing the theorythat all odd numbers are prime: �Physi
ist: �1 is prime, 3 is prime, 5 is prime, 7 is prime, 9 � mustbe experimental error, 11 is prime, 13 is prime. That's enough datapoints; the theory is true.�Mathemati
ian: �By 
onvention, 1 is not prime, but 3 is a prime, 5is a prime, 7 is a prime, 9 is not a prime � 
ounterexample � 
laimis false.�Engineer: �1 is prime, 3 is prime, 5 is prime, 7 is prime, 9 is prime, 11is prime, 13 is prime, 15 is prime, 17 is prime, 19 is prime... Hmmm,theory appears to be true.�Se
ond Engineer , who slept through some early math 
lasses: �Whatdo you mean, `1 is not prime?' �
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Disproof By CounterexampleDisproving a statement of the form

∀x ∈ D, if P (x) then Q(x)

amounts to proving that the negation of the statement is true
∃x ∈ D su
h that P (x) and ∼ Q(x)

Disproof by CounterexampleTo disprove a statement of the form �∀x ∈ D, if P (x) then Q(x)��nd a value of x in D for whi
h P (x) is true and Q(x) is false.Su
h an x is 
alled a 
ounterexample.
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Examples: Disproofs

Bogus Theorem #1: �All odd integers greater than 1 are prime.�

Disproof: Sin
e 9 = 2 · 4 + 1 it is odd. Further, 9 = 3 · 3 whi
hshows that 9 is a 
omposite number, hen
e not a prime.

Bogus Theorem #2: ∀a ∈ R, b ∈ R, if a2 = b2, then a = b.

Disproof: Let a = 1, and b = −1, a2 = b2 = 1, but a 6= b.
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Famous Proofs and DisproofsFermat's Last Theorem: If n is an integer greater than 2, thenthe equation xn + yn = zn has no solutions where x, y, and z arepositive integers. (Pierre de Fermat lived 1601�1665)

Euler's Conje
ture: a4 + b4 + c4 = d4 has no integer solutions.(Leonhard Euler lived 1707�1783)

Fermat's Last Theorem was �nally proved by Andrew Wiles inSeptember 1994.

Euler's Conje
ture was disproved by Noam Elkie (Harvard Uni-versity) in 1986. One 
ounterexample is 95, 8004 + 217, 5194 +

414, 5604 = 422, 4814 � found by Roger Frye of Thinking Ma
hinesCorporation.
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Homework #4 � Due 10/6/2006, 12noon, GMCS-587 version 1

33rd Edition 2nd EditionProblems3.1: 27, 31, 37, 49 3.1: 12, �, 24, 35

Please use the 3rd Edition numbering when handing in your solutions.
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Divisibility and Number Theory � Introdu
tion
Epp-§3.2: skip.

Divisibility of the 
entral 
on
ept of number theory � the study ofproperties of integers.

Important appli
ations of number theory in
lude keeping your 
redit
ard number safe when you hit �buy now� in your web browser.

We look at some more statements about integers, and prove a few ofthem...
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Divisibility of an Integer

De�nition: Divisibility �If n and d are integers and d 6= 0, then

n is divisible by d if, and only if, n = d · k for some integer kAlternatively, we say that

n is a multiple of d, or
d is a fa
tor of n, or
d is a divisor of n, or
d divides n.The notation d|n is read �d divides n.� Symboli
ally if n and dare integers and d 6= 0,

d|n ⇔ ∃k ∈ Z : n = d · k
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Divisibility: Examples

Example #1: Suppose a and b are positive integers, and a|b. Is
a ≤ b?Solution: a|b means that b = k · a for some positive integer k(sin
e both a and b are positive). Therefore k ≥ 1. Thisshows that b = k · a ≥ a (by multiplying both sides ofthe inequality by the positive integer a). Hen
e we 
an
on
lude that a ≤ b.
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Divisibility: ExamplesExample #2:a. If a and b are integers, is 3a + 3b divisible by 3?b. If k and m are integers, is 10km divisible by 5?Solution:a. By basi
 algebra (the distributive law) we 
an write

3a + 3b = 3(a + b), and sin
e a + b is an integer (beinga sum of integers), we have shown that 3|(3a + 3b).b. By basi
 algebra (the asso
iative law) we 
an write

10km = 5 · 2km, where 2km is an integer (being a prod-u
t of integers). We have shown 5|10km.
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Divisibility � Primeness, and TransitivityWe 
an use the 
on
ept of divisibility to de�ne primeness:

De�nition: Prime Integer (Alternative) �A positive integer n > 1 is prime, if and only if, its only divisorsare 1 and n.
Divisibility is transitive: If one number a divides a se
ond number b(a|b) and the se
ond number divides a third number c (b|c), then the�rst number divides the third (a|c).

This is an important fa
t, lets prove it!
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Proof: Divisibility is a Transitive Property

Theorem:For all integers a, b and c, if a|b and b|c, then a|c.

Proof: Suppose a, b and c are parti
ular but arbitrarily 
hosenintegers su
h that a|b and b|c.

By the de�nition of divisibility weknow that , for some integer , and, for some integer .Combining these two, we have for some integers and .Hen
e, we 
an write where is an integer,whi
h shows that .
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Proof: Divisibility is a Transitive Property

Theorem:For all integers a, b and c, if a|b and b|c, then a|c.

Proof: Suppose a, b and c are parti
ular but arbitrarily 
hosenintegers su
h that a|b and b|c. By the de�nition of divisibility weknow that

a|b ⇔ b = a · r, for some integer r, and
b|c ⇔ c = b · t, for some integer t.

Combining these two, we have for some integers and .Hen
e, we 
an write where is an integer,whi
h shows that .
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Proof: Divisibility is a Transitive Property

Theorem:For all integers a, b and c, if a|b and b|c, then a|c.

Proof: Suppose a, b and c are parti
ular but arbitrarily 
hosenintegers su
h that a|b and b|c. By the de�nition of divisibility weknow that

a|b ⇔ b = a · r, for some integer r, and
b|c ⇔ c = b · t, for some integer t.Combining these two, we have

c = b · t = a · r · t, for some integers r and t.

Hen
e, we 
an write where is an integer,whi
h shows that .
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Proof: Divisibility is a Transitive Property

Theorem:For all integers a, b and c, if a|b and b|c, then a|c.

Proof: Suppose a, b and c are parti
ular but arbitrarily 
hosenintegers su
h that a|b and b|c. By the de�nition of divisibility weknow that

a|b ⇔ b = a · r, for some integer r, and
b|c ⇔ c = b · t, for some integer t.Combining these two, we have

c = b · t = a · r · t, for some integers r and t.Hen
e, we 
an write
c = a · (r · t), where r · t is an integer,whi
h shows that a|c. �
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Does a|b and b|a imply a = b?Question: Is it true that for all integers a and b, if a|b and b|a then
a = b?Solution: Suppose a and b are integers su
h that a|b and b|a, thenwe must have

b = a · r, r ∈ Z, a = b · s, s ∈ Z.

By substitution
whi
h is true if and only if , i.e. both and are divisorsof 1.The only divisors of 1 are 1 and . gives us in�nitelymany 
ounterexamples ( ), thus we 
on
ludeand
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Does a|b and b|a imply a = b?Question: Is it true that for all integers a and b, if a|b and b|a then
a = b?Solution: Suppose a and b are integers su
h that a|b and b|a, thenwe must have

b = a · r, r ∈ Z, a = b · s, s ∈ Z.By substitution

b = a · r = b · (s · r)whi
h is true if and only if (s · r) = 1, i.e. both r and s are divisorsof 1.

The only divisors of 1 are 1 and . gives us in�nitelymany 
ounterexamples ( ), thus we 
on
ludeand
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Does a|b and b|a imply a = b?Question: Is it true that for all integers a and b, if a|b and b|a then
a = b?Solution: Suppose a and b are integers su
h that a|b and b|a, thenwe must have

b = a · r, r ∈ Z, a = b · s, s ∈ Z.By substitution

b = a · r = b · (s · r)whi
h is true if and only if (s · r) = 1, i.e. both r and s are divisorsof 1.The only divisors of 1 are 1 and −1. r = s = −1 gives us in�nitelymany 
ounterexamples (a = −b), thus we 
on
lude

a|b and b|a 6⇒ a = b.
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The Unique Fa
torization Theorem

Theorem: The Unique Fa
torization Theorem �Given any integer n > 1, there exists a positive integer k, distin
tprime numbers p1, p2, . . ., pk, and positive integers e1, e2, . . .,
ek, su
h that

n = pe1

1
· pe2

2
· · · p

ek

kand any other expression of n as a produ
t of prime numbers isidenti
al to this (ex
ept, possibly, for the order in whi
h the fa
torsare written).
The proof is beyond the s
ope of this 
lass, but the theorem is impor-tant enough that you should know it!If you write the fa
tors su
h that p1 < p2 < · · · < pk, then the formis 
alled the standard fa
tored form.
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Using the Unique Fa
torization TheoremQuestion: Suppose m is an integer su
h that

8 · 7 · 6 · 5 · 4 · 3 · 2 ·m = 17 · 16 · 15 · 14 · 13 · 12 · 11 · 10Does 17|m?Solution: 17 is a prime number. Sin
e it is a fa
tor on the rightside of the equation, it must also be a fa
tor on the leftside of the equation, by the Unique Fa
torization Theorem(UFT). But 17 
annot fa
tor any of the numbers 8, 7, 6,5, 4, 3, 2 � sin
e it is too large. Hen
e it must fa
tor

m, so 17|m.
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The Quotient-Remainder Theorem

Theorem: Quotient-Remainder �Given any integer n and a positive integer d, there exist uniqueintegers q (the quotient) and r (the remainder) su
h that
n = d · q + r, and 0 ≤ r < d.

Example: Say you have 10 
ookies (n = 10), and you want to dis-tribute as many of them as possible among 3 
hildren (d = 3) (so thatea
h 
hild re
eives the same number of 
ookies, of 
ourse!)... Afteryou have distributed 3 sets (q = 3) of 3 
ookies, you have one (r = 1)remaining... By the quotient-remainder theorem you got it right �there is only one (unique) way of solving the problem.We are going to need more tools before we 
an prove this theorem(we'll get to it in a 
ouple of weeks), for now we take it as given.
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Notation: div and mod

De�nition:Given a non-negative integer n and a positive integer d, we de�nen div d = q the integer quotientobtained when n is divided by dn mod d = r the integer remainderobtained when n is divided by dThe quotient-remainder theorem tells us that
n mod d ∈ {0, 1, . . . , d − 1}and

n mod d = 0 ⇔ d|n
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Using div and modExample: February 17, 2005 was a Thursday. What day was it oneyear earlier?Solution: 366 days passed sin
e February 17 2004, and ea
h weekhas seven days. Sin
e

366 div 7 = 52, and 366 mod 7 = 2it follows that exa
tly 52 weeks and 2 days passed betweenthe two dates. Thus 2/17/2004 was a Tuesday.
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The Parity of an IntegerThe parity property is the fa
t that an integer is either even or odd(but not both).
We use the quotient-remainder theorem, and and our new operation

mod to 
lassify the integers:
For an integer nIf n mod 2 = 0 then n is evenIf n mod 2 = 1 then n is odd
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Proof by Dividing into Cases

Theorem: Any two 
onse
utive integers have opposite parity.Proof: Let∗ m and m + 1 be two 
onse
utive integers. By the parityproperty, m is even, or m is odd.


ase 1: ( is even) In this 
ase, for some , and so, whi
h is odd by the de�nitionof odd. In this 
ase, is even and is odd.
ase 2: ( is odd) In this 
ase, for some , andso , whi
h is evenby the de�nition of even. In this 
ase, is oddand is even.It follows that regardless of whi
h 
ase o

urs for the parti
ular 
hoi
eof and , one of them is even and the other one is odd. Hen
ewe have proved the theorem.
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Proof by Dividing into Cases

Theorem: Any two 
onse
utive integers have opposite parity.Proof: Let∗ m and m + 1 be two 
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utive integers. By the parityproperty, m is even, or m is odd.
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ase 1: (m is even) In this 
ase, m = 2k for some k ∈ Z, and so
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ewe have proved the theorem.
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Proof by Dividing into Cases

Theorem: Any two 
onse
utive integers have opposite parity.Proof: Let∗ m and m + 1 be two 
onse
utive integers. By the parityproperty, m is even, or m is odd.
ase 1: (m is even) In this 
ase, m = 2k for some k ∈ Z, and so

m +1 = 2k +1, whi
h is odd by the de�nitionof odd. In this 
ase, m is even and m+1 is odd.
ase 2: (m is odd) In this 
ase, m = 2k + 1 for some k ∈ Z, andso m + 1 = 2k + 2 = 2(k + 1), whi
h is evenby the de�nition of even. In this 
ase, m is oddand m + 1 is even.It follows that regardless of whi
h 
ase o

urs for the parti
ular 
hoi
eof m and m+1, one of them is even and the other one is odd. Hen
ewe have proved the theorem. �
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Homework #4 � Due 10/6/2006, 12noon, GMCS-587 version 2

33rd Edition 2nd EditionProblems3.1: 27, 31, 37, 49 3.1: 12, �, 24, 353.3: 17, 25, 26, 36a, 36b 3.3: 16, 24, 25, 35, �

Please use the 3rd Edition numbering when handing in your solutions.
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Che
king the Road MapWhere are we? Are we lost?In 
hapters 1 and 2 we talked about logi
 in its purest form; learningabout logi
 operator and 
onne
tives; truth tables; 
ompound state-ments; 
onditional statements; quanti�ed statements; predi
ates. �Things were pretty good (some of y'all fell asleep sin
e things werequite 
ozy and familiar).Now, in 
hapter 3 we are talking about di�erent methods of proof;where we must use our logi
 toolbox from 
hapters 1 and 2 to provethat 
ertain mathemati
al statements are true.We are working in the 
ontext of number theory � the study ofthe properties of integers.We are introdu
ing both proof-methodologies and number theory atthe same time, maybe a sour
e of 
onfusion?!?
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Review: Proof Te
hniques � The Method of Dire
t Proof
Method of Direct Proof1. Express the statement to be proved in the form �∀x ∈ D, if

P (x) then Q(x)�2. Start the proof by supposing x is a parti
ular but arbitrarily
hosen element of D for whi
h the hypothesis P (x) is true.[Abbreviated: �suppose x ∈ D and P (x).�℄3. Show that the 
on
lusion Q(x) is true by using de�nitions,previously established results, and the rules for logi
al infer-en
e.
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Review: Proof Te
hniques � Disproof by Counterexample
Disproof by CounterexampleTo disprove a statement of the form �∀x ∈ D, if P (x) then Q(x)��nd a value of x in D for whi
h P (x) is true and Q(x) is false.Su
h an x is 
alled a 
ounterexample.

Example: Disproof of �a4 + b4 + c4 = d4 does not have any positiveinteger solutions.�
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Review: Proof Te
hniques � Division into Cases
Proof by Division into CasesConje
tures 
an often be simpli�ed by dividing a proof into 
ases.When a 
onje
ture is true in all 
ases, it is a theorem. If a 
on-je
ture is a theorem, a proof by 
ases may simplify the argument,sin
e ea
h 
ase is a simpler form of the 
onje
ture.Also, if a 
onje
ture is not a theorem, an attempted proof by
ases may simplify the 
onje
ture and make it easier to understandwhy the proof is not su

eeding.

Example: The su

essful proof of �Any two integers 
onse
utivehave opposite parity.�
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Review: Number Theory � Divisibility

De�nition: Divisibility �If n and d are integers and d 6= 0, then

n is divisible by d if, and only if, n = d · k for some integer kAlternatively, we say that

n is a multiple of d, or
d is a fa
tor of n, or
d is a divisor of n, or
d divides n.The notation d|n is read �d divides n.� Symboli
ally if n and dare integers and d 6= 0,

d|n ⇔ ∃k ∈ Z : n = d · k
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Review: Number Theory � Primeness, Two De�nitions

De�nition: Prime / Composite Integers �An integer n is prime if, and only if, n > 1 and for all positiveintegers r and s, if n = r · s, then r = 1 or s = 1. An integer nis 
omposite if, and only if n = r · s for some positive integers rand s with r 6= 1 and s 6= 1.Symboli
ally, if n ∈ N \ {1}, then
n is prime ⇔ ∀r, s ∈ N if n = r · s, then r = 1 or s = 1

n is 
omposite ⇔ ∃r, s ∈ N su
h that n = r · sand r 6= 1 and s 6= 1

De�nition: Prime (Alternative) �A positive integer n > 1 is prime, if and only if, its only divisorsare 1 and n.
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Review: Number Theory � Integer Division and Modulus

De�nition: Integer Division and Modulus �Given a non-negative integer n and a positive integer d, we de�nen div d = q the integer quotientobtained when n is divided by dn mod d = r the integer remainderobtained when n is divided by d
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Review: Number Theory � Unique Fa
torization Theorem

Theorem: The Unique Fa
torization Theorem �Given any integer n > 1, there exists a positive integer k, distin
tprime numbers p1, p2, . . ., pk, and positive integers e1, e2, . . .,
ek, su
h that

n = pe1

1
· pe2

2
· · · p

ek

kand any other expression of n as a produ
t of prime numbers isidenti
al to this (ex
ept, possibly, for the order in whi
h the fa
torsare written).
The proof is beyond the s
ope of this 
lass, but the theorem is impor-tant enough that you should know it! � Know the statement, andhow to use it.If you write the fa
tors su
h that p1 < p2 < · · · < pk, then the formis 
alled the standard fa
tored form.

Elementary Number Theory and Methods of Proof: Direct Proof and Counterexample – p. 43/53



Review: Number Theory � Quotient-Remainder Theorem

Theorem: Quotient-Remainder �Given any integer n and a positive integer d, there exist uniqueintegers q (the quotient) and r (the remainder) su
h that
n = d · q + r, and 0 ≤ r < d.

Those are our theoreti
al �toys� so far...

Now, lets move forward...
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Exer
ise: Representation of Integers Modulo 4Conje
ture: All integers 
an be written in one of the forms
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.

Solution: Let∗ n be an integer.

We apply the quotient-remaindertheorem with , this implies there exists a unique pairof quotient-remainder pair and su
h that

This shows that the 
onje
ture is true.This (seemingly simple) result will be useful in a few slides...
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Exer
ise: Representation of Integers Modulo 4Conje
ture: All integers 
an be written in one of the forms
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.

Solution: Let∗ n be an integer. We apply the quotient-remaindertheorem with d = 4,

this implies there exists a unique pairof quotient-remainder pair and su
h that

This shows that the 
onje
ture is true.This (seemingly simple) result will be useful in a few slides...
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Exer
ise: Representation of Integers Modulo 4Conje
ture: All integers 
an be written in one of the forms
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.

Solution: Let∗ n be an integer. We apply the quotient-remaindertheorem with d = 4, this implies there exists a unique pairof quotient-remainder pair q and r su
h that
n = 4 · q + r, where r ∈ {0, 1, 2, 3}.

This shows that the 
onje
ture is true.This (seemingly simple) result will be useful in a few slides...
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Exer
ise: Representation of Integers Modulo 4Conje
ture: All integers 
an be written in one of the forms
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.

Solution: Let∗ n be an integer. We apply the quotient-remaindertheorem with d = 4, this implies there exists a unique pairof quotient-remainder pair q and r su
h that
n = 4 · q + r, where r ∈ {0, 1, 2, 3}.This shows that the 
onje
ture is true.This (seemingly simple) result will be useful in a few slides...
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The Mathemati
al �Let�The statement �Let n be an integer� means: �Suppose n is aparti
ular but arbitrarily 
hosen integer.�

That is, we randomly sele
t an integer from Z.

The statement may look 
asual , but it means something veryspe
i�
 in the language of mathemati
s.

You will see similar statements all over the math-literature:

• �Let p be a prime su
h that p = 2n − 1, for some n ∈ Z.�

• �Let r and s be two real numbers su
h that....�
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Exer
ise: The form of the Square of an Odd Integer 1 of 2Conje
ture: The square of any odd integer has the form 8m + 1for some integer m.Solution: Let n be an odd integer.

By the quotient-remainder theo-rem, 
an be written in one of the forms (see previous exer
ise):or or or .Now, sin
e is odd, this redu
es the possibilities to the formsor .
ase-1: We have that for some integer , therefore

Identifying shows that for some integer .[end 
ase-1℄.
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Exer
ise: The form of the Square of an Odd Integer 1 of 2Conje
ture: The square of any odd integer has the form 8m + 1for some integer m.Solution: Let n be an odd integer. By the quotient-remainder theo-rem, n 
an be written in one of the forms (see previous exer
ise):
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.

Now, sin
e is odd, this redu
es the possibilities to the formsor .
ase-1: We have that for some integer , therefore

Identifying shows that for some integer .[end 
ase-1℄.

Elementary Number Theory and Methods of Proof: Direct Proof and Counterexample – p. 47/53



Exer
ise: The form of the Square of an Odd Integer 1 of 2Conje
ture: The square of any odd integer has the form 8m + 1for some integer m.Solution: Let n be an odd integer. By the quotient-remainder theo-rem, n 
an be written in one of the forms (see previous exer
ise):
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.Now, sin
e n is odd, this redu
es the possibilities to the forms

n = 4q + 1 or n = 4q + 3.


ase-1: We have that for some integer , therefore

Identifying shows that for some integer .[end 
ase-1℄.
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Exer
ise: The form of the Square of an Odd Integer 1 of 2Conje
ture: The square of any odd integer has the form 8m + 1for some integer m.Solution: Let n be an odd integer. By the quotient-remainder theo-rem, n 
an be written in one of the forms (see previous exer
ise):
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.Now, sin
e n is odd, this redu
es the possibilities to the forms

n = 4q + 1 or n = 4q + 3.
ase-1: We have that n = 4q + 1 for some integer q, therefore

n2 = (4q + 1)2 = 16q2 + 8q + 1 = 8 (2q2 + q)
︸ ︷︷ ︸

integer

+1

Identifying m = 2q2 + q shows that n2 = 8m+1 for some integer m.[end 
ase-1℄.
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Exer
ise: The form of the Square of an Odd Integer 2 of 2
ase-2: We have that n = 4q + 3 for some integer q, therefore
n2 = (4q + 3)2 = 16q2 + 24q + 9 = 8 (2q2 + 3q + 1)

︸ ︷︷ ︸

integer

+1

Identifying m = 2q2 + 3q + 1 shows that n2 = 8m + 1 for someinteger m. [end 
ase-2℄.


ase-1 and 
ase-2 shows that given any odd integer , whether ofthe form or , its square 
an be written on the formfor some integer .
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Exer
ise: The form of the Square of an Odd Integer 2 of 2
ase-2: We have that n = 4q + 3 for some integer q, therefore
n2 = (4q + 3)2 = 16q2 + 24q + 9 = 8 (2q2 + 3q + 1)

︸ ︷︷ ︸

integer

+1

Identifying m = 2q2 + 3q + 1 shows that n2 = 8m + 1 for someinteger m. [end 
ase-2℄.


ase-1 and 
ase-2 shows that given any odd integer n, whether ofthe form 4q + 1 or 4q + 3, its square 
an be written on the form

n2 = 8m + 1 for some integer m. �
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Exer
ise: Making ChangeThe following algorithms gives makes 
hange: it determines howmany quarters (25
) q, dimes (10
) d, ni
kels (5
), and pennies (1
)
p equals c (the total amount of 
hange).

Given c

q = c div 25

c2 = c mod 25

d = c2 div 10

c3 = c2 mod 10

n = c3 div 5

p = c3 mod 5
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Exer
ise: Making ChangeThe following algorithms gives makes 
hange: it determines howmany quarters (25
) q, dimes (10
) d, ni
kels (5
), and pennies (1
)
p equals c (the total amount of 
hange).

Given c c = 99

q = c div 25 3
c2 = c mod 25 24
d = c2 div 10 2

c3 = c2 mod 10 4
n = c3 div 5 0
p = c3 mod 5 4
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Exer
ise: Making ChangeThe following algorithms gives makes 
hange: it determines howmany quarters (25
) q, dimes (10
) d, ni
kels (5
), and pennies (1
)
p equals c (the total amount of 
hange).

Given c c = 99 c = 69

q = c div 25 3 2
c2 = c mod 25 24 19
d = c2 div 10 2 1

c3 = c2 mod 10 4 9
n = c3 div 5 0 1
p = c3 mod 5 4 4
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Exer
ise: Making ChangeThe following algorithms gives makes 
hange: it determines howmany quarters (25
) q, dimes (10
) d, ni
kels (5
), and pennies (1
)
p equals c (the total amount of 
hange).

Given c c = 99 c = 69 c = 83

q = c div 25 3 2 3
c2 = c mod 25 24 19 8
d = c2 div 10 2 1 0

c3 = c2 mod 10 4 9 8

n = c3 div 5 0 1 1

p = c3 mod 5 4 4 3
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Exer
ise: (n mod 3) ∈ {0, 1, 2}Conje
ture: Any integer n 
an be written in one of the three forms:
n = 3q or n = 3q + 1 or n = 3q + 2.

Solution: Let n be an integer.

By the quotient-remainder theoremwith there exist unique integers and su
h thatwhereThis shows that 
an be written in one of the formsabove. .We are now going to use this result to show something a little more
ompli
ated...
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Exer
ise: (n mod 3) ∈ {0, 1, 2}Conje
ture: Any integer n 
an be written in one of the three forms:
n = 3q or n = 3q + 1 or n = 3q + 2.

Solution: Let n be an integer. By the quotient-remainder theoremwith d = 3 there exist unique integers q and r su
h that

n = 3 · q + r, where 0 ≤ r < d

This shows that 
an be written in one of the formsabove. .We are now going to use this result to show something a little more
ompli
ated...
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Exer
ise: (n mod 3) ∈ {0, 1, 2}Conje
ture: Any integer n 
an be written in one of the three forms:
n = 3q or n = 3q + 1 or n = 3q + 2.

Solution: Let n be an integer. By the quotient-remainder theoremwith d = 3 there exist unique integers q and r su
h that

n = 3 · q + r, where 0 ≤ r < dThis shows that n 
an be written in one of the formsabove. �.We are now going to use this result to show something a little more
ompli
ated...
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Exer
ise: The Produ
t of Three Conse
utive Integers 1 of 2Conje
ture: The produ
t of three 
onse
utive integers is divisibleby 3.Solution: Let n, n + 1 and n + 2 be three 
onse
utive integers.

By the quotient-remainder theorem (see previous exer
ise), 
an bewritten in one of the formsor or


ase-1: for some integer , in this 
ase the produ
t

whi
h shows that .
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ture: The produ
t of three 
onse
utive integers is divisibleby 3.Solution: Let n, n + 1 and n + 2 be three 
onse
utive integers.By the quotient-remainder theorem (see previous exer
ise), n 
an bewritten in one of the forms

n = 3q or n = 3q + 1 or n = 3q + 2


ase-1: for some integer , in this 
ase the produ
t

whi
h shows that .
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Exer
ise: The Produ
t of Three Conse
utive Integers 1 of 2Conje
ture: The produ
t of three 
onse
utive integers is divisibleby 3.Solution: Let n, n + 1 and n + 2 be three 
onse
utive integers.By the quotient-remainder theorem (see previous exer
ise), n 
an bewritten in one of the forms

n = 3q or n = 3q + 1 or n = 3q + 2


ase-1: n = 3q for some integer q, in this 
ase the produ
t

n(n + 1)(n + 2) = 3q(3q + 1)(3q + 2) = 3 · (q(3q + 1)(3q + 2))
︸ ︷︷ ︸

integerwhi
h shows that 3|n(n + 1)(n + 2).
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Exer
ise: The Produ
t of Three Conse
utive Integers 2 of 2
ase-2: n = 3q + 1 for some integer q, in this 
ase the produ
t
n(n+1)(n+2) = (3q+1)(3q+2)(3q+3) = 3·((3q + 1)(3q + 2)(q + 1))

︸ ︷︷ ︸

integerwhi
h shows that 3|n(n + 1)(n + 2).


ase-3: for some integer , in this 
ase the produ
t

whi
h shows that .

In all three 
ases we have , thus we have shown thatthe produ
t of any three 
onse
utive integers is divisible by 3.
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Exer
ise: The Produ
t of Three Conse
utive Integers 2 of 2
ase-2: n = 3q + 1 for some integer q, in this 
ase the produ
t
n(n+1)(n+2) = (3q+1)(3q+2)(3q+3) = 3·((3q + 1)(3q + 2)(q + 1))

︸ ︷︷ ︸

integerwhi
h shows that 3|n(n + 1)(n + 2).


ase-3: n = 3q + 2 for some integer q, in this 
ase the produ
t

n(n+1)(n+2) = (3q+2)(3q+3)(3q+4) = 3·((3q + 2)(q + 1)(3q + 4))
︸ ︷︷ ︸

integerwhi
h shows that 3|n(n + 1)(n + 2).

In all three 
ases we have , thus we have shown thatthe produ
t of any three 
onse
utive integers is divisible by 3.
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Exer
ise: The Produ
t of Three Conse
utive Integers 2 of 2
ase-2: n = 3q + 1 for some integer q, in this 
ase the produ
t
n(n+1)(n+2) = (3q+1)(3q+2)(3q+3) = 3·((3q + 1)(3q + 2)(q + 1))

︸ ︷︷ ︸

integerwhi
h shows that 3|n(n + 1)(n + 2).


ase-3: n = 3q + 2 for some integer q, in this 
ase the produ
t

n(n+1)(n+2) = (3q+2)(3q+3)(3q+4) = 3·((3q + 2)(q + 1)(3q + 4))
︸ ︷︷ ︸

integerwhi
h shows that 3|n(n + 1)(n + 2).

In all three 
ases we have 3|n(n+1)(n+2), thus we have shown thatthe produ
t of any three 
onse
utive integers is divisible by 3. �
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Homework #4 � Due 10/6/2006, 12noon, GMCS-587 Final Version3rd Edition 2nd EditionProblems3.1: 27, 31, 37, 49 3.1: 12, �, 24, 353.3: 17, 25, 26, 36a, 36b 3.3: 16, 24, 25, 35, �3.4: 7, 8, 9, 10, 24, 29, 43 3.4: 7, �, �, �, 18, �, 30

Please use the 3rd Edition numbering when handing in your solutions.Writing your name on, and stapling your homework is highly re
-ommended.
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