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Counting Combinations — Introduction

Consider  drawing a  poker hand  (five cards, e.g.
{100,J0, Q0V, KO, A&}) from a deck of cards. How many

possibilities are there?

Last time we introduced the concept of an r-permutation

Definition: An r-permutation of a set of n elements is an or-
dered selection of r elements taken from the set. The number of

r-permutations of a set of n elements is denoted P(n,r).

But a poker hand is not an ordered selection — it does not matter

in what order you draw the cards!

Next, we introduce r-combinations — an unordered selection of r

elements from a set of n elements...
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Counting Subsets — r-combinations

Definition: r-combination —

Let n and r be non-negative integers with » < n. An r-
combination of a set of n elements is a subset of r of the n ele-
ments. The symbol (:f) read “n choose r,” denotes the number

of subsets of size r (r-combinations) that can be chosen from a

set of n elements.

Selection Type Ordered Unordered
Name r-permutation r-combination
n
Symbol P(n,r) (™)
# of Possibilities || —2 277
(n—r)!

Table: Summary of ordered (permutations) and unordered (com-
binations) selection of r elements from a set containing n elements.
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Example

Example #£1: A 3-combination of S, where n(S) = 4. Let S =
{Math, Physics, Chemistry, Biology } — next semester
you must take 3 of these subjects, what are your op-

tions?

{Physics, Chemistry, Biology } {Math, Chemistry, Biology }

{Math, Physics, Biology } {Math, Physics, Chemistry }

Example #2: A 2-combination of S, where n(S) = 4. Let § =
{0,1,2,3}, how many subsets are there?

{0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}

We notice that the number of combinations is given by

1 4] 1 4] 24
= — = 47 p— = — = 6
3 3! 2 2! . 2] 1
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(") vs. P(n,r) 1 of 2

We can think of ordered selection as a 2-step process:

1. Select r (unordered ) elements from the set of n elements.

2. Assign an ordering to the r elements.

If there are nq ways to perform step 1 and ny ways to perform step 2,
then by the multiplication rule there are nq - ny ways to perform the

two-step process.

We know we can perform the two-step process (generating an r-
combination) in ny - ny = P(n,r) ways, where ny = (Z) and ny = r!

by the following theorem (from last lecture)

Theorem:  For any integer » > 1, the number of permutations

of a set with r elements is r! (r-factorial).
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(") vs. P(n,r) 2 of 2

We now have the following relationship
P !
Pnr)y=(")r < (")= (n,7) _ e
r r r! (n—r)!-r!

We summarize in a theorem:

Theorem:  The number of subsets of size r (or r-combinations)

that can be chosen from a set of n elements, (Z’) is given by the

(Z) " (n —7:«!)! !

where n and 7 are non-negative integers with r < n.

formula
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Summary: Combinations, Set Combinations, and r-Permutations

Type Ordering Ordered Selection Unordered Selection
Name Permutation r-permutation r-combination
Symbol (count) — P(n,r) (Z)

# of Possibilities n! (nf—'r), #'),T,

Table: Summary of permutations of n elements, ordered selection
and unordered selection of r elements from a set containing n

elements.
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Examples: Corporate Layoffs

Problem: You are a middle-manager of MegaCorp Inc., there are 12
employees in your department. You have been charged
with the task of selecting 5 of them for termination —

how many ways can this be done?

Solution: The number of ways this can be done is the number of
subsets of size 5 of a set of 12 elements (a 5-combination). The

number is given by

12\ 12! _ 12!
5) (12—-5)!.5 7.5

We cancel common factors before evaluating...

12! 12-11-10-9-8 11-10-9-8
7.5 5.4.3.2 5.2
12

=11-9.-8=792.
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Examples: Basketball Teams

Problem: We are to form a 5-person team out of 12 players. Two of them
are a "dynamic duo” and must either both be on the team, or
off. — How many ways can this be done?

Solution: The problem splits into two cases

1. The duo is on the team, and we have

10 10!
= = 120
(3) 30 71

ways to select the remaining 3 players from a pool of 10.

2. The duo is off the team, and we have

10 10!
-~ = 252
(5) 5! - 5!

ways to select the 5 players from a pool of 10.

Clearly, the cases are disjoint, so the addition rule applies and we have
120 4+ 252 = 372 combinations.
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Teams with Members of Two Types 1 of 2

Suppose a group consists of five men and seven women.

Problems:
(a) How many 3M+2W teams are there?
(b) How many 5-person team contain at least 1M?

(c) How many 5-person team contain at most 1M?
Solutions:

Part (a) is straight-forward. We can think of this selection as a 2-step

process. First select 3 out of 5 men, then 2 out of 7 women:

5 7 5! 7!
. — . — 10 . 21 = 210.
(3) (2) 31.21 5.2l
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Teams with Members of Two Types 2 of 2

For part (b) we use the difference rule

{> 1-man 5-person teams } = {All 5-person teams }—{All-Women 5-person teams }

12 7 12! 7!
(5) (5) 751 Bl

For part (c) we use the addition rule

We get

{0-man 5-person teams } U {1-man 5-person teams }

()G () -vvs
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Poker Hands {80, 8, A, AV, S} 1 of 3

Problems:

(a) How many 5-card poker hands contain two pairs?

(b) What is the probability that a 5-card hand dealt at random

contains two pairs?

Solutions:

(a) We can view this as a 4-step process

1.

2
3.
4

Choose the denomination for the pairs
Choose two cards from the smaller denomination
Choose two cards from the larger denomination

Choose one card from the remaining cards
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Poker Hands {80, 8, A, AV, S} 2 of 3

Since there are 13 denominations {2,3,4,5,6,7,8,9,10,J,Q, K, A}

13

2) ways to perform step 1.

there are (

There are 4 cards of each denomination {é&, {,", &}, so therefore

each of steps 2 and 3 can be performed in (3) ways.

There are 44 allowable cards remaining (if we pick any of the 4 cards

which have the same denomination we end up with a “full house,”

e.g. {80,8%, A, A0, AM}), hence step 4 can be performed in
(*4) ways.

The steps are independent, hence the multiplication rule applies

(O v-rmom

so, 123,552 poker hands contain two pairs.
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Poker Hands {80, 8, A, AV, S} 30of 3

Part (b):

There are a total of (552) 5-card hands from an ordinary deck of cards.

If all hands are equally likely, the probability of obtaining a hand with

two pairs Is

Pl s ) n(two-pair hands ) 123,552 198 0.0475
WO pairs ) = — _ —0.
P n(all hands ) 2,598,960 4165

i.e. just shy of 5%.

To think about: How many poker hands beat (all) hands with two

pairs?
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Permutations of a Set with Repeated Elements

Problem: How many distinguishable orderings are there of the letters
in the word “MISSISSIPPI"?

Solution: Copies of the same letter cannot be distinguished from one an-

other... We can view the ordering as a 4-step process
1. Choose a subset of four positions for the S's
2. Choose a subset of four positions for the I's
3. Choose a subset of two positions for the P’s
4. Choose a subset of one position for the M.

There are 11 positions, so step 1 can be performed in (141) ways, step 2 in

(7) ways, step 3 in (g) ways, and step 4 in G) ways, for a grand total of

00

Question: Does the order in which we place the letters change the an-

swer???
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Permutations of a Set with Repeated Elements

Theorem: Suppose a collection consists of n objects of which:

ny are of type 1 and are indistinguishable from each other

no are of type 2 and are indistinguishable from each other

ny are of type k and are indistinguishable from each other

and suppose n = nj +ng +...+ng. Then the number of distinct

permutations of the n objects are

n n—mni n—nip —n9 n—m;—nMg — ... —MNk_—1
ni n2 ns ng

this expression simplifies to

n!

n1!-n2!-n3!---nk!
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Homework #11 — Not Due!!! Version %

(Epp-v3.0)
Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19

(Epp-v2.0)
Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
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r-Combinations with Repetition Allowed

Definition: An r-combination with repetition allowed, or a
multi-set of size r, chosen from a set S of n elements is an
unordered selection of elements taken from S with repetition al-
lowed. If S = {s1,592,...,5,}, we write a multi-set of size 7 as
Xiy»Xia, - - - Xi,| Where each z;; € S and it is allowed for some

(or all) of the ;. to equal each other.

Example: Let S = {1,2,3,4} then some of the 5-combinations are
1,1,1,1,1], [1,2,3,3,5], [1,2,3,4,5]

Note that since a multi-set is unordered, the following are considered

equivalent
1,1,1,1,2] = [1,1,2,1,1]
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Counting r-Combinations with Repetition Allowed 1of 3

How many r-combinations with repetition allowed are there?

If we view each element of S as a category, and view the construction

of the multi-set as a selection from these categories with repetition

allowed... We can write down a table like this:

Cat#1l Cat#2 Cat#3 Cat#4 Cat#5 Multi-set
X XX | X | X | [1,2,2,3,4]
XXXX | | | X [1,1,1,1,5]
XX | X | | XX [2,2,3,5,5]

We notice that we can describe each multi-set with a 9-digit string
containing 5 x's and 4 -'s, e.g. “x-xx-x-x-" corresponds to [1,2,2,3,4],

and “-xx-x--xx" corresponds to [2,2,3,5,5].
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Counting r-Combinations with Repetition Allowed 2 of 3

With this description of the multi-set, we notice that we need (n — 1)
-'s to separate the n categories (elements), and r x's to symbolize
the choices.

We have a total of (r +n — 1) symbols.

Generation of the possible symbol combinations can be viewed as a

2-step process:
1. Choose a subset of r positions for the x's
2. Choose a subset of (n — 1) positions for the -'s
This can be done in
<r+n—1) (n—l) _ <r+n—1) o <r+n—1)
r n—1 r r
ways.
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Counting r-Combinations with Repetition Allowed 3of3

We summarize our finding in a theorem:

Theorem: The number of r-combinations with repetitions al-
lowed (or multi-sets of size r) that can be selected from a set of

()

This equals the number of ways r objects can be selected from n

n elements is

categories of objects with repetition allowed.
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Summary: Counting Formulas

Order Matters Order Does Not Matter

Repetition Allowed n 1
n
Repetition Not Allowed P(n, k) (k)

Table: We have four different ways of choosing k elements
from a set of n elements. The count is very different de-

pending on whether order and/or repetition matters.
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Example: Integer Solutions...

Problem: How many integer solutions are there to the equation
1+ x9+ 23+ x4 =10

if we require x1,x9,x3, x4 > 07

Solution: Think of z1, 2, x3, x4 as 4 categories. Then this problem
Is equivalent to selecting 10 objects from 4 categories

(with repetition allowed), the answer is given by

r+n—1
10

1
), with r =10and n =4 = (3) = 286.
r
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Quick Summary: Counting 1 of 2

In the last few lectures we have derived a number of counting

formulas, i.e.

Type Ordering Ordered Selection Unordered Selection

Name Permutation r-permutation r-combination

Symbol _ P(n,r) (”)

r

n! n!

# of Possibilities n (n—r)! (n—r)!-r!

Table: Summary of permutations of n elements, ordered
selection and unordered selection of r» elements from a set

containing n elements.
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Quick Summary: Counting 2 of 2

Order Matters Order Does Not Matter

Repetition Allowed n 1
n
Repetition Not Allowed P(n, k) (k)

Table: We have four different ways of choosing k elements
from a set of n elements. The count is very different de-

pending on whether order and/or repetition matters.
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Looking Forward...

Next, we will take a closer look at the properties of counting, and

n

1. Derive a number of useful formulas for ( ) for special values

r
of n and r,

2. Find relations between different values of (n)
.

3. In particular we will discuss Pascal’s Formula (Pascal’s Trian-
gle) which is perhaps one of the most used formulas in combi-

natorics (the study of counting combinations).

4. We wrap up our discussion of counting with a discussion of the

Binomial Theorem.
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Some Values of (")

n\ n! L _1_1_1
n/ nl-(n—n) nl-00 0o 1

Hence, there is only one way of selecting all the elements (without

repetition). [Here, n > 0]

n n! n! n n
(0" 1) " TG TG

Hence, there are only n ways to select all but 1 element. [Here, n > 1]

(n )Z(n—Q) n! ol n(n—1) n(n-—1)

n— 2 l-(n—(n—2))! (n—2)!-2 20 2

[Here, n > 2]
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(n) and ( " ) Combinatorial vs. Algebraic Proof

I n—r

(:f) represents the number of ways to select r elements from n
elements. (E.g. selecting which 5 players of 12 who should be on the

court.)

We can think of (RT_"T) as the complementary action: selecting which
n — r elements we do not want from the n elements. (E.g. selecting

which 7 players of 12 who should be on the bench.)

The resulting action (what elements are selected / what players are
on the court) is the same — so the number of ways to perform the
two actions should be the same... A bit of algebra and use of the

definition of (";’) shows that this is indeed true:

(?) " (n —7::!)!-7“! Tl (:!— T <nr—lr>
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New Formulas from Old by Substitution

We have established that

" :n(n—l)’ Yn ez, n>2
n—2 2

n is just dummy variable (place holder) which can be replaced
by any other integer expression — as long as the integer expres-

sion is greater than or equal to 2, and each occurrence is n is replaced.

Examples:

i m—+1 :(m—|—1)m’ m> 1
m — 1 2

5 s—1 :(s—l)(s—Q)7 o> 3
s—3 2

B2\ (k+2)(k+1)
3 ( ' ): ko
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Pascal’s Formula Blaise Pascal (1623-1662)

n+1

) to the values of
-

Pascal's Formula relates the value of (

(frfl) " (Z)

n

), r=20,1,2...,n are known,
r

Usage: If we know all the values (

. 1
we can immediately find the values for (n T ) r=1,2...,n. —
?/'D

By one addition, per value!

n—+1

.
1, since they correspond to selecting none/all of the n 4 1 elements.
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Table: Pascal’s Formula

n\r 0 1 2 3 4 5 eor—1 T
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 1o\>1¢o 5 1

' 0 Q) G 6N @ 6 - (L) Q)
ntl) (") (") (") (”“)X ") 5D o G ()

0 1 2 3 4 5 r—1 T

Table: lllustration of Pascal’'s Formula. The arrows indicate how two
previously computed values are combined to fill in a new value in
the table.
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Proving Pascal's Formula

There are two very different approaches to proving Pascal’s Formula:

1. The first version is algebraic. It uses the formula for the number

I
of r-combinations = and pure algebraic
r (n—mr)-7r!

manipulation.

2. The second version is combinatorial. It uses the definition of the
number of r-combinations as the number of subsets of size r

taken from a set with n elements.

We look at both versions, since both approaches have applications in

other situations.
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Pascal’'s Formula, Algebraic Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
()= (") ()
— i ,
r r—1 r

Proof: Let n and r be positive integers with » < n, from previously

r < n, then

proved theorems we can write:

(ﬂ%(ﬁ) = (r—l)!-Zi—rJrl)!+r!-(s!—r)!

To add these fractions, we need a common denominator. The first

fraction is “missing” an 7, and the second is “missing’ a factor of

(n—7r+1). We get...

n! r n! (n—r+1)

(r—1!-(n—r+1)! ;+r!-(n—r)! (n—7r+1)
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Pascal’'s Formula, Algebraic Proof 2 of 2

We can now combine the terms:

n! r n! (n—7r+1)
(fr—l)!—(n—fr—l—l)!.;Jrfr!-(n—r)!.(n—r—l—l)

and get
r-n!l+m—-r+1)-nl (n+1)-n! (n 4+ 1)!
rl-(n—r+1)! ol ((n+1D) =) (1) —7)!

Finally, we identify

which proves the theorem. []
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Pascal's Formula, Combinatorial Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
()= (") ()
— i ,
r r—1 r

Proof: Let n and r be positive integers with r < n. Suppose S is
a set with n + 1 elements. The number of subsets of size r can be
calculated by thinking of S as the union of the set with n elements

{x1,29,...,x,} and the set {x, 11} containing one element.

r < n, then

Any subset of S either contains x,, 1 or it does not:

1. If a subset of size r contains x,.1 then it also contains r — 1

elements from {x1,xs,...,x,}. There are (Tfl) of these.

2. If a subset of size r does not contain x,1 then it contains r

elements from {x1,x2,...,x,}. There are (:f) of these.
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Pascal's Formula, Combinatorial Proof 2 of 2

Since the subsets of type#1 (containing x,+1) and type#2 (not con-
taining x,,11) are disjoint, the addition rule applies, and we have:

#subsets of {x1,%2,...,Tp, Tpil} =
#subsets of {x1,x2,...,Ty} of size (r — 1)+
#subsets of {x1,x2,...,Ty,} of size 7

Which means,

"=+ 0)

as was to be shown. [
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Homework #11 — Not Due!!! Version %

(Epp-v3.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
Epp-6.5.1, Epp-6.5.3, Epp-6.5.5, Epp-6.5.10,
Epp-6.5.11, Epp-6.6.11, Epp-6.6.14

(Epp-v2.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
Epp-6.5.1, Epp-6.5.3, Epp-6.5.5, Epp-6.5.10,
Epp-6.5. 11, Epp-6.6.11, Epp-6.6.14
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The Binomial Theorem Introduction

Definition: Binomial —

A binomial is a sum of two terms a + b.

The binomial theorem gives an expression for the powers of a binomial
(a+b)*VneZ" and a,b € R.

We know (the distributive law of algebra) that the answer is the sum

of the product of all individual terms, e.g.

(a+b)? = (a+b)(a+D)
= aa+ ab+ ba + bb
= a? + 2ab + b?
(a+b)? = (a+b)(a+Db)(a+b)
= aaa + aab + aba + abb + baa 4 bab 4 bba + bbb
= a’+ 3a’b + 3ab? + b’
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The Binomial Theorem (a + b)* 1 of 3

Consider

(a+b)* = (a+b) (a+0d) (a+b) (a+b)

\ . s\

1st factor 2nd factor 3rd factor 4th factor

= aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb
+baaa + baab + baba + babb + bbaa + bbab + bbba + bbbb

Each term on the right-hand-side is a built by

1. Selecting one of {a,b} from the first factor (2 possibilities)
Selecting one of {a,b} from the second factor (2 possibilities)
Selecting one of {a,b} from the third factor (2 possibilities)

Selecting one of {a,b} from the fourth factor (2 possibilities)

o~ DN

Multiplying the selected terms together (2* = 16 total possibil-
ities)
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The Binomial Theorem (a + b)* 2 of 3

In particular (selections high-lighted)

(a+0b)(a+b)(a+b)la+b) — aabdb
(a+b)(a+b)(a+b)(a+b) — abab
(a+0b)(a+b)(a+b)la+b) — abba
(a+b)(a+bd)(a+b)(a+b) — baad
(a+b)(a+b)(a+b)la+b) — baba
(a+b)(a+b)la+bd)(a+b) — bbaa

This shows that the coefficient for the a2b?-term is
4 2
= 6.
(2)(2)
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The Binomial Theorem (a + b)* 3 of 3

In general the coefficient for the term a*~*b* (0 < k < 4) corresponds

to
1. Selecting k of 4 positions for the b's
— (:) possibilities.
2. Selecting 4 — k of (4 — k) positions for the a's

_ (2:2) — 1 possibilities.

Hence, the coefficient for a*—*pF (0<k<4)is (2) and we have

(a+b)* = (é) a* + (le) a’b' + (g) a’b® + (g) ab’ + (j) bl
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The Binomial Theorem Statement

We are now ready to state the binomial theorem:

Theorem: — Given any real numbers a and b and any non-

negative Iinteger n,

(a+b)" = zn: (Z) o™ FpF

k=0

(a+b)" =a"+ <T> a" ot + (Z) a" b .+ < " 1) atb" Tt "
n —

We will look at the algebraic and combinatorial versions of the proof.
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The Binomial Theorem A Definition

We need the following definitions for our algebraic version of the proof:

Definition: For any real number a and any non-negative integer

n, the non-negative integer powers of a are defined as follows:

1 ifn =20

a- a1 ifn >0

Notice that here we are defining:
0°=1

This is convenient here, but not always desirable in other mathematical

applications...
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The Binomial Theorem Algebraic Proof 1 of 4

Suppose a and b are real numbers. We prove that

(a+b)" = Z (Z) a"Fb*, for all integers n > 0,
k=0

by induction on n...

When n = 0 the binomial theorem states that

(a+0)° = EO: (Z) a" Rk

k=0

The left-hand-side is 1 (by the definition of power), and the
right-hand side is

0 n 0

Z( )an—kbk: ( )aobozl
k 0

k=0
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The Binomial Theorem Algebraic Proof 2 of 4

Inductive Step — Assume true for 1 = m, showtruefor n = m + 1

Let m > 1 be a given integer, and suppose the equality holds for

n=m, Ie.

(a+b)™ = zm: (?) o™k gk

k=0
We must show that

m—+1
(a 4+ b)m-l-l _ Z (m]:_ 1) a(m-|—1)—k:b/€
k=0

We use the definition of the (m + 1)st power and the inductive hy-

pothesis:
(a+b)"™ = (a+0b)(a+b)" = (a+Db) kz_o (7:) a™ R pk
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The Binomial Theorem Algebraic Proof 30f4

Now,
(a+ )™t = (a+b)2(?)am_kbk
k=0

- — (m m—kik — (m m—kik

= az<k>a b —l—bz<k>a b
k=0 k=0

_ — (m (m+1)—kk — (m m—kypk+1

= Z(k>a b +Z . a b
k=0 k=0

We make a change of variables in the second summation j = k + 1

m m—+1
m+1 M (m1)—kypk m (m+1)—jp3
(@ +0) kz()(k)a b —|—;(J,_1>a v’

j is just a dummy variable, so we can rename it k£ (again)...
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The Binomial Theorem Algebraic Proof 4 of 4

m m—1
(CL s b)m—l—l — Z (72’) a(m—Fl)—kbk 4+ Z (kT 1) a(m+1)—kbk
k=1

k=0

We can now combine the terms 1 < k < m:

o = e ) (o G

We use the fact that (m+1) — (mgl) = (™) = (J) = 1 and Pascal’s

m-+1 m

Formula to get

(a+ 0y = oy (m N 1) am ) =kpk o pmtl

k
k=1
m—+1
1
— Z (mlj )a(mﬂ)_kb’~€ ...and Bob’s your uncle! [

k=0
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The Binomial Theorem Combinatorial Proof

Let a and b be real numbers and n an integer n > 1. The expression
(a+b)™ can be expanded (using the distributive law) into products of
n letters, where each letter is either @ or b for each kK =0,1,2,... ,n,

the product

"t =a-a-a-...-a-b-b-b-...-b

V. ~”~

n — k factors k factors

occurs as a term in the sum the same number of times as there are

orderings of (n — k) a’'sand k b's.

The number of such orderings is (Z’) the number of ways to choose
k positions in which to place the b's. Hence, when like terms are

combined, the coefficient of a®*b* in the sum is (Z) Thus,

(a4 b)" = kz_;) (Z) a"FpE . O
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Example: Estimating a Numerical Power

Which number is larger: (1.01)%990:000 or 10,0007

Solution: By the binomial theorem

(1.01)1,000,000 (1 4 0.01)1,000,000
= 1+ (1’00?’000) 1999:9990.011 + positive terms
1+ 1,000,000 - 1-0.01 + positive terms

1 + 10,000 + positive terms

10,001

10, 000

VoV
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Example: Deriving Another Combinatorial Identity

Problem: Use the binomial theorem to show that
" /n
2" —
> (;)
k=0

Solution: Since 2= (1+1), 2" = (1 + 1)". We apply the binomial

theorem with a = b = 1:

2" = (14 1)" = zn: (Z) L zn: (Z)
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Homework #11 — Not Due Final Version

(Epp-v3.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
Epp-6.5.1, Epp-6.5.3, Epp-6.5.5, Epp-6.5.10,
Epp-6.5.11, Epp-6.6.11, Epp-6.6.14

Epp-6. 7.1, Epp-6.7.17

(Epp-v2.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
Epp-6.5.1, Epp-6.5.3, Epp-6.5.5, Epp-6.5.10,
Epp-6.5. 11, Epp-6.6.11, Epp-6.6.14

Epp-6. 7.1, Epp-6.7.13
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