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Relations: Introduction

Mathematical Relations — Examples:

*  Two logical expressions can be said to be related if they have the

same truth tables.
* A set A can be said to be related to a set B if A C B.
* A real number x can be said to related to y if z < v.
*  An integer n can be said to related to m if n|m.
*  An integer n can be said to related to m if n and m are both odd.
*  Etc, etc, etc, ...

We are going to study mathematical relations on sets: their

properties and representations.
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Relations:

Introductory Example 1 of 2

Let A ={0,1,2} and B = {1,2,3}.

The relation: Let an element z € A be related to an element y € B

Notation:

if and only if z < y.

xrRy="xisrelatedto y”, x Ry = “xisnotrelatedto y”

We have the following relations:

OR1
OR2
OR3
1R2
1IR3
2R3

since 0 <1 1 R1 since 1£1
since 0 < 2 2R1 since 2«L1
since 0 <3 2R2 since 2L2
since 1 <2
since 1 <3
since 2 <3
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Relations: Introductory Example 2 of 2

Relations and Cartesian Products:

The Cartesian product (A x B) of two sets A and B is the set of all

ordered pairs whose first element is in A and second elements in B:
Ax B={(x,y)|r € Aand y € B}
In our example
Ax B=1{(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}
The elements of some ordered pairs
1(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}
are considered to be related (others are not).

Knowing which ordered pairs are in this set is equivalent to knowing

which elements are related.
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Relations: Formal Definition

Definition: Binary Relation —

Let A and B be sets. A (binary) relation R from A to B is
a subset of A x B. Given an ordered pair (z,y) € A X B, x is
related to y by R, written = Ry, if and only if (x,y) € R.

Symbolic Notation

rRy < (z,y) €R

Ry & (v,y)€R

The term binary is used in the definition to indicate that the relation

is a subset of the Cartesian product of two sets.
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lllustration: Relations

AxE ] [ R ]AXB

Figure: Given 2 sets A and B, we Figure: The Relation R is a subset of
form the Cartesian product A x B; A x B. lfandonly if (z,y) € R we
(x,y) € AxB=(x € A)and (y € say that x is related to y by R, symbol-
B). ically x R y.

The subset R C A x B can be specified
1. Directly / Explicitly, by indicating what pairs (z,y) € R. This

is only feasible when A and B are finite (and small) sets.

2. By specifying a rule for what elements are in R, e.g. by saying
that (x,7) € R if and only if x = ¢2.
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Example: Congruence Modulo 2 Relation 1 of 2

We generalize the previous example to the set of all integers Z, i.e.

forall (m,n) € Z X Z, mRn < m —n iseven

Questions:

(a) is4R0? 2R6? 3R(—3)? H5R27?
(b) List 5 integers that are related by R to 1.
(c) Prove that if n is odd, then n R 1.

Answers:

(a-i)  Yes, 4RO, since 4 — 0 =4 is even.

(a-ii) VYes, 2R6, since 2 — 6 = —4 is even.
(a-iii) Yes, 3R (—3), since 3 —(—3) =6 is even.
(a-iv) No, 5 R 2, since 5 — 2 = 3 is odd.
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Example: Congruence Modulo 2 Relation 2 of 2

(b) There are infinitely many examples, e.g.

1 sincel—1=0 is even
11 since 11 — 1 = 10 is even
111 since 111 — 1 =110 is even

1111 since 1111 — 1 =1110 iS even
11111 since 11111 — 1 =11110 is even

(c) Proof: Suppose n is any odd integer. Then n = 2k + 1 for some
integer k. By substitution

n—1=2k+1—1= 2k is even
Hence

nR1, Vnodd. [
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Representation: Arrow Diagrams for Relations

Let A={1,2,3} and B = {1, 3,5}

) )
2 @< ® 3
3 @ ® 5

e/

Figure: Arrow diagram representation of  Figure: Arrow diagram representation of

the relation the relation

forall (x,y) € A x B, R=1{(2,1), (2,5)}
(r,y) eR & <y

Notes: (i) It is possible to have an element that does not have an arrow coming
out of it; (ii) It is possible to have several arrows coming out of the same element
of A pointing in different directions; (iii) It is possible to have an element in B

that does not have an arrow pointing to it.
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Relation from A to A Directed Graph of a Relation

Definition: A binary relation on a set A is a binary relation
from A to A.

In this case, we can modify the arrow diagram to be a directed graph
— instead of representing A twice, we only represent it once and draw

arrows from each point of A to each related point, e.g.
1 2
Z./>.\
5@ / ® 3
\ . /
4

there is an arrow fromxtoy < xRy < (x,y) € R
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Example: Directed Graph of a Relation

Let A= {3,4,5,6,7,8} and define a binary relation R on A:

R={(z,y) € Ax A: 2|(z —y)}

3
o
8 @ @4
[/ @ ® 5
o
6

Figure: We notice that the graph must be symmetric, since if Z\n,
then 2|(—n).

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations — p. 11/43



Example: Directed Graph of a Relation

Let A= {3,4,5,6,7,8} and define a binary relation R on A:

R={(z,y) € Ax A: 2|(z —y)}

3
o

.
ce& 2 214

A\

Figure: We notice that the graph must be symmetric, since if 2
then 2|(—n).

n,
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Example: Directed Graph of a Relation

Let A= {3,4,5,6,7,8} and define a binary relation R on A:

R={(z,y) e Ax A: 2|(z —y)}

3
o

8 @ @4

7 @ XX / > ® 5

\,//

Figure: We notice that the graph must be symmetric, since if Z\n,
then 2|(—n).
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Example: Directed Graph of a Relation

Let A= {3,4,5,6,7,8} and define a binary relation R on A:

R={(z,y) € Ax A: 2|(z —y)}

@‘“\6 //»@

Figure: We notice that the graph must be symmetric, since if 2|n,

then 2|(—n). Since 2|0, there is a loop at every node in the graph.
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Properties of a Binary Relation on One Set A

Recall:

Definition: A binary relation on a set A is a binary relation
from A to A.

In the context of a binary relation on a set, we can name 3 properties:

Definition: Let R be a binary relation on a set A
1. R is Reflexive if and only if Vz € A, x Rx.
2. RisSymmetricifandonlyifVz,y € A, if x Ry then y Rx.

3. Ris Transitive if andonly if Va,y,z € A, if t Ryand y R 2
then z R z.
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Reflexivity

Formal: R is Reflexive if and only it Vx € A, x Rx.
Functional: R is Reflexive < for all x € A, (z,z) € R.
Informal: Each element is related to itself.

Graph: Each point of the graph has an arrow looping around
back to itself.
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Symmetry

Formal: R is Symmetric if and only if Vz,y € A, it x Ry then
yRx.

Functional: R is Symmetric < for all z,y € A, if (x,y) € R then
(y,z) € R.

Informal: If one element is related to a second element, then the

second element is related to the first.

Graph: In all cases where there is an arrow going from one
point to a second, there is an arrow going from the

second point back to the first.

».

.<
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Transitivity

Formal: R is Transitive if and only if Vz,y,z € A, it tRy
and y Rz then x R z.

Functional: R is Transitive < for all z,y,z € A, if (z,y) € R
and (y,z) € R then (z,2) € R.

Informal: If one element is related to a second element, and that
second element is related to a third element, then the

first element is related to the third element.

Graph: In all cases where there is an arrow going from one
point to a second, and from the second point to a

third, there is an arrow going from the first point to

the third.
/.\
® = ®
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Non-Reflexivity, Non-Symmetry, and Non-Transitivity

If R is a binary relation defined on a set A, then

1. R is not reflexive < there is an element £ € A such that
x Rx ie (x,x) ¢ R.

2. R is not symmetric < there are elements x,y € A such that
rRybuty Rz, ie (x,y) € R, but (y,z) € R.

3. R is not transitive < there are elements =, vy, 2z € A such that
rRyandyRzbutx Rz, ie (x,y),(y,2) € R, but (x,2) € R.

To show that a binary relation does not have one of the properties,

it is sufficient to find a counterexample.
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Example 1 of 5

Let A ={0,1,2,3} and define relations R, S, and T":

R ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

Fill in the table:

Reflexive | Symmetric | Transitive
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and

R ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

0¢o ol
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and

R ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

0o ol
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and

R ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

0o >0 1
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and

R ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

0o >0 1
5 ) . 2
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and
R’ ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

/

00 >0 1
3] o2
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and
R’ ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

[/ \J

00 >0 1
3] o2
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and
R’ ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

/ \J

0o >0 1
3] o2
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Example The Relation R 2 of 5

We have A ={0,1,2,3} and

R ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

/ \J

0o >0 1
3] o2

N Y

R is reflexive since there is a loop at each point in the directed graph.

R is symmetric since in for every arrow going from one point to another, there is an-
other arrow going back.

R is not transitive since e.g. 1 ROand 0 R3 but 1 R 3 i.e. there is no “short-cut”

arrow connecting 1 and 3.
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Example The Relation S 30f 5

We have A ={0,1,2,3} and

S = {(07 O)v (07 2)7 (07 3)7 (27 3)}

0o o1
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Example The Relation S 30f 5
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S = {(07 O)v (Ov 2)7 (07 3)7 (27 3)}
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Example The Relation S 30f 5

We have A ={0,1,2,3} and
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Example The Relation S 30f 5

We have A ={0,1,2,3} and

S = {(07 O)v (Ov 2)7 (Ov 3)7 (27 3)}

0o P |
Y
3 o= ® 2

S is not reflexive since there are missing loops at 1, 2, and 3.
S is not symmetric , the arrows from 2-to-0, 3-t0-0, and 3-to-2 are missing.
S is transitive since there is always a “short-cut” arrow so that if (x,y) € S and

(y,z) € Sthen (x,z2) € S.
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Example The Relation T 4 of 5

We have A ={0,1,2,3} and

T = {(Oa 1)7 (27 3)}

0o o1
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Example The Relation T 4 of 5

We have A ={0,1,2,3} and

T = {(Oa 1)7 (27 3)}

0o >0 1
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Example The Relation T 4 of 5

We have A ={0,1,2,3} and

T = {<Oa 1)7 (27 3)}

0o >0 1

3 @ ® 2

T is not reflexive since there are missing loops at O, 1, 2, and 3.
T is not symmetric , the arrows from 1-to-0, and 3-to-2 are missing.

T Is transitive since it is not not transitive.
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Example The Relations R, S and T 50f 5

Let A ={0,1,2,3} and define relations R, S, and T~

R ={(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0), (3,3)}

Fill in the table:

Reflexive | Symmetric | Transitive

R Yes Yes No
S No No Yes
T NO NO Yes
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Irreflexivity, Anti-Symmetry, and Intransitivity

Definition: Let R be a binary relation on a set A
1. R is lrreflexive if and only if Vz € A, =z R x.

2. R is Anti-symmetric if and only if Vo,y € A, if x Ry then

3. R is Intransitive if and only if Vx,y,z € A, if x Ry and
y Rz then z R z.

e R can be reflexive, non-reflexive, or irreflexive,
e R can be symmetric. non-symmetric, or anti-symmetric
e IR can be transitive, non-transitive, or intransitive.

Think about these definitions!!!
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Irreflexivity

Formal: R is Irreflexive if and only if Vo € A, x R x.
Functional: R is lrreflexive < for all z € A4, (x,x) ¢ R.
Informal: No element is related to itself.

Graph: No point of the graph has an arrow looping around
back to itself.
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Anti-Symmetry

Formal: R is Anti-Symmetric if and only if Va,y € A, if z Ry
then y R x.

Functional: R is Anti-Symmetric < forall z,y € A, if (x,y) € R
then (y,x) ¢ R.

Informal: If one element is related to a second element, then the
second element is NOT related to the first.

Graph: In all cases where there is an arrow going from one
point to a second, there is no arrow going from the

second point back to the first.
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Intransitivity

Formal: R is Intransitive if and only if Vx,y,z € A, f xRy
and y R z then x R z.

Functional: R is Intransitive < for all z,y,z € A, if (z,y) € R
and (y,z) € R then (x,z) ¢ R.

Informal: If one element is related to a second element, and that
second element is related to a third element, then the

first element is not related to the third element.

Graph: In all cases where there is an arrow going from one
point to a second, and from the second point to a
third, there is never an arrow going from the first

point to the third (no shortcut exist, anywhere.).

P
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Example: Equality (=) on R

Let A =R (the set of real numbers), and define the relation R

xRy & x=uvy

Properties:

R is reflexive: R is reflexive if and only if Vo € R, x Rx. Here, this
means £ = I, i.e. YVr € R x = x. This statement is
certainly true; every real number equals itself.

Ris symmetric: ~ This is true since if z = gy then y = x, hence (z,y) € R
and (y,x) € R.

R is transitive: Thisis true since ifr = yandy = z,thenx = z.
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Example: Less Than (<) on R

Let A =R (the set of real numbers), and define the relation R
xRy & <y

Properties:

R is irreflexive: If x R x then x < x, but that is never true, hence x R x

Vr € R.

R is anti-symmetric:  If x Ry then x < y, whichmeansy £ xie. y R x.

R is transitive: Thisis true sinceif v < yandy < z,thenx < Z.
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Example: Congruence Modulo 3 on Z

We define a relation R on Z as follows

Vm,neZ: mRn < 3|(m—n)
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Example: Congruence Modulo 3 on Z

We define a relation R on Z as follows
Vm,neZ: mRn < 3|(m—n)

R is reflexive: Suppose m is an integer. Now, m — m = 0 and 3|0 since
0 = 3 - 0, so by definition of R we have m Rm. [
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Example: Congruence Modulo 3 on Z

We define a relation R on Z as follows
Vm,neZ: mRn < 3|(m—n)

R is reflexive: Suppose m is an integer. Now, m — m = 0 and 3|0 since
0 = 3 - 0, so by definition of R we have m Rm. [

R is symmetric: Suppose m,n € Z such that m R n. By definition of R
we have 3|(m —n) < m —n = 3 -k, forsome k € Z.
Multiplying both sides by (—1) givesn — m = 3 - (—k),

which shows 3|(n — m), hence n Rm. [
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Example: Congruence Modulo 3 on Z

We define a relation R on Z as follows
Vm,neZ: mRn < 3|(m—n)

R is reflexive: Suppose m is an integer. Now, m — m = 0 and 3|0 since

0 = 3 - 0, so by definition of R we have m Rm. [

R is symmetric: Suppose m,n € Z such that m R n. By definition of R
we have 3|(m —n) < m —n = 3 -k, forsome k € Z.
Multiplying both sides by (—1) givesn — m = 3 - (—k),
which shows 3|(n — m), hence n Rm. [

R is transitive: ~ Suppose m, n, p € Z suchthatm Rn andn R p. We have
3|(m —mn) and 3|(n — p), and we can write (1 —n) = 3r
and (n — p) = 3s for some r,s € Z. Adding the two
gives (m —n) + (n — p) = (m — p) = 3(r + s) which
shows that 3|(m — p). Hence m R p, and it follows that R

is transitive. []
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Equivalence Relations: Different, but the Same...

Idea: We are going to group elements that look different, but really

are the same...

Example: Think about the rational numbers, there are several ways

of writing the same fraction, e.g.

1 —1 2 4711
2 —2 4 9422

We can define a relation on Q x Q, where Q is the set of all rational

numbers
R={(z,y9) cQxQ:z =y}

now (3,2) € R, (553,%) € R, (3,

oIN

)ER etc..

v-lkll\D
CJJlb—‘
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A Relation Induced by a Partition

Recall:

Definition:
a partition of a set A if and only if

1. A=A UAU...UA,.
2. Ay, A, ..., A, are mutually disjoint.

A collection of non-empty sets {A1, As,..., Ay} is

Definition:
induced by the partition, R, is defined on A as follows

Ve,y € A, xRy < thereisaset A; of the partition such

Given a partition of a set A the binary relation

thatbothz € A; andy € A;.

We need an example to make sense out of this definition...
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Example: Relation Induced by a Partition

Let A ={0,1,2,3,4} and consider the following partition of A:
A1 ={0,3,4}, A, ={1}, Asz={2}

Now, two elements x,y € A are related if and only if they belong to

the same subset of the partition...

1 2
® o

Hence,

4
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Equivalence Relations

Theorem: Let A be a set with a partition and let R be the

relation induced by the partition. Then R is reflexive, symmetric,

and transitive.

Definition: Equivalence Relation —
Let A be a non-empty set and R a binary relation on A. R is an
equivalence relation if and only if R is reflexive, symmetric, and

transitive.

Example: By the theorem the relation induced by a partition is an

equivalence relation.
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Notation: Congruence Modulo n

Notation: Let m,n,d € Z with d > 0. The notation
m = n (mod d)

is read “m is congruent to n modulo d” and means that

d|(m —n)

Symbolically,

m = n (mod d) & d|(m —n)

Recall the Quotient-Remainder Theorem:

Theorem: Given any integer n and a positive integer d, there exist
unique integers ¢ (the quotient) and r (the remainder) such that

n=d-qg+r, and 0<r<d

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations — p. 33/43



Equivalence Relation: Congruence Modulo 3

Let R be the relation R = {(m,n) € Z x Z : m = n(mod 3)}. We

show that this is an equivalence relation.

[Reflexivity | Let m € Z, then 3|(m — m) since 0 = 3 -0, and it
follows that m Rm.

[Symmetry | Let m,n € Z, so that m Rn. We have 3|(m —n) <
(m—n)=3-kforsomekecZ < (n—m)=3-(—k)
< 3|(n —m) < nRm.

[Transitivity | Let m,n,p € Z, so that m Rn and n Rp. We have
3m—n) < (m—-n)=3-rre’
3In—p) <& (nn—p =3-s, sEZ

add (m—p)=3-(r+s)

Hence 3|(m — p) and we have m Rp. [J
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Equivalence Classes

Suppose we have a set A and an equivalence relation R on A. Given
a particular element © € A it is natural to ask the question “what

elements are related to x?7”

All the elements that are related to x form a subset of A and this

subset is called the equivalence class of x:

Definition: Suppose A is a set and R is an equivalence relation
on A. For each element x € A, the equivalence class of z,
denoted [x] and called the class of x for short, is the set of all

elements y € A such that y Rz.

Symbolically,
] ={y € Al y R}
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Example: Equivalence Classes 1 of 2

Let A ={0,1,2,3,4} and define a binary relation R on A

R =1{(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0), (4,4)}

|

Figure: The array diagram (directed graph) corresponding to the relation.

1 2
o o
o
3

By quick inspection we see that R is reflexive, symmetric, and transi-

tive, hence an equivalence relation.
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Example: Equivalence Classes 1 of 2

Let A ={0,1,2,3,4} and define a binary relation R on A

R’ ={(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0), (4,4)}
0 1
1 ‘l
0 0
Figure: The array diagram (directed graph) corresponding to the relation.

By quick inspection we see that R is reflexive, symmetric, and transi-

tive, hence an equivalence relation.
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Example: Equivalence Classes 1 of 2

Let A ={0,1,2,3,4} and define a binary relation R on A

on

Figure: The array diagram (directed graph) corresponding to the relation.

By quick inspection we see that R is reflexive, symmetric, and transi-

tive, hence an equivalence relation.
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Example: Equivalence Classes 1 of 2

Let A ={0,1,2,3,4} and define a binary relation R on A

DO

R =1{(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0), (4,4)}

wler
T,

.l
e

Figure: The array diagram (directed graph) corresponding to the relation.

H
o

By quick inspection we see that R is reflexive, symmetric, and transi-

tive, hence an equivalence relation.
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Example: Equivalence Classes 1 of 2

Let A ={0,1,2,3,4} and define a binary relation R on A

R =1{(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0), (4,4)}

SRSV,

SN

Figure: The array diagram (directed graph) corresponding to the relation.

~

By quick inspection we see that R is reflexive, symmetric, and transi-

tive, hence an equivalence relation.
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Example: Equivalence Classes 2 of 2

:
aja

The equivalence classes are:

0 {re A|lz R0} = {0,4}
1] = {x€A|zR1} = {1,3}
2] = {x€A|xzR2} = {2}
3] = {x€A|zR3} = {1,3}
4] {re Alz R4} = {0,4}
Note that [0] = [4] and [1] = [3], hence the distinct equivalence

classes are: {0,4}, {1,3}, {2}.
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Equivalence Classes: A Theorem

The following theorem tells us that an equivalence relation induces a
partition:

Theorem: If A is a non-empty set and R is an equivalence re-
lation on A, then the distinct equivalence classes of R form a

partition of A; i.e. the union of the equivalence classes is all of A

and the intersection of any two distinct classes is empty.
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Example: Equivalence Classes of Congruence Modulo 3 1of 3

Let R be the relation of congruence modulo 3 on the set Z, i.e.

VYm,n € Z
mRn < 3|(m—n) & m=n(mod 3)

We describe the equivalence classes: For each integer a, the class of

“ e a = {ze€Z|zRa)
= {x€Z|3|(x—a)}
= {x€Z|lr—a=3-k, keZ}
= {zecZ|lx=3-k+a, keZ}
In particular
0 ={zcZ|z=3 -k kecZ —{0,3,-3,6,-6,9,-9,...}

1| ={zeZ|lz=3-k+1, kez} ={1,4,-2,7,—5,10,-8,...}
o ={zeZ|lzr=3-k+2, keZ} =1{2,5-1,8—4,11,-7,...}
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Example: Equivalence Classes of Congruence Modulo 3 2 of 3

We have

0 ={zcZ|z=3 -k kecZ ~10,3,-3,6,-6,9,-9,...}
1| ={x€Z|z=3-k+1, kezZ} ={1,4,-2,7,-5,10,-8,...}
2] ={x€Z|lx=3-k+2, kezZ} ={2,5,-1,8,—-4,11,-7,...}

By lemma#1

0] = [3] = [~3] = [6] = [~6] = [0] = [~9] = ...
1) = [4) = [~2) = [7] = [-5] = [10] = [-8] = ...
9] = [5] = [~1] = [8] = [~4] = [11] = [-7] = ...

Hence the distinct equivalence classes are
{reZlx=3-k keZ}, {x€Zlz=3-k+1, keZ},
{reZ|lz=3-k+2, keZ}
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Example: Equivalence Classes of Congruence Modulo 3 3of 3

The distinct equivalence classes are
{xeZlx=3k, keZ}, {x€Z|lz=3-k+1, keZ},

{reZ|lzx=3-k+2, keZ}

The class of [0] can also be called the class of [3] or the class of [96],
but the class is theset {r € Z|x =3 -k, k€ Z}.

Definition: Suppose R is an equivalence relation on a set A and
S is an equivalence class of R. A representative of the class S is
any element a € A such that [a] = S.
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Notes

e It is possible to define multiplication and addition of the equiva-
lence classes corresponding to the rational numbers (previous ex-
ample).

e The rational numbers can be defined as equivalence classes of

ordered integers.

e It can be shown that all integers — negative, zero, and positive —
can be defined as equivalence classes of ordered pairs of positive

Integers.

e Frege and Peano showed (late 19th century) that the positive in-

tegers can be defined entirely in terms of sets.
e Dedekind (1848-1916) showed that all real numbers can be defined
as sets of rational numbers.

e All together, these results show that the real numbers can be

defined using logic and set theory alone!
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Homework #12 — Not Due Final Version

(Epp-v3.0)
10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25, 10.2.3, 10.2.4,
10.2.12, 10.2.14, 10.2.37, 10.3.3, 10.3.17, 10.3.19, 10.3.40

(Epp-v2.0)

10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25, 10.2.3, 10.2.4,
10.2.12, 10.2.14, 10.2.37, 10.3.2, 10.3.14, 10.3.16, 10.3.35
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