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The Logi of Quanti�ed Statements IntrodutionSo far we have disussed statement alulus (or propositionalalulus) � i.e. symboli analysis of ompound statements.

We have introdued logial onnetives suh as ∧, ∨, ∼,→, and↔.

We have reated quite a useful toolbox � it is quite su�ient if youwant to build mirohips for a living... You an indeed live quite largeif you build mirohips!

We annot however determine if the following is a valid statement:All humans need logiPeter is human

∴ Peter needs logi
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The Logi of Quanti�ed Statements IntrodutionIn order to study intuitively valid argumentsAll humans need logiPeter is human

∴ Peter needs logiWe must understand (in the logi sense) the meaning of words likeall , some, et...
Further, we must separate our statements into parts in muh the sameway we separate delarative statements into subjet and prediates.

The symboli analysis of prediates and quanti�ed statements is alledprediate alulus.
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PrediatesIn grammar , the prediate refers to the part of the sentene whihgives information about the subjet, e.g.Peter

︸ ︷︷ ︸subjet is a professor at SDSU

︸ ︷︷ ︸prediateThe prediate is the part of the sentene from whih the subjet hasbeen removed.In logi , prediates are obtained by removing any (some) nouns froma statement. P = � . . . is a professor at SDSU�Q = � . . . is a professor at . . .�R = � . . . is a . . . at . . .�

Example : P, Q and R are predicate symbols.
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PrediatesWe use the prediate variables x and y to de�ne prediates P (x)and Q(x, y): P(x) = �x is a professor at SDSU�Q(x, y) = �x is a professor at y�R(x, y, z) = �x is a z at y�

Example : P(x), Q(x,y) and R(x,y,z) are predicate symbols, x, y and z are

predicate variables.De�nition: Prediate �A prediate is sentene that ontains a �nite number of variablesand beomes a statement when spei� values are substituted forthe variables. The domain of a prediate variable is the set of allvalues that may be substituted in plae of the variable.
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Prediate Variables Common SetsWe must speify the domains of our prediate variables.If A is a set, we say that x is a member of the set A � denoted
x ∈ A. If x is not a member of the set A we write x 6∈ A.
A ould be the set of all students at SDSU.The following sets are so ommon, they have their own reserved sym-bols: Symbol Set of...

C Set of all Complex Numbers

N Set of all Non-negative Integers

Q Set of all Rational Numbers

R Set of all Real Numbers

Z Set of all Integers
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Truth SetWhen an element in the domain of a variable of a one-variableprediate is substituted for the variable, the resulting statement iseither true or false.

De�nition: Truth Set �If P (x) is a prediate and x has domain D, the truth set of
P (x) is the set of all elements of D that make P (x) true whensubstituted for x. The truth set of P (x) is denoted

{x ∈ D |P (x)}whih is read �the set of all x in D suh that P (x).�
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Examples: Truth Sets

Example #1:Let P (x) = �x is a senior� and suppose the domain, D, of x is theset of all SDSU students. Then the truth set of P (x) is the set ofall SDSU students in senior standing.

Example #2:Let P (x) = �3 is a fator of x� and D = N. Then {x ∈ D |P (x)}= {3, 6, 9, 12, 15, . . .}.

Example #3:Let P (x) = �x is a fator of 8�, and D = N. Then the truth setof P (x) is {1, 2, 4, 8}.
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More symbols: ⇒, and ⇔

Let P (x) and Q(x) prediates and suppose they have a ommondomain x ∈ D.
The notation P (x) ⇒ Q(x) means that every element in the truthset of P (x) is in the truth set of Q(x).

The notation P (x) ⇔ Q(x) means that P (x) and Q(x) have identialtruth sets.
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Example: ⇒, and ⇔Example:Let

P (x) = �x is a fator of 8�

Q(x) = �x is a fator of 4�

R(x) = �x < 5 and x 6= 3�

D = Z+ (the set of positive integers).The truth sets are

{x ∈ D |P (x)} = {1, 2, 4, 8}

{x ∈ D |Q(x)} = {1, 2, 4}

{x ∈ D |R(x)} = {1, 2, 4}We have the following
Q(x) ⇒ P (x), R(x) ⇒ P (x)

Q(x) ⇔ R(x).
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The Universal Quanti�er � �For all� Symbol: ∀The symbol ∀ denotes �for all� and is alled the universal quanti�er.

If we let S be the set of all humans beings, we an write

∀x ∈ S, x is mortal

The following phrases translate to ∀:�for all� �for every��for arbitrary� �for any��for eah� �given any�
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The Existential Quanti�er � �There exists� Symbol: ∃The symbol ∃ denotes �there exists� and is alled the existentialquanti�er.
If we let S be the set of all humans beings, we an write

∃x ∈ S, suh that x is student in Math 245

The following phrases translate to ∃:�there exists� �there is a��we an �nd a� �there is at least a��for some� �for at least one�
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Formal De�nitions: Universal and Existential Statements

De�nition: Universal Statement �Let Q(x) be a prediate and D the domain of x. A universalstatement is a statement in the form �∀x ∈ D, Q(x).� It isde�ned to be true if, and only if, Q(x) is true for every x in D.A value for whih Q(x) is false is alled a ounterexample tothe universal statement.

De�nition: Existential Statement �Let Q(x) be a prediate and D the domain of x. An existentialstatement is a statement of the form �∃x ∈ D suh that Q(x).�It is de�ned to be true if, and only if, Q(x) is true for at leastone x in D. If is false if, and only if, Q(x) is false for all x in

D.
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Translating to Formal (Symboli) LanguageExample: Rewrite the following statements formally.
1. �All triangles have three sides.�

2. �No dogs have wings.�

3. �Some programs are strutured.�

Solutions:

1a. Let T be the set of triangles; ∀t ∈ T , t has three sides.

1b. ∀ triangles t, t has three sides.
2a. Let D be the set of all dogs; ∀d ∈ D, d does not have wings.

2b. ∀ dogs d, d does not have wings.
3a. Let P be the set of all programs; ∃p ∈ P suh that p isstrutured.
3b. ∃ a program p suh that p is strutured.
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Universal Conditional StatementsOne of the most important forms of statements in mathematis (inproofs and theorems) is the universal onditional statement

∀x, if P (x) then Q(x)Example #1Let the domain of x be the positive integers Z+,

P (x) = �x is prime�,

Q(x) = �x annot be fatored�.We make the statement

∀x ∈ Z+, if P (x) then Q(x).Example #2The de�nition of a valid argument form is a universal onditionalstatement: ∀ ombinations of truth values for the omponentstatements, if the premises are all true, then the onlusion isalso true.
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Equivalent Forms Universal StatementsConsider the two statements:�∀ real numbers x, if x is an integer, then x is a rational��∀ integers x, x is a rational�They mean the same thing!

In general given a statement of the form

∀x ∈ U, if P (x) then Q(x)and the truth set D for P (x):

D = {x ∈ U |P (x)}the statement an be rewritten as

∀x ∈ D, Q(x)
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Equivalent Forms Existential StatementsConsider the two statements:�∃ a number n suh that n is prime and n is even��∃ a prime n suh that n is even�They mean the same thing!

In general given a statement of the form

∃x ∈ U suh that P (x) and Q(x)and the truth set D for P (x):

D = {x ∈ U |P (x)}the statement an be rewritten as

∃x ∈ D suh that Q(x)
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Impliit Quanti�ation �There Be Dragons Here!�The statement �if a number is an integer, then it is a rationalnumber.� is equivalent to a universal statement (see slide 16).However, it does not ontain any of the telltale ∀-phrases (seeslide 11).The only indiation of universal quanti�ation is the inde�nite artile� �a� .This is an example of impliit quanti�ation.The quanti�ation of a statement ruially determines both how thestatement an be applied and what method must be used to establishits truth. Thus is is important to be alert to the presene of hidden(impliit) quanti�ers when reading mathematis so that statementsare interpreted in a logially orret way.
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Examples: Impliit Quanti�ationThe informal statement�24 an be written as a sum of two integers�Formally means�∃ integers n, m suh that 24 = m + n.�Consider:a. (x + 1)2 = x2 + 2x + 1.b. Solve (x + 2)2 = 25.

a. is impliitly universally quanti�ed, andb. impliitly existentially quanti�ed :

a. ∀x ∈ R, (x + 1)2 = x2 + 2x + 1.b. Show that ∃x ∈ R suh that (x + 2)2 = 25.
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Homework #2 � Due Friday 9/22/2006 version 1

33rd Edition 2nd EditionProblems2.1: 12, 14, 22 2.1: 7, 9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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NegationsThe negation of �All mathematiians are strange� is not �No mathe-matiians are strange� it is...

∼ �All mathematiians are strange��Some mathematiians are not strange�Theorem: Negation of a Universal Statement �The negation of a statement of the form

∀x ∈ D, Q(x)is logially equivalent to a statement of the form

∃x ∈ D suh that ∼ Q(x).Symbolially:

∼ (∀x ∈ D, Q(x)) ≡ ∃x ∈ D suh that ∼ Q(x).
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NegationsThe negation of �Some mathematiians are strange� is not �Somemathematiians are not strange� it is...

∼ �Some mathematiians are strange��No mathematiians are strange�Theorem: Negation of an Existential Statement �The negation of a statement of the form
∃x ∈ D suh that Q(x)is logially equivalent to a statement of the form

∀x ∈ D, ∼ Q(x).Symbolially:
∼ (∃x ∈ D suh that Q(x)) ≡ ∀x ∈ D, ∼ Q(x).
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Negations � Notes

The negation of a universal statement (�∀� / �all are�) is logiallyequivalent to an existential statement (�∃ · · · ∼� / �some are not�).

The negation of an existential statement (�∃� / �some are�) is logiallyequivalent to a universal statement (�∀ · · · ∼� / �all are not�).
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Negation of Universal Conditional StatementsThe negation of a Universal Conditional Statement

∼ (∀x, P (x) → Q(x))is very important in mathematial arguments.

We already know how to negate a forall-statement:

∃x suh that ∼(P (x) → Q(x))And we know how to negate an impliation, thus

∼ (∀x, P (x) → Q(x))

≡ ∃x suh that P(x) ∧ (∼ Q(x))or

∼ (∀x, if P (x) then Q(x)) ≡ ∃x suh that P (x) and (∼ Q(x)).
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Generalization of De Morgan's Laws 1 of 3We have seen that the negation of a for all statement is a there isstatement, and the other way around.

This is analogous to De Morgan's Laws, where the negation of anand statement is and or statement, and vie versa.

A universal statement is a generalization of the and statement: If

Q(x) is a prediate, and the domain D of the prediate variable x isthe set {x1, x2, . . . , xn}, then the statements

∀x ∈ D,Q(x)and

Q(x1) ∧Q(x2) ∧ · · · ∧Q(xn)are logially equivalent!
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Generalization of De Morgan's Laws 2 of 3An existential statement is a generalization of the or statement:

If Q(x) is a prediate, and the domain D of the prediate variable xis the set {x1, x2, . . . , xn}, then the statements
∃x ∈ D suh that Q(x)and

Q(x1) ∨Q(x2) ∨ · · · ∨Q(xn)are logially equivalent!
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Generalization of De Morgan's Laws 3 of 3Now,

∼ (∀x ∈ D,Q(x)) ≡ ∼ (Q(x1) ∧ Q(x2) ∧ . . . ∧ Q(xn))is logially equivalent to

∃x ∈ D,∼ Q(x) ≡ ∼ Q(x1)∨ ∼ Q(x2) ∨ . . . ∨ ∼ Q(xn)

And,

∼ (∃x ∈ D,Q(x)) ≡ ∼ (Q(x1) ∨ Q(x2) ∨ . . . ∨ Q(xn))is logially equivalent to

∀x ∈ D,∼ Q(x) ≡ ∼ Q(x1)∧ ∼ Q(x2) ∧ . . . ∧ ∼ Q(xn)
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Contrapositive, Converse, and Inverse Universal C.S.We know that a onditional statement has a ontrapositive, a on-verse, and an inverse. We an generalize these de�nition to universalonditional statements:

De�nition: Contrapositive, Converse, Inverse �Consider a statement of the form

∀x ∈ D, if P (x) then Q(x)

1. Its ontrapositive is the statement

∀x ∈ D, if (∼ Q(x)) then (∼ P (x)).

2. Its onverse is the statement

∀x ∈ D, if Q(x) then P (x).

3. Its inverse is the statement

∀x ∈ D, if (∼ P (x)) then (∼ Q(x)).
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Example: CC&I of Universal Conditional StatementsWrite the ontrapositive, onverse and inverse of the followingstatement: �If a real number is greater than 2,then its square is greater than 4.�

Formal: ∀r ∈ R, if r > 2, then r2 > 4.

Contrapositive: ∀r ∈ R, if r2 ≤ 4, then r ≤ 2.

Converse: ∀r ∈ R, if r2 > 4 then r > 2.

Inverse: ∀r ∈ R, if r ≤ 2 then r2 ≤ 4.

Formal ≡ Contrapositive 6≡ Converse ≡ Inverse
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More Extensions to Universal Conditional StatementsFurther, we an extend the de�nitions of neessary , su�ient andonly if to apply to universal onditional statements:

De�nition: Su�ient, Neessary, Only If �1. �∀x, r(x) is a su�ient ondition for s(x)� means �∀x, if

r(x) then s(x).�2. �∀x, r(x) is a neessary ondition for s(x)�, means �∀x, if

(∼ r(x)) then (∼ s(x))� or, equivalently, �∀x, if s(x) then

r(x).�3. �∀x, r(x) only if s(x)� means �∀x, if (∼ s(x)), then

(∼ r(x))� or equivalently, �∀x, if r(x) then s(x).�
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Example: Neessary and Su�ient ConditionsRewrite the following statements as quanti�ed onditional statementswithout using the words neessary or su�ient:

1. Squareness is a su�ient ondition for retangularity.2. Being at least 35 years old is a neessary ondition for beingPresident of the United States.

1. Let S be the set of shapes. ∀x ∈ S if x is a square, then x isa retangle. � �If a shape is a square, then it is a retangle.�2. Let H be the set of human beings. ∀x ∈ H, if x is youngerthan 35 years old, then x annot be the President of the UnitedStates. Using the contrapositive: ∀x ∈ H, if x is the Presidentof the United States, then x is at least 35 years old.
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Example: Only IfRewrite the following as a universal onditional statement:

“A product of two numbers is 0 only if one of the numbers is 0.”

Solution: �If neither of the two numbers is 0,then the produt of the numbers is not 0.��Let r1 ∈ R, and r2 ∈ R. If r1 6= 0 and r2 6= 0, then r1 · r2 6= 0.�

�If a produt of two numbers is 0,then [at least℄ one of the numbers is 0.��Let r1 ∈ R, and r2 ∈ R. If r1 · r2 = 0, then r1 = 0 or r2 = 0.�

Here, we have used the equivalent contrapositive form.
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Homework #2 � Due Friday 9/22/2006 version 2

33rd Edition 2nd EditionProblems2.2: 15, 17, 29, 40 2.1: 28, 23; 2.2: �, 332.1: 12, 14, 22 2.1: 7, 9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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Multiply Quanti�ed StatementsIn the previous setion we expanded our �logi voabulary� to inludequanti�ers, e.g. ∀ (for all) and ∃ (there exists).

Next, we are going to onstrut more ompliated statements usingthese quanti�ers � in partiular we look at statement whih ontainmore than one quanti�er.
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Examples of Multiply Quanti�ed StatementFirst o�, lets translate the following informal statements to formal(symboli) statements:

1. Everybody loves somebody.2. Somebody loves everybody.

1. Let H be the set of human beings.

∀x ∈ H, ∃y ∈ H, suh that x loves y.2. Let H be the set of human beings.

∃x ∈ H suh that ∀y ∈ H, x loves y.
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Examples of Multiply Quanti�ed StatementIn alulus we de�ne the limit of a sequene... �The limit of thesequene an as n goes to in�nity equals to L,

lim
n→∞

an = Lif, and only if, the values of an beome arbitrarily lose to L as

n grows. More preisely, this means that for any positive num-ber ǫ, we an �nd and integer N suh that whenever n is largerthan N , then the number an is in the interval between L−ǫ and L+ǫ.�

Symbolially:

∀ǫ > 0, ∃N ∈ N, suh that ∀n,if n > N , then L− ǫ < an < L + ǫ.One you know the symbols, this is a very e�etive way of ommuni-ating!
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Negations of Multiply Quanti�ed Statements 1 of 2How do we negate a statement like �Everybody loves somebody.�

Let H be the set of human beings.

∀x ∈ H, ∃y ∈ H, suh that x loves y.The negation of the statement must be false when the statement istrue.
Sine the statement talks about a property assumed to be true for allpeople, all we need is the existene of a ounterexample:

Let H be the set of human beings.

∃x ∈ H suh that ∼(∃y ∈ H, suh that x loves y.)

⇔ ∃x ∈ H suh that (∀y ∈ H, x does not love y.)
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Negations of Multiply Quanti�ed Statements 2 of 2That is

∼ �Everybody loves somebody�is logially equivalent to�There is somebody who does not love anybody.�

The argument we made an be generalized:

The negation of

∀x, ∃y suh that P (x, y)is logially equivalent to
∃x suh that ∀y, ∼ P (x, y)

In our example, P (x, y) =�x loves y.�
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Negation RulesWe have
The negation of

∀x, ∃y suh that P (x, y)is logially equivalent to

∃x suh that ∀y, ∼ P (x, y)

Similarly,
The negation of

∃x suh that ∀y, P (x, y)is logially equivalent to

∀x, ∃y, suh that ∼ P (x, y)
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Example: Negating Multiply Quanti�ed StatementsNegate eah of the following statements:

1. ∀n ∈ Z, ∃k ∈ Z suh that n = 2k. � �All integers are even.�2. ∃ a person x suh that ∀ people y, x loves y. � �Somebodyloves everybody.�

1.1 ∃n ∈ Z suh that ∼(∃k ∈ Z suh than n = 2k).1.2 ∃n ∈ Z suh that ∀k ∈ Z, n 6= 2k. � �There is some integerwhih is not equal to twie any other integer.�

2.1 ∀ people x, ∼(∀ people y, x loves y).2.2 ∀ people x, ∃ person y suh that x does not love y. � �Nobodyloves everybody.�
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A Quik ReapWe have introdued prediates, P (x) � sentenes with a �nitenumber of variables whih beome statements when spei� valuesare substituted for the variables.We talked about the truth set of a prediate � all the values of thevariable(s) whih make the prediate true.We added the onepts of universal statements (∀ / �for all�),existential statements (∃ / �there exists�), and onditional state-ments (�if ... then ...�) to our voabulary.To enable us to express more omplex statements, we studied multi-ply quanti�ed statements.Things we do to all our statements: �nding truth values, writing theontrapositive, the onverse, the inverse, and negating the statement.
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Universal InstantiationThe Rule of Universal Instantiation:

If some property is true of everything in the domain, then

it is true of any particular thing in the domain.

Example:

All students want to graduate

Jane is a student

∴ Jane wants to graduate

Universal instantiation is the fundamental tool of dedutive reasoning:it is used mathematial formulas, de�nitions, and theorems as well asin all kinds of everyday, legal, et., arguments.
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Universal Modus Ponens 1 of 2Reall Modus Ponens (�The method of a�rming�):

∴If p, then q.

∴p.

∴ qIf we ombine the rule of universal instantiation with modus ponens,we get universal modus ponens:

Universal Modus Ponens

Formal version Informal version

∀x, If P (x), then Q(x) If x makes P (x) true, then x makes Q(x) true

P (a) for a particular a a makes P (x) true

∴ Q(a) ∴ a makes Q(x) true
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Universal Modus Ponens 2 of 2

Universal Modus Ponens

Formal version Informal version

∀x, If P (x), then Q(x) If x makes P (x) true, then x makes Q(x) true

P (a) for a particular a a makes P (x) true

∴ Q(a) ∴ a makes Q(x) trueUniversal Modus Ponens onsists of two premises:

∀x, If P (x), then Q(x) premise-1

P (a) for a partiular a premise-2one of whih (1) is quanti�ed. An argument of this form is alled asyllogism (rule of inferene).The �rst and seond premise are alled themajor andminor premises,respetively.
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Universal Modus Ponens in Ation 1 of 2Part of the reason we are building our �logi toolbox� is that we aregearing up to disussing methods of proving quanti�ed statements �one of the most important ativities in mathematial researh.For illustration, let us break the proof that �the sum of two evenintegers is even� into its smallest parts, and show how universalmodus ponens guides us...Suppose m and n are partiular, but arbitrarily hosen even in-tegers. Then m = 2r for some integer r (ump-1), and n = 2sfor some integer s (ump-2). Hene

m + n = 2r + 2s by substitution

= 2(r + s) by fatoring out the 2 (ump-3)Now, (r+s) is an integer (ump-4), and so is 2(r+s) (ump-5).Thus (m + n) is even.
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Universal Modus Ponens in Ation 2 of 2ump-1 If an integer is even, then it equals twie some integer.
m is a partiular even integer.

∴ m equals twie some integer r.ump-2 If an integer is even, then it equals twie some integer.
n is a partiular even integer.

∴ n equals twie some integer s.ump-3 If a quantity is an integer, then it is a real number.

r and s are integers.
∴ r and s are real numbers, and 2r + 2s = 2(r + s).ump-4 For all m and n, if m and n are integers,then (m + n) is an integer.

m = r and n = s are two partiular integers.

∴ (r + s) is an integer.ump-5 If a number equals twie some integer,then that number is even.

2(r + s) equals twie the integer (r + s).

∴ 2(r + s) is even.
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Universal Modus Tollens 1 of 2Reall Modus Tollens (�The method of denying�):

∴If p, then q.

∴∼q.

∴ ∼pIf we ombine the rule of universal instantiation with modus tollens,we get universal modus tollens:

Universal Modus Tollens

Formal version Informal version

∀x, If P (x), then Q(x) If x makes P (x) true, then x makes Q(x) true

∼ Q(a) for a particular a a does not make Q(x) true

∴ ∼ P (a) ∴ a does not make P (x) true
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Universal Modus Tollens 2 of 2

Universal Modus Tollens

Formal version Informal version

∀x, If P (x), then Q(x) If x makes P (x) true, then x makes Q(x) true

∼ Q(a) for a particular a a does not make Q(x) true

∴ ∼ P (a) ∴ a does not make P (x) true

Universal modus tollens is the key to mathematial proofs of ontra-dition � one of the most important mathematial arguments.

Example All human beings are mortalZeus is not mortal

∴ Zeus is not human.
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Proving Validity of Arguments with Quanti�ed Statements

De�nition:To say that and argument form is valid means the following: Nomatter what partiular prediates are substituted for the prediatesymbols in its premises, if the resulting premise statements are alltrue, then the onlusion is also true.An argument is alled valid if, and only if, its form is valid.

Note: If you think this looks familiar... it is a straight-forwardgeneralization of the validity for statements with ompoundstatements.

Note: We have to use the laws of logi to prove that the laws oflogi are valid!

Note: Proving that a general quanti�ed statement form is valid isbeyond the sope of this lass.
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Finally, Something Less Abstrat � �Proof by Diagram�Consider the following statement:

Informal All integers are rational number
Formal ∀ integers n, n is a rational number.

Piture the sets of rational numbers andintegers as disks. The truth of the state-ment means that the integer disk mustbe ontained inside the disk of rationalnumbers.

Rational Numbers

Integers
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Finally, Something Less Abstrat � �Proof by Diagram�

Consider the following state-ments:s1. n is an integer.s2. r is a rational.s3. z is not a rational.

Rational Numbers

Integers

n

r

zFrom the diagram we see thats1. ⇒ n is a rational.s2. 6⇒ r is an integer. � There are rationals that are not integers.s3. ⇒ z is not an integer.
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Showing the Validity of an Argument using a Diagram

Rational Numbers

Integers

Rational Numbers

z

Rational Numbers

Integers

z

Major premise Minor premise Conclusion

All integers are rational numbers Major premise

z is not a rational number Minor premise

∴ z is not an integer Conclusion

Example of a valid argument
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Showing the Invalidity of an Argument using a Diagram

Rational Numbers

Integers

Rational Numbers

r

Rational Numbers

Integers

r

Major premise Minor premise Conclusion

All integers are rational numbers Major premise

r is a rational number Minor premise

∴ r is an integer Conclusion

Example of an invalid argument — Converse Error
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Showing the Invalidity of an Argument using a Diagram
Rational Numbers

Integers Integers

r

Rational Numbers

Integers

r

Major premise Minor premise Conclusion

All integers are rational numbers Major premise

r is not an integer Minor premise

∴ r is not a rational number Conclusion

Example of an invalid argument — Inverse Error
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Comments � Food for ThoughtThe reason inverse and onverse errors are ommon is that the on-lusions would be true if the major premise was a bi-onditional (�if,and only if� / ⇔ / ↔).

Call it �fuzzy logi,� �arti�ial intelligene,� or �abdution� � if youhave a major premise:
�for all x, if P (x) then Q(x)�then if,

Q(a) is true, for a partiular a.then is it a good idea to hek if P (a) is true! � This kind ofreasoning is used by riminal investigators, dotors, auto mehanis,et, et... �Q(a) = true� is not evidene (of �P (a) = true�), butpossibly a lue.
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Homework #2 � Due Friday 9/22/2006 Final Version3rd Edition 2nd EditionProblems2.4: 19, 20, 25, 31 2.3: 19, 20, 24, 272.3: 37 2.2: 152.2: 15, 17, 29, 40 2.1: 28, 23; 2.2: �, 332.1: 12, 14, 22 2.1: 7, 9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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