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The Logic of Quantified Statements Introduction

So far we have discussed statement calculus (or propositional

calculus) — i.e. symbolic analysis of compound statements.
We have introduced logical connectives such as A, V, ~, —, and «.

We have created quite a useful toolbox — it is quite sufficient if you
want to build microchips for a living... You can indeed live quite large

if you build microchips!

We cannot however determine if the following is a valid statement:

All humans need logic
Peter is human

Peter needs logic
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The Logic of Quantified Statements Introduction

In order to study intuitively valid arguments

All humans need logic
Peter is human

Peter needs logic

We must understand (in the logic sense) the meaning of words like

all, some, etc...

Further, we must separate our statements into parts in much the same

way we separate declarative statements into subject and predicates.

The symbolic analysis of predicates and quantified statements is called

predicate calculus.

The Logic of Quantified Statements — p. 3/56



Predicates

In grammar, the predicate refers to the part of the sentence which

gives information about the subject, e.g.

Peter is a professor at SDSU
v N /

~~

subject predicate

The predicate is the part of the sentence from which the subject has

been removed.

In logic, predicates are obtained by removing any (some) nouns from

a statement.

P = “...is a professor at SDSU"
Q = "...isa professor at...”
R = "“...isa...at..."

Example : P, Q and R are predicate symbols.
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Predicates

We use the predicate variables = and y to define predicates P(x)

and Q(z,y):

P(x) = "z is a professor at SDSU"
Q(z,y) = " is a professor at y"
R(z,y,z) = "“zisazaty"

Example : P(x), Q(x,y) and R(x,y,z) are predicate symbols, x, y and z are

predicate variables.

Definition: Predicate —
A predicate is sentence that contains a finite number of variables

and becomes a statement when specific values are substituted for
the variables. The domain of a predicate variable is the set of all

values that may be substituted in place of the variable.
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Predicate Variables Common Sets

We must specify the domains of our predicate variables.

If A is a set, we say that = is a member of the set A — denoted

x € A. If x is not a member of the set A we write x ¢ A.
A could be the set of all students at SDSU.

The following sets are so common, they have their own reserved sym-

bols:
Symbol Set of...
C Set of all Complex Numbers
N Set of all Non-negative Integers
Q Set of all Rational Numbers
R Set of all Real Numbers
Z Set of all Integers
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Truth Set

When an element in the domain of a variable of a one-variable

predicate is substituted for the variable, the resulting statement is

either true or f al se.

Definition: Truth Set —
If P(x) is a predicate and x has domain D, the truth set of

P(x) is the set of all elements of D that make P(x) t r ue when
substituted for x. The truth set of P(x) is denoted

{z € D|P(z)}

which is read “the set of all z in D such that P(x)."
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Examples: Truth Sets

Example #1:
Let P(x) ="z is a senior’ and suppose the domain, D, of z is the
set of all SDSU students. Then the truth set of P(x) is the set of
all SDSU students in senior standing.

Example #2:
Let P(x) = "3 is a factor of " and D = N. Then {x € D| P(z)}
—{3,6,9 12, 15, ...}

Example #3:
Let P(x) = "z is a factor of 8", and D = N. Then the truth set
of P(x) is {1, 2, 4, 8}.
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More symbols: =, and <

Let P(x) and Q(z) predicates and suppose they have a common

domain z € D.

The notation P(x) = @Q(x) means that every element in the truth
set of P(x) is in the truth set of Q(x).

The notation P(z) < Q(x) means that P(x) and Q(x) have identical
truth sets.
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Example: =, and &

Example:
Let
P(xz) ="x is a factor of 8"
Q(xz) ="x is a factor of 4"

R(x) ="z <5 and x # 3"

D = Z7 (the set of positive integers).

The truth sets are
{xe D|P(x)} ={1,2,4,8}
{:U eD Q(ZE)} — {17274}
{xre D|R(x)} ={1,2,4}

We have the following
Q(xr) = P(z), R(x)= P(x)
Q(z) < R(x).
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The Universal Quantifier — “For all” Symbol: V

The symbol V denotes “for all” and is called the universal quantifier.
If we let S be the set of all humans beings, we can write

Ve €S, xis mortal

The following phrases translate to V:

“for all” “for every”
“for arbitrary” “for any”

“for each” “given any”
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The Existential Quantifier — “There exists” Symbol: -

The symbol J denotes “there exists’ and is called the existential

quantifier.

If we let S be the set of all humans beings, we can write

Jx € S, such that = is student in Math 245

The following phrases translate to 3:

“there exists” “there is 3"
“we can find 2" “there is at least a"
“for some” “for at least one”
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Formal Definitions: Universal and Existential Statements

Definition: Universal Statement —

Let Q(x) be a predicate and D the domain of z. A universal
statement is a statement in the form “Vx € D, Q(x).” It is
defined to be t rue if, and only if, Q(z) ist r ue for every z in D.
A value for which Q(x) is f al se is called a counterexample to

the universal statement.

Definition: Existential Statement —

Let () be a predicate and D the domain of x. An existential
statement is a statement of the form “Jx € D such that Q(z)."
It is defined to be t rue if, and only if, Q(z) is t r ue for at least
one z in D. If is false if, and only if, Q(x) is f al se for all x in
D.
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Translating to Formal (Symbolic) Language

Example: Rewrite the following statements formally.

1. “All triangles have three sides.”
2. "“No dogs have wings."

3. “Some programs are structured.”

Solutions:
la. Let T be the set of triangles; Vt € T', t has three sides.

1b. V triangles t, t has three sides.

2a. Let D be the set of all dogs; Vd € D, d does not have wings.
2b. V dogs d, d does not have wings.

3a. Let P be the set of all programs; dp € P such that p is

structured.

3b. da program p such that p is structured.
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Universal Conditional Statements

One of the most important forms of statements in mathematics (in

proofs and theorems) is the universal conditional statement

Ve, if P(x) then Q(x)
Example #1
Let the domain of = be the positive integers Z™,
P(xz) ="x is prime”,

Q(x) = "x cannot be factored”.

We make the statement
Vo € 77, if P(x) then Q(x).

Example #2
The definition of a valid argument form is a universal conditional
statement: YV combinations of truth values for the component

statements, if the premises are all true, then the conclusion is

also true.
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Equivalent Forms Universal Statements

Consider the two statements:
“V real numbers z, if z is an integer, then x is a rational”

“Y integers z, x is a rational”

They mean the same thing!

In general given a statement of the form
Vr € U, if P(x) then Q(x)
and the truth set D for P(x):
D={xeU|P(x)}
the statement can be rewritten as

Ve e D, Q(x)
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Equivalent Forms Existential Statements

Consider the two statements:
“3d a number n such that n is prime and n is even”

“J a prime n such that n is even”

They mean the same thing!

In general given a statement of the form
dx € U such that P(z) and Q(z)
and the truth set D for P(x):
D={xeU|P(x)}
the statement can be rewritten as

dx € D such that Q(x)
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Implicit Quantification “There Be Dragons Here!”

The statement “if a number is an integer, then it is a rational

number.” is equivalent to a universal statement (see slide 16).

However, it does not contain any of the telltale V-phrases (see

slide [11).

The only indication of universal quantification is the indefinite article

bé__177

This is an example of implicit quantification.

The quantification of a statement crucially determines both how the
statement can be applied and what method must be used to establish
its truth. Thus is is important to be alert to the presence of hidden
(implicit) quantifiers when reading mathematics so that statements

are interpreted in a logically correct way.
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Examples: Implicit Quantification

The informal statement
“24 can be written as a sum of two integers”
Formally means

“d integers n, m such that 24 = m +n."

Consider:
a. (x+1)% =%+ 22+ 1.
b. Solve (z + 2)? = 25.

a. is implicitly universally quantified, and
b. implicitly existentially quantified-

a. Vx € R, (z + 1) = 2% + 22 + 1.
b. Show that 32 € R such that (z + 2)? = 25.
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Homework #2 — Due Friday 9/22/2006 version 1

3

3rd Edition 2nd Edition

Problems

2.1: 12,14, 22 | 2.1: 7, 9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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Negations

The negation of “All mathematicians are strange” is not “No mathe-

maticians are strange’ it is...

~ “All mathematicians are strange”

“Some mathematicians are not strange”

Theorem: Negation of a Universal Statement —

The negation of a statement of the form
Ve e D, Q(x)
is logically equivalent to a statement of the form

dx € D such that ~ Q(x).

Symbolically:
~ VxreD, Qlx)) = dxz € D suchthat ~ Q(x).
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Negations

The negation of “Some mathematicians are strange’ is not “Some

mathematicians are not strange’ it is...

~ "Some mathematicians are strange”

“No mathematicians are strange”

Theorem: Negation of an Existential Statement —

The negation of a statement of the form
dx € D such that Q(x)
is logically equivalent to a statement of the form
Ve e D, ~Qx).

Symbolically:
~ (dx € D such that Q(x)) = Vaxe D, ~Q(x).
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Negations — Notes

The negation of a universal statement (“V" / “all are”) is logically

equivalent to an existential statement (“3--- ~" / “some are not").

The negation of an existential statement (3" / “some are”) is logically

1

equivalent to a universal statement (“V--- ~" / “all are not”).
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Negation of Universal Conditional Statements

The negation of a Universal Conditional Statement

~ (Vz, P(z) — Q(x))

Is very important in mathematical arguments.

We already know how to negate a forall-statement:
dx such that ~(P(z) — Q(x))

And we know how to negate an implication, thus

~ (Vz, P(z) — Q(x))
= dux such that P(x) A (~ Q(x))

~ (Vz, if P(x) then Q(x)) = Jx such that P(x) and (~ Q(x)).
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Generalization of De Morgan's Laws 1 of 3

We have seen that the negation of a for all statement is a there is

statement, and the other way around.

This is analogous to De Morgan’'s Laws, where the negation of an

and statement is and or statement, and vice versa.

A universal statement is a generalization of the and statement: If
Q(x) is a predicate, and the domain D of the predicate variable z is

the set {x1,29,...,x,}, then the statements
Vx € D, Q(x)

and
Q(x1) A Q(x2) A+ A Q(Xn)

are logically equivalent!
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Generalization of De Morgan's Laws 2 of 3

An existential statement is a generalization of the or statement:

If Q(x) is a predicate, and the domain D of the predicate variable x

is the set {x1,z9,...,x,}, then the statements

dx € D such that Q(x)

and

Qx1) vV Q(x2) V-V Q(xn)

are logically equivalent!
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Generalization of De Morgan's Laws 3 of 3

Now,

~ (Vo € D,Q(x)) ~ (Q(z1) A Qr2) Ao A Q7))

is logically equivalent to

Jr € D,~Qz) = ~Qx1)V ~Qx2) V ...V ~Q(zy)

And,

~(FreD, Q) = ~(Qx1) vV Qx2) V ...V Qan))
is logically equivalent to

Ve € D,~Qx) = ~Qz1)A ~Qx2) A ... N ~Q(xn)
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Contrapositive, Converse, and Inverse Universal C.S.

We know that a conditional statement has a contrapositive, a con-
verse, and an inverse. We can generalize these definition to universal

conditional statements:

Definition: Contrapositive, Converse, Inverse —

Consider a statement of the form
Ve € D, if P(x) then Q(x)

1. Its contrapositive is the statement
Ve e D, if (~Q(x)) then (~ P(x)).

2. lts converse is the statement
Vx € D, if Q(x) then P(x).

3. lts inverse is the statement

Ve € D, if (~ P(x)) then (~ Q(x)).
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Example: CC&I of Universal Conditional Statements

Write the contrapositive, converse and inverse of the following

statement:

Formal:

Contrapositive:

Converse:

Inverse:

“If a real number is greater than 2,

then its square is greater than 4.”

Vr € R, if r > 2. then r? > 4.
Vr € R, if 72 < 4, then r < 2.
Vr € R if 2 > 4 then r > 2.

Vr € R, if r < 2 then r? < 4.
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Example: CC&I of Universal Conditional Statements

Write the contrapositive, converse and inverse of the following

statement:
“If a real number is greater than 2,
then its square is greater than 4.”
Formal: Vr € R, if r > 2 then r? > 4.

Contrapositive: Vr € R, if 72 < 4, then r < 2.

Converse: Vr € R, if 72 > 4 then r > 2.
Inverse: Vr € R, if r < 2 then 2 < 4.
Formal = Contrapositive =+ Converse = Inverse
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More Extensions to Universal Conditional Statements

Further, we can extend the definitions of necessary, sufficient and

only if to apply to universal conditional statements:

Definition: Sufficient, Necessary, Only If —

1. “Va, r(z) is a sufficient condition for s(z)" means “Vz, if

r(xz) then s(x).”

2. "Wz, r(x) is a necessary condition for s(x)", means “Vz, if
(~ r(x)) then (~ s(x))" or, equivalently, “Vz, if s(x) then

3. "Va,r(z) only if s(x)’" means “Vz, if (~ s(x)), then
(~ r(x))" or equivalently, “Vz, if r(x) then s(z)."
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Example: Necessary and Sufficient Conditions

Rewrite the following statements as quantified conditional statements

without using the words necessary or sufficient:

1. Squareness is a sufficient condition for rectangularity.

2. Being at least 35 years old is a necessary condition for being
President of the United States.
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Example: Necessary and Sufficient Conditions

Rewrite the following statements as quantified conditional statements

without using the words necessary or sufficient:

1. Squareness is a sufficient condition for rectangularity.

2. Being at least 35 years old is a necessary condition for being
President of the United States.

1. Let S be the set of shapes. Vo € S if = is a square, then x is a

rectangle. — “If a shape is a square, then it is a rectangle.”

2. Let H be the set of human beings. Vo € H, if x is younger
than 35 years old, then x cannot be the President of the United
States. Using the contrapositive: Vo € H, if x is the President
of the United States, then z is at least 35 years old.
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Example: Only If

Rewrite the following as a universal conditional statement:

“A product of two numbers is O only if one of the numbersis 0.”

Solution:

“If neither of the two numbers is 0,

then the product of the numbers is not 0.”

“Let 1 € R, and o € R. If 1 #0 and 79 # 0, then r; - 79 # 0.”

“If a product of two numbers is O,

then [at least] one of the numbers is 0.”
“Letri1 €R,and s €R. Ifr{ -79 =0, thenr; =0o0r 7o =0."

Here, we have used the equivalent contrapositive form.
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Homework #2 — Due Friday 9/22/2006 version 2

3

3rd Edition 2nd Edition
Problems
2.2: 15, 17, 29, 40 | 2.1: 28, 23; 2.2: —, 33
2.1: 12, 14, 22 2.1: 7,9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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Multiply Quantified Statements

In the previous section we expanded our “logic vocabulary” to include

quantifiers, e.g. V (for all) and 3 (there exists).
Next, we are going to construct more complicated statements using

these quantifiers — in particular we look at statement which contain

more than one quantifier.

The Logic of Quantified Statements — p. 34/56



Examples of Multiply Quantified Statement

First off, lets translate the following informal statements to formal

(symbolic) statements:

1. Everybody loves somebody.
2. Somebody loves everybody.

1. Let H be the set of human beings.
Vo € H, 3y € H, such that = loves y.

2. Let H be the set of human beings.
dx € H such that Vy € H, x loves y.
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Examples of Multiply Quantified Statement

In calculus we define the limit of a sequence... “The limit of the
sequence a,, as n goes to infinity equals to L,

lim a,, = L
n—aoo

if. and only if, the values of a, become arbitrarily close to L as
n grows. More precisely, this means that for any positive num-
ber ¢, we can find and integer N such that whenever n is larger

than N, then the number a,, is in the interval between L—e¢ and L+¢€.”

Symbolically:
Ve > 0, AN € N, such that Vn,
if n>N,then L —e<a, <L +e.

Once you know the symbols, this is a very effective way of communi-

cating!
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Negations of Multiply Quantified Statements 1 of 2

How do we negate a statement like “Everybody loves somebody.”

Let H be the set of human beings.
Vo € H, dy € H, such that x loves y.

The negation of the statement must be false when the statement is

true.

Since the statement talks about a property assumed to be true for all

people, all we need is the existence of a counterexample:
Let H be the set of human beings.

Jdr € H such that ~(dy € H, such that x loves y.)
& dx € H such that (Vy € H, = does not love y.)
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Negations of Multiply Quantified Statements 2 of 2

That is
~ “Everybody loves somebody”

is logically equivalent to

“There is somebody who does not love anybody.”

The argument we made can be generalized:

The negation of
Va, Jy such that P(z,y)

is logically equivalent to

Jx such that Vy, ~ P(x,y)

In our example, P(x,y) ="x loves y."
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Negation Rules

We have

The negation of
Va, Jy such that P(z,y)

is logically equivalent to

dx such that Vy, ~ P(x,y)

Similarly,

The negation of
Jx such that Vy, P(z,y)

is logically equivalent to

Va, Jy, such that ~ P(x,y)
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Example: Negating Multiply Quantified Statements

Negate each of the following statements:

1. Vn € Z, dk € Z such that n = 2k. — “All integers are even.”

2. J a person x such that V people y, x loves y. — “Somebody

loves everybody.”
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Example: Negating Multiply Quantified Statements

Negate each of the following statements:

1. Vn € Z, dk € Z such that n = 2k. — “All integers are even.”

2. J a person x such that V people y, x loves y. — “Somebody
loves everybody.”

1.1 dn € Z such that ~(3k € Z such than n = 2k).

1.2 dn € Z such that Vk € Z, n # 2k. — "“There is some integer

which is not equal to twice any other integer.”
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Example: Negating Multiply Quantified Statements

Negate each of the following statements:

1. Vn € Z, dk € Z such that n = 2k. — “All integers are even.”

2. J a person x such that V people y, x loves y. — “Somebody

loves everybody.”

1.1 dn € Z such that ~(3k € Z such than n = 2k).

1.2 dn € Z such that Vk € Z, n # 2k. — "“There is some integer

which is not equal to twice any other integer.”

2.1 V people x, ~(V people y, x loves v).

2.2 V people x, d person y such that = does not love y. — “Nobody

loves everybody.”
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A Quick Recap

We have introduced predicates, P(x) — sentences with a finite
number of variables which become statements when specific values

are substituted for the variables.

We talked about the truth set of a predicate — all the values of the
variable(s) which make the predicate t r ue.

We added the concepts of universal statements (V¥ / “for all”),
existential statements (3 / “there exists'), and conditional state-

ments ('if ... then ...") to our vocabulary.

To enable us to express more complex statements, we studied multi-

ply quantified statements.

Things we do to all our statements: finding truth values, writing the

contrapositive, the converse, the inverse, and negating the statement.
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Universal Instantiation

The Rule of Universal Instantiation:

If some property is true of everything in the domain, then

it is true of any particular thing in the domain.

Example:

All students want to graduate
Jane is a student

Jane wants to graduate
Universal instantiation is the fundamental tool of deductive reasoning:

it is used mathematical formulas, definitions, and theorems as well as

in all kinds of everyday, legal, etc., arguments.
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Universal Modus Ponens 1 of 2

Recall Modus Ponens (“The method of affirming”):

If p, then q.
p.
. q

If we combine the rule of universal instantiation with modus ponens,

we get universal modus ponens:

Universal Modus Ponens
Formal version Informal version
Va, If P(x), then Q(x) If z makes P(x) true, then  makes Q)(x) true
P(a) for a particular a a makes P(x) true
Q(a) . amakes Q(x) true
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Universal Modus Ponens 2 of 2

Universal Modus Ponens
Formal version Informal version
Ve, If P(x), then Q(x) If x makes P(x) true, then = makes ()(x) true
P(a) for a particular a a makes P(x) true
Q(a) . amakes Q(x) true

Universal Modus Ponens consists of two premises:

Vz, If P(x), then Q(z) premise-1
P(a) for a particular a premise-2

one of which (1) is quantified. An argument of this form is called a

syllogism (rule of inference).

The first and second premise are called the major and minor premises,

respectively.
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Universal Modus Ponens in Action 1 of 2

Part of the reason we are building our “logic toolbox" is that we are
gearing up to discussing methods of proving quantified statements —

one of the most important activities in mathematical research.

For illustration, let us break the proof that “the sum of two even
integers is even’ into its smallest parts, and show how universal

modus ponens guides us...

Suppose m and n are particular, but arbitrarily chosen even in-
tegers. Then m = 2r for some integer r (ump-1), and n = 2s

for some integer s (ump-2). Hence

m+n = 2r+2s by substitution
= 2(r+s) by factoring out the 2 (ump-3)

Now, (r+s) is an integer (ump-4), and so is 2(r +s) (ump-5).

Thus (m 4+ n) is even.
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Universal Modus Ponens in Action 2 of 2

ump-1 If an integer is even, then it equals twice some integer.
m is a particular even integer.
m equals twice some integer r.

ump-2 If an integer is even, then it equals twice some integer.
n is a particular even integer.
n equals twice some integer s.

ump-3 If a quantity is an integer, then it is a real number.
r and s are integers.
r and s are real numbers, and 2r 4 2s = 2(r + s).

ump-4 For all m and n, if m and n are integers,
then (m + n) is an integer.
m = r and n = s are two particular integers.
(r 4+ s) is an integer.

ump-5 If a number equals twice some integer,
then that number is even.
2(r 4 s) equals twice the integer (r + s).
2(r 4 s) is even.
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Universal Modus Tollens 1 of 2

Recall Modus Tollens (“The method of denying’):

If p, then q.
. ~p

If we combine the rule of universal instantiation with modus tollens,

we get universal modus tollens:

Universal Modus Tollens
Formal version Informal version
Va, If P(x), then Q(x) If x makes P(x) true, then & makes Q) () true
~ Q(a) for a particular a a does not make Q)(x) true
~ P(a) . a does not make P(z) true
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Universal Modus Tollens 2 of 2

Universal Modus Tollens
Formal version Informal version
Va, If P(x), then Q(x) If x makes P(x) true, then x makes ()(x) true
~ (a) for a particular a a does not make ()(x) true
~ P(a) . a does not make P(x) true

Universal modus tollens is the key to mathematical proofs of contra-

diction — one of the most important mathematical arguments.

Example

All human beings are mortal
Zeus is not mortal

Zeus is not human.
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Proving Validity of Arguments with Quantified Statements

Definition:

To say that and argument form is valid means the following: No
matter what particular predicates are substituted for the predicate
symbols in its premises, if the resulting premise statements are all

true, then the conclusion is also true.

An argument is called valid if, and only if, its form is valid.

Note: If you think this looks familiar... it is a straight-forward
generalization of the validity for statements with compound

statements.

Note: We have to use the laws of logic to prove that the laws of

logic are valid!

Note: Proving that a general quantified statement form is valid is

beyond the scope of this class.
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Finally, Something Less Abstract — “Proof by Diagram”

Consider the following statement:

Informal  All integers are rational number

Formal  V integers n, n is a rational number.

Rational Numbers

Picture the sets of rational numbers and
integers as disks. The truth of the state-
ment means that the integer disk must
be contained inside the disk of rational

numbers.
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Finally, Something Less Abstract — “Proof by Diagram”

Rational Numbers
Consider the following state-
ments:

sl. n is an integer.

s2. r is a rational.

s3. z is not a rational.

From the diagram we see that
sl. = n is a rational.
s2. # r is an integer. — There are rationals that are not integers.

s3. = z Is not an integer.
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Showing the Validity of an Argument using a Diagram

Rational Numbers Rational Numbers Rational Numbers

Major premise Minor premise Conclusion
All integers are rational numbers Major premise
z is not a rational number Minor premise
Z 1S not an integer Conclusion

Example of a valid argument
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Showing the Invalidity of an Argument using a Diagram

Rational Numbers Rational Numbers Rational Numbers

Major premise Minor premise Conclusion
All integers are rational numbers Major premise
r is a rational number Minor premise
T 1S an integer Conclusion

Example of an invalid argument — Converse Error
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Showing the Invalidity of an Argument using a Diagram

Rational Numbers Rational Numbers

Major premise Minor premise Conclusion
All integers are rational numbers Major premise
r IS not an integer Minor premise
r is not a rational number Conclusion

Example of an invalid argument — Inverse Error
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Comments — Food for Thought

The reason inverse and converse errors are common is that the con-
clusions would be true if the major premise was a bi-conditional (“if,
and only if" / & [ «<).

Call it “fuzzy logic,” “artificial intelligence,” or “abduction” — if you

have a major premise:

“for all z, if P(x) then Q(x)"
then if,

Q(a) is true, for a particular a.

then is it a good idea to check if P(a) is truel! — This kind of
reasoning is used by criminal investigators, doctors, auto mechanics,
etc, etc... “"Q(a) = true” is not evidence (of “P(a) = true”), but
possibly a clue.
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Homework #2 — Due Friday 9/22/2006 Final Version

3rd Edition 2nd Edition
Problems
2.4: 19, 20, 25, 31 | 2.3: 19, 20, 24, 27
2.3: 37 2.2: 15
2.2: 15,17, 29, 40 | 2.1: 28, 23; 2.2: —, 33
2.1: 12, 14, 22 2.1: 7,9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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