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The Logi
 of Quanti�ed Statements Introdu
tionSo far we have dis
ussed statement 
al
ulus (or propositional
al
ulus) � i.e. symboli
 analysis of 
ompound statements.

We have introdu
ed logi
al 
onne
tives su
h as ∧, ∨, ∼, →, and↔.

We have 
reated quite a useful toolbox � it is quite su�
ient if youwant to build mi
ro
hips for a living... You 
an indeed live quite largeif you build mi
ro
hips!

We 
annot however determine if the following is a valid statement:All humans need logi
Peter is human
∴ Peter needs logi
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The Logi
 of Quanti�ed Statements Introdu
tionIn order to study intuitively valid argumentsAll humans need logi
Peter is human

∴ Peter needs logi
We must understand (in the logi
 sense) the meaning of words likeall , some, et
...
Further, we must separate our statements into parts in mu
h the sameway we separate de
larative statements into subje
t and predi
ates.

The symboli
 analysis of predi
ates and quanti�ed statements is 
alledpredi
ate 
al
ulus.
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Predi
atesIn grammar , the predi
ate refers to the part of the senten
e whi
hgives information about the subje
t, e.g.Peter

︸ ︷︷ ︸subje
t is a professor at SDSU
︸ ︷︷ ︸predi
ateThe predi
ate is the part of the senten
e from whi
h the subje
t hasbeen removed.In logi
 , predi
ates are obtained by removing any (some) nouns froma statement. P = � . . . is a professor at SDSU�Q = � . . . is a professor at . . .�R = � . . . is a . . . at . . .�

Example : P, Q and R are predicate symbols.
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Predi
atesWe use the predi
ate variables x and y to de�ne predi
ates P (x)and Q(x, y): P(x) = �x is a professor at SDSU�Q(x, y) = �x is a professor at y�R(x, y, z) = �x is a z at y�
Example : P(x), Q(x,y) and R(x,y,z) are predicate symbols, x, y and z are

predicate variables.De�nition: Predi
ate �A predi
ate is senten
e that 
ontains a �nite number of variablesand be
omes a statement when spe
i�
 values are substituted forthe variables. The domain of a predi
ate variable is the set of allvalues that may be substituted in pla
e of the variable.
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Predi
ate Variables Common SetsWe must spe
ify the domains of our predi
ate variables.If A is a set, we say that x is a member of the set A � denoted
x ∈ A. If x is not a member of the set A we write x 6∈ A.
A 
ould be the set of all students at SDSU.The following sets are so 
ommon, they have their own reserved sym-bols: Symbol Set of...

C Set of all Complex Numbers

N Set of all Non-negative Integers

Q Set of all Rational Numbers

R Set of all Real Numbers

Z Set of all Integers
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Truth SetWhen an element in the domain of a variable of a one-variablepredi
ate is substituted for the variable, the resulting statement iseither true or false.

De�nition: Truth Set �If P (x) is a predi
ate and x has domain D, the truth set of

P (x) is the set of all elements of D that make P (x) true whensubstituted for x. The truth set of P (x) is denoted
{x ∈ D |P (x)}whi
h is read �the set of all x in D su
h that P (x).�
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Examples: Truth Sets

Example #1:Let P (x) = �x is a senior� and suppose the domain, D, of x is theset of all SDSU students. Then the truth set of P (x) is the set ofall SDSU students in senior standing.

Example #2:Let P (x) = �3 is a fa
tor of x� and D = N. Then {x ∈ D |P (x)}= {3, 6, 9, 12, 15, . . .}.

Example #3:Let P (x) = �x is a fa
tor of 8�, and D = N. Then the truth setof P (x) is {1, 2, 4, 8}.
The Logic of Quantified Statements – p. 8/56



More symbols: ⇒, and ⇔

Let P (x) and Q(x) predi
ates and suppose they have a 
ommondomain x ∈ D.
The notation P (x) ⇒ Q(x) means that every element in the truthset of P (x) is in the truth set of Q(x).

The notation P (x) ⇔ Q(x) means that P (x) and Q(x) have identi
altruth sets.
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Example: ⇒, and ⇔Example:Let

P (x) = �x is a fa
tor of 8�

Q(x) = �x is a fa
tor of 4�

R(x) = �x < 5 and x 6= 3�

D = Z+ (the set of positive integers).The truth sets are

{x ∈ D |P (x)} = {1, 2, 4, 8}

{x ∈ D |Q(x)} = {1, 2, 4}

{x ∈ D |R(x)} = {1, 2, 4}We have the following
Q(x) ⇒ P (x), R(x) ⇒ P (x)

Q(x) ⇔ R(x).
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The Universal Quanti�er � �For all� Symbol: ∀The symbol ∀ denotes �for all� and is 
alled the universal quanti�er.

If we let S be the set of all humans beings, we 
an write
∀x ∈ S, x is mortal

The following phrases translate to ∀:�for all� �for every��for arbitrary� �for any��for ea
h� �given any�
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The Existential Quanti�er � �There exists� Symbol: ∃The symbol ∃ denotes �there exists� and is 
alled the existentialquanti�er.
If we let S be the set of all humans beings, we 
an write

∃x ∈ S, su
h that x is student in Math 245

The following phrases translate to ∃:�there exists� �there is a��we 
an �nd a� �there is at least a��for some� �for at least one�
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Formal De�nitions: Universal and Existential Statements

De�nition: Universal Statement �Let Q(x) be a predi
ate and D the domain of x. A universalstatement is a statement in the form �∀x ∈ D, Q(x).� It isde�ned to be true if, and only if, Q(x) is true for every x in D.A value for whi
h Q(x) is false is 
alled a 
ounterexample tothe universal statement.

De�nition: Existential Statement �Let Q(x) be a predi
ate and D the domain of x. An existentialstatement is a statement of the form �∃x ∈ D su
h that Q(x).�It is de�ned to be true if, and only if, Q(x) is true for at leastone x in D. If is false if, and only if, Q(x) is false for all x in

D.
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Translating to Formal (Symboli
) LanguageExample: Rewrite the following statements formally.
1. �All triangles have three sides.�

2. �No dogs have wings.�

3. �Some programs are stru
tured.�

Solutions:

1a. Let T be the set of triangles; ∀t ∈ T , t has three sides.

1b. ∀ triangles t, t has three sides.
2a. Let D be the set of all dogs; ∀d ∈ D, d does not have wings.

2b. ∀ dogs d, d does not have wings.
3a. Let P be the set of all programs; ∃p ∈ P su
h that p isstru
tured.
3b. ∃ a program p su
h that p is stru
tured.
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Universal Conditional StatementsOne of the most important forms of statements in mathemati
s (inproofs and theorems) is the universal 
onditional statement
∀x, if P (x) then Q(x)Example #1Let the domain of x be the positive integers Z+,

P (x) = �x is prime�,

Q(x) = �x 
annot be fa
tored�.We make the statement
∀x ∈ Z+, if P (x) then Q(x).Example #2The de�nition of a valid argument form is a universal 
onditionalstatement: ∀ 
ombinations of truth values for the 
omponentstatements, if the premises are all true, then the 
on
lusion isalso true.
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Equivalent Forms Universal StatementsConsider the two statements:�∀ real numbers x, if x is an integer, then x is a rational��∀ integers x, x is a rational�They mean the same thing!

In general given a statement of the form
∀x ∈ U, if P (x) then Q(x)and the truth set D for P (x):

D = {x ∈ U |P (x)}the statement 
an be rewritten as
∀x ∈ D, Q(x)
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Equivalent Forms Existential StatementsConsider the two statements:�∃ a number n su
h that n is prime and n is even��∃ a prime n su
h that n is even�They mean the same thing!

In general given a statement of the form
∃x ∈ U su
h that P (x) and Q(x)and the truth set D for P (x):

D = {x ∈ U |P (x)}the statement 
an be rewritten as
∃x ∈ D su
h that Q(x)
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Impli
it Quanti�
ation �There Be Dragons Here!�The statement �if a number is an integer, then it is a rationalnumber.� is equivalent to a universal statement (see slide 16).However, it does not 
ontain any of the telltale ∀-phrases (seeslide 11).The only indi
ation of universal quanti�
ation is the inde�nite arti
le� �a� .This is an example of impli
it quanti�
ation.The quanti�
ation of a statement 
ru
ially determines both how thestatement 
an be applied and what method must be used to establishits truth. Thus is is important to be alert to the presen
e of hidden(impli
it) quanti�ers when reading mathemati
s so that statementsare interpreted in a logi
ally 
orre
t way.
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Examples: Impli
it Quanti�
ationThe informal statement�24 
an be written as a sum of two integers�Formally means�∃ integers n, m su
h that 24 = m + n.�Consider:a. (x + 1)2 = x2 + 2x + 1.b. Solve (x + 2)2 = 25.

a. is impli
itly universally quanti�ed, andb. impli
itly existentially quanti�ed:

a. ∀x ∈ R, (x + 1)2 = x2 + 2x + 1.b. Show that ∃x ∈ R su
h that (x + 2)2 = 25.
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Homework #2 � Due Friday 9/22/2006 version 1

33rd Edition 2nd EditionProblems2.1: 12, 14, 22 2.1: 7, 9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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NegationsThe negation of �All mathemati
ians are strange� is not �No mathe-mati
ians are strange� it is...

∼ �All mathemati
ians are strange��Some mathemati
ians are not strange�Theorem: Negation of a Universal Statement �The negation of a statement of the form
∀x ∈ D, Q(x)is logi
ally equivalent to a statement of the form

∃x ∈ D su
h that ∼ Q(x).Symboli
ally:
∼ (∀x ∈ D, Q(x)) ≡ ∃x ∈ D su
h that ∼ Q(x).
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NegationsThe negation of �Some mathemati
ians are strange� is not �Somemathemati
ians are not strange� it is...

∼ �Some mathemati
ians are strange��No mathemati
ians are strange�Theorem: Negation of an Existential Statement �The negation of a statement of the form
∃x ∈ D su
h that Q(x)is logi
ally equivalent to a statement of the form

∀x ∈ D, ∼ Q(x).Symboli
ally:
∼ (∃x ∈ D su
h that Q(x)) ≡ ∀x ∈ D, ∼ Q(x).
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Negations � Notes

The negation of a universal statement (�∀� / �all are�) is logi
allyequivalent to an existential statement (�∃ · · · ∼� / �some are not�).

The negation of an existential statement (�∃� / �some are�) is logi
allyequivalent to a universal statement (�∀ · · · ∼� / �all are not�).
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Negation of Universal Conditional StatementsThe negation of a Universal Conditional Statement
∼ (∀x, P (x) → Q(x))is very important in mathemati
al arguments.

We already know how to negate a forall-statement:
∃x su
h that ∼(P (x) → Q(x))And we know how to negate an impli
ation, thus

∼ (∀x, P (x) → Q(x))

≡ ∃x su
h that P(x) ∧ (∼ Q(x))or

∼ (∀x, if P (x) then Q(x)) ≡ ∃x su
h that P (x) and (∼ Q(x)).
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Generalization of De Morgan's Laws 1 of 3We have seen that the negation of a for all statement is a there isstatement, and the other way around.

This is analogous to De Morgan's Laws, where the negation of anand statement is and or statement, and vi
e versa.

A universal statement is a generalization of the and statement: If

Q(x) is a predi
ate, and the domain D of the predi
ate variable x isthe set {x1, x2, . . . , xn}, then the statements
∀x ∈ D,Q(x)and

Q(x1) ∧ Q(x2) ∧ · · · ∧ Q(xn)are logi
ally equivalent!
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Generalization of De Morgan's Laws 2 of 3An existential statement is a generalization of the or statement:

If Q(x) is a predi
ate, and the domain D of the predi
ate variable xis the set {x1, x2, . . . , xn}, then the statements
∃x ∈ D su
h that Q(x)and

Q(x1) ∨ Q(x2) ∨ · · · ∨ Q(xn)are logi
ally equivalent!
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Generalization of De Morgan's Laws 3 of 3Now,

∼ (∀x ∈ D,Q(x)) ≡ ∼ (Q(x1) ∧ Q(x2) ∧ . . . ∧ Q(xn))is logi
ally equivalent to

∃x ∈ D,∼ Q(x) ≡ ∼ Q(x1)∨ ∼ Q(x2) ∨ . . . ∨ ∼ Q(xn)

And,

∼ (∃x ∈ D,Q(x)) ≡ ∼ (Q(x1) ∨ Q(x2) ∨ . . . ∨ Q(xn))is logi
ally equivalent to
∀x ∈ D,∼ Q(x) ≡ ∼ Q(x1)∧ ∼ Q(x2) ∧ . . . ∧ ∼ Q(xn)
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Contrapositive, Converse, and Inverse Universal C.S.We know that a 
onditional statement has a 
ontrapositive, a 
on-verse, and an inverse. We 
an generalize these de�nition to universal
onditional statements:

De�nition: Contrapositive, Converse, Inverse �Consider a statement of the form
∀x ∈ D, if P (x) then Q(x)

1. Its 
ontrapositive is the statement
∀x ∈ D, if (∼ Q(x)) then (∼ P (x)).

2. Its 
onverse is the statement
∀x ∈ D, if Q(x) then P (x).

3. Its inverse is the statement
∀x ∈ D, if (∼ P (x)) then (∼ Q(x)).
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Example: CC&I of Universal Conditional StatementsWrite the 
ontrapositive, 
onverse and inverse of the followingstatement: �If a real number is greater than 2,then its square is greater than 4.�
Formal: ∀r ∈ R, if r > 2, then r2 > 4.
Contrapositive: ∀r ∈ R, if r2 ≤ 4, then r ≤ 2.
Converse: ∀r ∈ R, if r2 > 4 then r > 2.

Inverse: ∀r ∈ R, if r ≤ 2 then r2 ≤ 4.
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Example: CC&I of Universal Conditional StatementsWrite the 
ontrapositive, 
onverse and inverse of the followingstatement: �If a real number is greater than 2,then its square is greater than 4.�
Formal: ∀r ∈ R, if r > 2, then r2 > 4.
Contrapositive: ∀r ∈ R, if r2 ≤ 4, then r ≤ 2.
Converse: ∀r ∈ R, if r2 > 4 then r > 2.

Inverse: ∀r ∈ R, if r ≤ 2 then r2 ≤ 4.

Formal ≡ Contrapositive 6≡ Converse ≡ Inverse
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More Extensions to Universal Conditional StatementsFurther, we 
an extend the de�nitions of ne
essary , su�
ient andonly if to apply to universal 
onditional statements:

De�nition: Su�
ient, Ne
essary, Only If �1. �∀x, r(x) is a su�
ient 
ondition for s(x)� means �∀x, if
r(x) then s(x).�2. �∀x, r(x) is a ne
essary 
ondition for s(x)�, means �∀x, if

(∼ r(x)) then (∼ s(x))� or, equivalently, �∀x, if s(x) then

r(x).�3. �∀x, r(x) only if s(x)� means �∀x, if (∼ s(x)), then

(∼ r(x))� or equivalently, �∀x, if r(x) then s(x).�
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Example: Ne
essary and Su�
ient ConditionsRewrite the following statements as quanti�ed 
onditional statementswithout using the words ne
essary or su�
ient:

1. Squareness is a su�
ient 
ondition for re
tangularity.2. Being at least 35 years old is a ne
essary 
ondition for beingPresident of the United States.

1. Let be the set of shapes. if is a square, then is are
tangle. � �If a shape is a square, then it is a re
tangle.�2. Let be the set of human beings. , if is youngerthan 35 years old, then 
annot be the President of the UnitedStates. , if is the Presidentof the United States, then is at least 35 years old.
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Example: Ne
essary and Su�
ient ConditionsRewrite the following statements as quanti�ed 
onditional statementswithout using the words ne
essary or su�
ient:

1. Squareness is a su�
ient 
ondition for re
tangularity.2. Being at least 35 years old is a ne
essary 
ondition for beingPresident of the United States.

1. Let S be the set of shapes. ∀x ∈ S if x is a square, then x is are
tangle. � �If a shape is a square, then it is a re
tangle.�2. Let H be the set of human beings. ∀x ∈ H, if x is youngerthan 35 years old, then x 
annot be the President of the UnitedStates. Using the contrapositive: ∀x ∈ H, if x is the Presidentof the United States, then x is at least 35 years old.
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Example: Only IfRewrite the following as a universal 
onditional statement:
“A product of two numbers is 0 only if one of the numbers is 0.”

Solution: �If neither of the two numbers is 0,then the produ
t of the numbers is not 0.��Let r1 ∈ R, and r2 ∈ R. If r1 6= 0 and r2 6= 0, then r1 · r2 6= 0.�

�If a produ
t of two numbers is 0,then [at least℄ one of the numbers is 0.��Let r1 ∈ R, and r2 ∈ R. If r1 · r2 = 0, then r1 = 0 or r2 = 0.�

Here, we have used the equivalent contrapositive form.
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Homework #2 � Due Friday 9/22/2006 version 2

33rd Edition 2nd EditionProblems2.2: 15, 17, 29, 40 2.1: 28, 23; 2.2: �, 332.1: 12, 14, 22 2.1: 7, 9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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Multiply Quanti�ed StatementsIn the previous se
tion we expanded our �logi
 vo
abulary� to in
ludequanti�ers, e.g. ∀ (for all) and ∃ (there exists).

Next, we are going to 
onstru
t more 
ompli
ated statements usingthese quanti�ers � in parti
ular we look at statement whi
h 
ontainmore than one quanti�er.
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Examples of Multiply Quanti�ed StatementFirst o�, lets translate the following informal statements to formal(symboli
) statements:

1. Everybody loves somebody.2. Somebody loves everybody.

1. Let H be the set of human beings.
∀x ∈ H, ∃y ∈ H, su
h that x loves y.2. Let H be the set of human beings.
∃x ∈ H su
h that ∀y ∈ H, x loves y.
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Examples of Multiply Quanti�ed StatementIn 
al
ulus we de�ne the limit of a sequen
e... �The limit of thesequen
e an as n goes to in�nity equals to L,

lim
n→∞

an = Lif, and only if, the values of an be
ome arbitrarily 
lose to L as

n grows. More pre
isely, this means that for any positive num-ber ǫ, we 
an �nd and integer N su
h that whenever n is largerthan N , then the number an is in the interval between L−ǫ and L+ǫ.�

Symboli
ally:

∀ǫ > 0, ∃N ∈ N, su
h that ∀n,if n > N , then L − ǫ < an < L + ǫ.On
e you know the symbols, this is a very e�e
tive way of 
ommuni-
ating!
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Negations of Multiply Quanti�ed Statements 1 of 2How do we negate a statement like �Everybody loves somebody.�

Let H be the set of human beings.

∀x ∈ H, ∃y ∈ H, su
h that x loves y.The negation of the statement must be false when the statement istrue.
Sin
e the statement talks about a property assumed to be true for allpeople, all we need is the existen
e of a 
ounterexample:

Let H be the set of human beings.
∃x ∈ H su
h that ∼(∃y ∈ H, su
h that x loves y.)

⇔ ∃x ∈ H su
h that (∀y ∈ H, x does not love y.)
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Negations of Multiply Quanti�ed Statements 2 of 2That is

∼ �Everybody loves somebody�is logi
ally equivalent to�There is somebody who does not love anybody.�

The argument we made 
an be generalized:

The negation of

∀x, ∃y su
h that P (x, y)is logi
ally equivalent to
∃x su
h that ∀y, ∼ P (x, y)

In our example, P (x, y) =�x loves y.�
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Negation RulesWe have
The negation of

∀x, ∃y su
h that P (x, y)is logi
ally equivalent to

∃x su
h that ∀y, ∼ P (x, y)

Similarly,
The negation of

∃x su
h that ∀y, P (x, y)is logi
ally equivalent to
∀x, ∃y, su
h that ∼ P (x, y)
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Example: Negating Multiply Quanti�ed StatementsNegate ea
h of the following statements:

1. ∀n ∈ Z, ∃k ∈ Z su
h that n = 2k. � �All integers are even.�2. ∃ a person x su
h that ∀ people y, x loves y. � �Somebodyloves everybody.�

1.1 su
h that ( su
h than ).1.2 su
h that , . � �There is some integerwhi
h is not equal to twi
e any other integer.�

2.1 people , ( people , loves ).2.2 people , person su
h that does not love . � �Nobodyloves everybody.�
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Example: Negating Multiply Quanti�ed StatementsNegate ea
h of the following statements:

1. ∀n ∈ Z, ∃k ∈ Z su
h that n = 2k. � �All integers are even.�2. ∃ a person x su
h that ∀ people y, x loves y. � �Somebodyloves everybody.�

1.1 ∃n ∈ Z su
h that ∼(∃k ∈ Z su
h than n = 2k).1.2 ∃n ∈ Z su
h that ∀k ∈ Z, n 6= 2k. � �There is some integerwhi
h is not equal to twi
e any other integer.�

2.1 people , ( people , loves ).2.2 people , person su
h that does not love . � �Nobodyloves everybody.�
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Example: Negating Multiply Quanti�ed StatementsNegate ea
h of the following statements:

1. ∀n ∈ Z, ∃k ∈ Z su
h that n = 2k. � �All integers are even.�2. ∃ a person x su
h that ∀ people y, x loves y. � �Somebodyloves everybody.�

1.1 ∃n ∈ Z su
h that ∼(∃k ∈ Z su
h than n = 2k).1.2 ∃n ∈ Z su
h that ∀k ∈ Z, n 6= 2k. � �There is some integerwhi
h is not equal to twi
e any other integer.�

2.1 ∀ people x, ∼(∀ people y, x loves y).2.2 ∀ people x, ∃ person y su
h that x does not love y. � �Nobodyloves everybody.�
The Logic of Quantified Statements – p. 40/56



A Qui
k Re
apWe have introdu
ed predi
ates, P (x) � senten
es with a �nitenumber of variables whi
h be
ome statements when spe
i�
 valuesare substituted for the variables.We talked about the truth set of a predi
ate � all the values of thevariable(s) whi
h make the predi
ate true.We added the 
on
epts of universal statements (∀ / �for all�),existential statements (∃ / �there exists�), and 
onditional state-ments (�if ... then ...�) to our vo
abulary.To enable us to express more 
omplex statements, we studied multi-ply quanti�ed statements.Things we do to all our statements: �nding truth values, writing the
ontrapositive, the 
onverse, the inverse, and negating the statement.
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Universal InstantiationThe Rule of Universal Instantiation:

If some property is true of everything in the domain, then

it is true of any particular thing in the domain.

Example:

All students want to graduate

Jane is a student

∴ Jane wants to graduate

Universal instantiation is the fundamental tool of dedu
tive reasoning:it is used mathemati
al formulas, de�nitions, and theorems as well asin all kinds of everyday, legal, et
., arguments.
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Universal Modus Ponens 1 of 2Re
all Modus Ponens (�The method of a�rming�):
∴If p, then q.

∴p.

∴ qIf we 
ombine the rule of universal instantiation with modus ponens,we get universal modus ponens:
Universal Modus Ponens

Formal version Informal version

∀x, If P (x), then Q(x) If x makes P (x) true, then x makes Q(x) true

P (a) for a particular a a makes P (x) true

∴ Q(a) ∴ a makes Q(x) true
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Universal Modus Ponens 2 of 2
Universal Modus Ponens

Formal version Informal version

∀x, If P (x), then Q(x) If x makes P (x) true, then x makes Q(x) true

P (a) for a particular a a makes P (x) true

∴ Q(a) ∴ a makes Q(x) trueUniversal Modus Ponens 
onsists of two premises:
∀x, If P (x), then Q(x) premise-1

P (a) for a parti
ular a premise-2one of whi
h (1) is quanti�ed. An argument of this form is 
alled asyllogism (rule of inferen
e).The �rst and se
ond premise are 
alled themajor andminor premises,respe
tively.
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Universal Modus Ponens in A
tion 1 of 2Part of the reason we are building our �logi
 toolbox� is that we aregearing up to dis
ussing methods of proving quanti�ed statements �one of the most important a
tivities in mathemati
al resear
h.For illustration, let us break the proof that �the sum of two evenintegers is even� into its smallest parts, and show how universalmodus ponens guides us...Suppose m and n are parti
ular, but arbitrarily 
hosen even in-tegers. Then m = 2r for some integer r (ump-1), and n = 2sfor some integer s (ump-2). Hen
e
m + n = 2r + 2s by substitution

= 2(r + s) by fa
toring out the 2 (ump-3)Now, (r+s) is an integer (ump-4), and so is 2(r+s) (ump-5).Thus (m + n) is even.
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Universal Modus Ponens in A
tion 2 of 2ump-1 If an integer is even, then it equals twi
e some integer.
m is a parti
ular even integer.

∴ m equals twi
e some integer r.ump-2 If an integer is even, then it equals twi
e some integer.
n is a parti
ular even integer.

∴ n equals twi
e some integer s.ump-3 If a quantity is an integer, then it is a real number.

r and s are integers.
∴ r and s are real numbers, and 2r + 2s = 2(r + s).ump-4 For all m and n, if m and n are integers,then (m + n) is an integer.

m = r and n = s are two parti
ular integers.

∴ (r + s) is an integer.ump-5 If a number equals twi
e some integer,then that number is even.

2(r + s) equals twi
e the integer (r + s).

∴ 2(r + s) is even.
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Universal Modus Tollens 1 of 2Re
all Modus Tollens (�The method of denying�):
∴If p, then q.

∴∼q.

∴ ∼pIf we 
ombine the rule of universal instantiation with modus tollens,we get universal modus tollens:
Universal Modus Tollens

Formal version Informal version

∀x, If P (x), then Q(x) If x makes P (x) true, then x makes Q(x) true

∼ Q(a) for a particular a a does not make Q(x) true

∴ ∼ P (a) ∴ a does not make P (x) true
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Universal Modus Tollens 2 of 2
Universal Modus Tollens

Formal version Informal version

∀x, If P (x), then Q(x) If x makes P (x) true, then x makes Q(x) true

∼ Q(a) for a particular a a does not make Q(x) true

∴ ∼ P (a) ∴ a does not make P (x) true

Universal modus tollens is the key to mathemati
al proofs of 
ontra-di
tion � one of the most important mathemati
al arguments.

Example All human beings are mortalZeus is not mortal

∴ Zeus is not human.
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Proving Validity of Arguments with Quanti�ed Statements

De�nition:To say that and argument form is valid means the following: Nomatter what parti
ular predi
ates are substituted for the predi
atesymbols in its premises, if the resulting premise statements are alltrue, then the 
on
lusion is also true.An argument is 
alled valid if, and only if, its form is valid.

Note: If you think this looks familiar... it is a straight-forwardgeneralization of the validity for statements with 
ompoundstatements.
Note: We have to use the laws of logi
 to prove that the laws oflogi
 are valid!
Note: Proving that a general quanti�ed statement form is valid isbeyond the s
ope of this 
lass.
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Finally, Something Less Abstra
t � �Proof by Diagram�Consider the following statement:

Informal All integers are rational number
Formal ∀ integers n, n is a rational number.

Pi
ture the sets of rational numbers andintegers as disks. The truth of the state-ment means that the integer disk mustbe 
ontained inside the disk of rationalnumbers.

Rational Numbers

Integers
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Finally, Something Less Abstra
t � �Proof by Diagram�

Consider the following state-ments:s1. n is an integer.s2. r is a rational.s3. z is not a rational.

Rational Numbers

Integers

n

r

zFrom the diagram we see thats1. ⇒ n is a rational.s2. 6⇒ r is an integer. � There are rationals that are not integers.s3. ⇒ z is not an integer.
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Showing the Validity of an Argument using a Diagram
Rational Numbers

Integers

Rational Numbers

z

Rational Numbers

Integers

z

Major premise Minor premise Conclusion

All integers are rational numbers Major premise

z is not a rational number Minor premise

∴ z is not an integer Conclusion

Example of a valid argument
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Showing the Invalidity of an Argument using a Diagram
Rational Numbers

Integers

Rational Numbers

r

Rational Numbers

Integers

r

Major premise Minor premise Conclusion

All integers are rational numbers Major premise

r is a rational number Minor premise

∴ r is an integer Conclusion

Example of an invalid argument — Converse Error
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Showing the Invalidity of an Argument using a Diagram
Rational Numbers

Integers Integers

r

Rational Numbers

Integers

r

Major premise Minor premise Conclusion

All integers are rational numbers Major premise

r is not an integer Minor premise

∴ r is not a rational number Conclusion

Example of an invalid argument — Inverse Error
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Comments � Food for ThoughtThe reason inverse and 
onverse errors are 
ommon is that the 
on-
lusions would be true if the major premise was a bi-
onditional (�if,and only if� / ⇔ / ↔).

Call it �fuzzy logi
,� �arti�
ial intelligen
e,� or �abdu
tion� � if youhave a major premise:
�for all x, if P (x) then Q(x)�then if,

Q(a) is true, for a parti
ular a.then is it a good idea to 
he
k if P (a) is true! � This kind ofreasoning is used by 
riminal investigators, do
tors, auto me
hani
s,et
, et
... �Q(a) = true� is not eviden
e (of �P (a) = true�), butpossibly a 
lue.
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Homework #2 � Due Friday 9/22/2006 Final Version3rd Edition 2nd EditionProblems2.4: 19, 20, 25, 31 2.3: 19, 20, 24, 272.3: 37 2.2: 152.2: 15, 17, 29, 40 2.1: 28, 23; 2.2: �, 332.1: 12, 14, 22 2.1: 7, 9, 16

Please use the 3rd Edition numbering when handing in your solutions.
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