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IntrodutionWe have spent quite some time and e�ort building up our toolbox oflogi reasoning.We are now ready to apply that toolbox to something � the prop-erties of integers, rational, and real numbers.We are going to try to establish the truth or falsity of mathematialstatements.Let the �oor of x, denoted ⌊x⌋, be the integer part of x, e.g. ⌊π⌋ = 3.Consider the two statements:1. ∀x ∈ R ⌊x − 1⌋ = ⌊x⌋ − 1.2. ∀x ∈ R, ∀y ∈ R ⌊x − y⌋ = ⌊x⌋ − ⌊y⌋.It turns out statement 1. is true, and 2. is false... We are going tolook at methods for proving this.
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Basi Building Bloks � De�nitionsMathematiians de�ne terms very arefully and preisely, most of thetime every word and symbol in a de�nition is there for a reason.We are going to start from a few de�nitions, and use our logi toolboxto evaluate the truth or falsity of mathematial statements.

De�nition: Even and Odd Integers �An integer n is even if, and only if, n = 2k for some integer k.An integer n is odd if, and only if, n = 2k + 1 for some integer k.Symbolially, if n ∈ Z, then
n is even ⇔ ∃k ∈ Z suh that n = 2k

n is odd ⇔ ∃k ∈ Z suh that n = 2k + 1.
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DedutionsNow,If we know... Then we an dedue...a partiular integer n is even n has the form 2ka partiular integer n is odd n has the form 2k + 1a partiular integer n has the form 2k n is evena partiular integer n has the form 2k + 1 n is oddWe an now answer the following questions:Is 0 even? Yes, 0 = 2 · 0Is −301 odd? Yes, −301 = 2 · [−151] + 1If a ∈ Z and b ∈ Z, is 6a2b even? Yes, 6a2b = 2 · 3a2bIf a ∈ Z and b ∈ Z, is 10a + 8b + 1 odd? Yes, 10a + 8b + 1 = 2(5a + 4b) + 1Here, we have also use the fat that sums and produts of integersare integers.
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Prime Numbers

De�nition: Prime / Composite Integers �An integer n is prime if, and only if, n > 1 and for all positiveintegers r and s, if n = r · s, then r = 1 or s = 1. An integer nis omposite if, and only if n = r · s for some positive integers rand s with r 6= 1 and s 6= 1.Symbolially, if n ∈ N \ {1}, then
n is prime ⇔ ∀r, s ∈ N if n = r · s, then r = 1 or s = 1

n is omposite ⇔ ∃r, s ∈ N suh that n = r · sand r 6= 1 and s 6= 1

Notie that the de�nitions of prime and omposite are negations ofeah other... Hene every integer (greater than 1) is either a prime ora omposite.
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Writing Proofs: Existential StatementsThere are two ways of proving the statement

∃x ∈ D suh that Q(x)�There is an SDSU student interested in Mathematis�1. Find an x ∈ D suh that Q(x) is true. (Find an SDSU studentinterested in Mathematis).2. Give a set of diretions for �nding suh an x ∈ D. Important:� The diretions must guarantee that we �nd x ∈ D.

Both these methods are alled onstrutive proofs of existene. �They tell us something exists, and tell us how to �nd it.
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Non-onstrutive Proofs of ExisteneIt is also possible to prove the existene of an x ∈ D suh that Q(x)is true by: �1. Showing that the existene of a value of x that makes Q(x) trueis guaranteed by an axiom or a previously proved theorem.2. Showing that the assumption that there is no suh x leads to aontradition.These proofs give us no information about how to �nd suh a value,hene they are alled non-onstrutive.

Clearly, if you are looking for a value making Q(x) true, a non-onstrutive proof is a disadvantage. Suh a proof is still useful, sineit tells us there is indeed something to look for.
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Proving Universal Statements Method of ExhaustionThe vast majority of mathematial statements to be proved are uni-versal, basially on the form

∀x ∈ D, if P (x) then Q(x)The method of exhaustion an be used in two situations:1. When D ontains a �nite number of elements2. When there are only a �nite number of elements in the truth setof P (x)The method of exhaustion will make you exhausted quikly: you haveto plug in every possible value of x ∈ D (or from the truth set of

P (x)) and then hek P (x) → Q(x).This is sometimes alled a brute fore method and quikly beomesinfeasible!
Elementary Number Theory and Methods of Proof: Direct Proof and Counterexample – p. 8/53



Proving Universal Statements A Tool for a Better MethodClearly, we would like a method of proving universal statements whihworks regardless of the size of the domain over whih the statementis quanti�ed.
The underlying idea of the method of generalizing from thegeneri partiular:

To show that every element of a domain satis�es a ertain prop-erty, suppose x is a partiular but arbitrarily hosen elementof the domain and show that x satis�es the property.

We will use this tool in the Method of Diret Proof...
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The Method of Diret Proof

Method of Direct Proof1. Express the statement to be proved in the form �∀x ∈ D, if
P (x) then Q(x).�2. Start the proof by supposing x is a partiular but arbitrarilyhosen element of D for whih the hypothesis P (x) is true.[Abbreviated: �suppose x ∈ D and P (x).�℄3. Show that the onlusion Q(x) is true by using de�nitions,previously established results, and the rules for logial infer-ene.

Note: The point of seleting x arbitrarily is that everything youdedue about a generi element in D will be true for everyother element in D.
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Let's Try It...Theorem: �If the sum of two integers is even, so is their di�erene.�

Restatement: ∀m,n ∈ Z, if (m + n) is even, then (m − n) is even.

1. (m + n) = 2k, for some k ∈ Z. solve for m...2. m = 2k − n. substitute into (m − n)...3. (m − n) = (2k − n) − n = 2k − 2n = 2(k − n).We're done! (Sort of... Let's lean it up and make it more readable.)
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Our First Theorem with Proof

Theorem: If the sum of any two integers is even, then so is theirdi�erene.
Proof: Suppose m and n are integers so that m +n is even. Byde�nition of even m + n = 2k for some integer k. Subtrating nfrom both side gives m = 2k − n, then

m − n = (2k − n) − n by substitution= 2k − 2n by combining terms / basic algebra= 2(k − n) by factoring out a 2 / basic algebraBut k−n is an integer beause it is the di�erene between integers,Hene m − n equals 2 times an integer, and so by the de�nitionof even, m − n is even. �
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How to Write a Proof1. Write the theorem to be proved.2. Clearly mark the beginning of the proof with the word proof .3. Make your proof self-ontained:� In the body (text) of the proof, identify eah variableused in the proof. The reader should not have to guess, orassume anything.4. Write proofs in omplete (English) sentenes.This does not mean that you should avoid using symbols andshorthand abbreviations, just that you should inorporate theninto sentenes.Your proofs: It's better you are too detailed, but don't be ridiulous!
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Common Mistakes 1 of 21. Arguing from ExamplesExamples help understanding, but speial ases do not provegeneral statements. � Think of the statement �All odd numberintegers greater than 1 are prime� and the examples 3, 5, 7...2. Using the same letter to mean two thingsFor instane, if m and n are two even integers, don't say m = 2rand n = 2r... Disaster! You're saying m = n!!! (Use, e.g.

m = 2r and n = 2s.)3. Jumping to a ConlusionTo state that something is true without giving adequate reason.�uz I say so!!!� is not su�ient logial argument!
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Common Mistakes 2 of 24. Begging the QuestionTo assume what it to be proved. � Usually in a logiallyequivalent form that looks di�erent...5. Misuse of the Word �if�Using the word �if� instead of �sine� or �beause�. Consider�Suppose p is a prime. If p is prime, then p annot be writtenas a produt of two smaller numbers.�and�Suppose p is a prime. Sine p is prime, p annot be writtenas a produt of two smaller numbers.�In the �rst formulation, the primeness of p seems to be in doubtin the seond sentene... Suh impreise use of language anasade through the proof and generate problems later.
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Comi Relief � The Odd Prime Number TheoryAn engineer, a mathematiian, and a physiist are testing the theorythat all odd numbers are prime: �Physiist: �1 is prime, 3 is prime, 5 is prime, 7 is prime, 9 � mustbe experimental error, 11 is prime, 13 is prime. That's enough datapoints; the theory is true.�Mathematiian: �By onvention, 1 is not prime, but 3 is a prime, 5is a prime, 7 is a prime, 9 is not a prime � ounterexample � laimis false.�Engineer: �1 is prime, 3 is prime, 5 is prime, 7 is prime, 9 is prime, 11is prime, 13 is prime, 15 is prime, 17 is prime, 19 is prime... Hmmm,theory appears to be true.�Seond Engineer , who slept through some early math lasses: �Whatdo you mean, `1 is not prime?' �
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Disproof By CounterexampleDisproving a statement of the form

∀x ∈ D, if P (x) then Q(x)

amounts to proving that the negation of the statement is true
∃x ∈ D suh that P (x) and ∼ Q(x)

Disproof by CounterexampleTo disprove a statement of the form �∀x ∈ D, if P (x) then Q(x)��nd a value of x in D for whih P (x) is true and Q(x) is false.Suh an x is alled a ounterexample.
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Examples: Disproofs

Bogus Theorem #1: �All odd integers greater than 1 are prime.�

Disproof: Sine 9 = 2 · 4 + 1 it is odd. Further, 9 = 3 · 3 whihshows that 9 is a omposite number, hene not a prime.

Bogus Theorem #2: ∀a ∈ R, b ∈ R, if a2 = b2, then a = b.

Disproof: Let a = 1, and b = −1, a2 = b2 = 1, but a 6= b.
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Famous Proofs and DisproofsFermat's Last Theorem: If n is an integer greater than 2, thenthe equation xn + yn = zn has no solutions where x, y, and z arepositive integers. (Pierre de Fermat lived 1601�1665)

Euler's Conjeture: a4 + b4 + c4 = d4 has no integer solutions.(Leonhard Euler lived 1707�1783)

Fermat's Last Theorem was �nally proved by Andrew Wiles inSeptember 1994.

Euler's Conjeture was disproved by Noam Elkie (Harvard Uni-versity) in 1986. One ounterexample is 95, 8004 + 217, 5194 +

414, 5604 = 422, 4814 � found by Roger Frye of Thinking MahinesCorporation.
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Homework #4 � Due 10/6/2006, 12noon, GMCS-587 version 1

33rd Edition 2nd EditionProblems3.1: 27, 31, 37, 49 3.1: 12, �, 24, 35

Please use the 3rd Edition numbering when handing in your solutions.
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Divisibility and Number Theory � Introdution
Epp-§3.2: skip.

Divisibility of the entral onept of number theory � the study ofproperties of integers.

Important appliations of number theory inlude keeping your reditard number safe when you hit �buy now� in your web browser.

We look at some more statements about integers, and prove a few ofthem...
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Divisibility of an Integer

De�nition: Divisibility �If n and d are integers and d 6= 0, then

n is divisible by d if, and only if, n = d · k for some integer kAlternatively, we say that

n is a multiple of d, or
d is a fator of n, or
d is a divisor of n, or
d divides n.The notation d|n is read �d divides n.� Symbolially if n and dare integers and d 6= 0,

d|n ⇔ ∃k ∈ Z : n = d · k
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Divisibility: Examples

Example #1: Suppose a and b are positive integers, and a|b. Is
a ≤ b?Solution: a|b means that b = k · a for some positive integer k(sine both a and b are positive). Therefore k ≥ 1. Thisshows that b = k · a ≥ a (by multiplying both sides ofthe inequality by the positive integer a). Hene we anonlude that a ≤ b.
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Divisibility: ExamplesExample #2:a. If a and b are integers, is 3a + 3b divisible by 3?b. If k and m are integers, is 10km divisible by 5?Solution:a. By basi algebra (the distributive law) we an write

3a + 3b = 3(a + b), and sine a + b is an integer (beinga sum of integers), we have shown that 3|(3a + 3b).b. By basi algebra (the assoiative law) we an write

10km = 5 · 2km, where 2km is an integer (being a prod-ut of integers). We have shown 5|10km.
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Divisibility � Primeness, and TransitivityWe an use the onept of divisibility to de�ne primeness:

De�nition: Prime Integer (Alternative) �A positive integer n > 1 is prime, if and only if, its only divisorsare 1 and n.
Divisibility is transitive: If one number a divides a seond number b(a|b) and the seond number divides a third number c (b|c), then the�rst number divides the third (a|c).

This is an important fat, lets prove it!
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Proof: Divisibility is a Transitive Property

Theorem:For all integers a, b and c, if a|b and b|c, then a|c.

Proof: Suppose a, b and c are partiular but arbitrarily hosenintegers suh that a|b and b|c. By the de�nition of divisibility weknow that

a|b ⇔ b = a · r, for some integer r, and
b|c ⇔ c = b · t, for some integer t.Combining these two, we have

c = b · t = a · r · t, for some integers r and t.Hene, we an write
c = a · (r · t), where r · t is an integer,whih shows that a|c. �
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Does a|b and b|a imply a = b?Question: Is it true that for all integers a and b, if a|b and b|a then
a = b?Solution: Suppose a and b are integers suh that a|b and b|a, thenwe must have

b = a · r, r ∈ Z, a = b · s, s ∈ Z.By substitution

b = a · r = b · (s · r)whih is true if and only if (s · r) = 1, i.e. both r and s are divisorsof 1.The only divisors of 1 are 1 and −1. r = s = −1 gives us in�nitelymany ounterexamples (a = −b), thus we onlude

a|b and b|a 6⇒ a = b.
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The Unique Fatorization Theorem

Theorem: The Unique Fatorization Theorem �Given any integer n > 1, there exists a positive integer k, distintprime numbers p1, p2, . . ., pk, and positive integers e1, e2, . . .,
ek, suh that

n = pe1

1
· pe2

2
· · · p

ek

kand any other expression of n as a produt of prime numbers isidential to this (exept, possibly, for the order in whih the fatorsare written).
The proof is beyond the sope of this lass, but the theorem is impor-tant enough that you should know it!If you write the fators suh that p1 < p2 < · · · < pk, then the formis alled the standard fatored form.
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Using the Unique Fatorization TheoremQuestion: Suppose m is an integer suh that

8 · 7 · 6 · 5 · 4 · 3 · 2 ·m = 17 · 16 · 15 · 14 · 13 · 12 · 11 · 10Does 17|m?Solution: 17 is a prime number. Sine it is a fator on the rightside of the equation, it must also be a fator on the leftside of the equation, by the Unique Fatorization Theorem(UFT). But 17 annot fator any of the numbers 8, 7, 6,5, 4, 3, 2 � sine it is too large. Hene it must fator

m, so 17|m.
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The Quotient-Remainder Theorem

Theorem: Quotient-Remainder �Given any integer n and a positive integer d, there exist uniqueintegers q (the quotient) and r (the remainder) suh that
n = d · q + r, and 0 ≤ r < d.

Example: Say you have 10 ookies (n = 10), and you want to dis-tribute as many of them as possible among 3 hildren (d = 3) (so thateah hild reeives the same number of ookies, of ourse!)... Afteryou have distributed 3 sets (q = 3) of 3 ookies, you have one (r = 1)remaining... By the quotient-remainder theorem you got it right �there is only one (unique) way of solving the problem.We are going to need more tools before we an prove this theorem(we'll get to it in a ouple of weeks), for now we take it as given.
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Notation: div and mod

De�nition:Given a non-negative integer n and a positive integer d, we de�nen div d = q the integer quotientobtained when n is divided by dn mod d = r the integer remainderobtained when n is divided by dThe quotient-remainder theorem tells us that
n mod d ∈ {0, 1, . . . , d − 1}and

n mod d = 0 ⇔ d|n
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Using div and modExample: February 17, 2005 was a Thursday. What day was it oneyear earlier?Solution: 366 days passed sine February 17 2004, and eah weekhas seven days. Sine

366 div 7 = 52, and 366 mod 7 = 2it follows that exatly 52 weeks and 2 days passed betweenthe two dates. Thus 2/17/2004 was a Tuesday.
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The Parity of an IntegerThe parity property is the fat that an integer is either even or odd(but not both).
We use the quotient-remainder theorem, and and our new operation

mod to lassify the integers:
For an integer nIf n mod 2 = 0 then n is evenIf n mod 2 = 1 then n is odd
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Proof by Dividing into Cases

Theorem: Any two onseutive integers have opposite parity.Proof: Let∗ m and m + 1 be two onseutive integers. By the parityproperty, m is even, or m is odd.ase 1: (m is even) In this ase, m = 2k for some k ∈ Z, and so

m +1 = 2k +1, whih is odd by the de�nitionof odd. In this ase, m is even and m+1 is odd.ase 2: (m is odd) In this ase, m = 2k + 1 for some k ∈ Z, andso m + 1 = 2k + 2 = 2(k + 1), whih is evenby the de�nition of even. In this ase, m is oddand m + 1 is even.It follows that regardless of whih ase ours for the partiular hoieof m and m+1, one of them is even and the other one is odd. Henewe have proved the theorem. �
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Homework #4 � Due 10/6/2006, 12noon, GMCS-587 version 2

33rd Edition 2nd EditionProblems3.1: 27, 31, 37, 49 3.1: 12, �, 24, 353.3: 17, 25, 26, 36a, 36b 3.3: 16, 24, 25, 35, �

Please use the 3rd Edition numbering when handing in your solutions.
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Cheking the Road MapWhere are we? Are we lost?In hapters 1 and 2 we talked about logi in its purest form; learningabout logi operator and onnetives; truth tables; ompound state-ments; onditional statements; quanti�ed statements; prediates. �Things were pretty good (some of y'all fell asleep sine things werequite ozy and familiar).Now, in hapter 3 we are talking about di�erent methods of proof;where we must use our logi toolbox from hapters 1 and 2 to provethat ertain mathematial statements are true.We are working in the ontext of number theory � the study ofthe properties of integers.We are introduing both proof-methodologies and number theory atthe same time, maybe a soure of onfusion?!?
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Review: Proof Tehniques � The Method of Diret Proof
Method of Direct Proof1. Express the statement to be proved in the form �∀x ∈ D, if

P (x) then Q(x)�2. Start the proof by supposing x is a partiular but arbitrarilyhosen element of D for whih the hypothesis P (x) is true.[Abbreviated: �suppose x ∈ D and P (x).�℄3. Show that the onlusion Q(x) is true by using de�nitions,previously established results, and the rules for logial infer-ene.
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Review: Proof Tehniques � Disproof by Counterexample
Disproof by CounterexampleTo disprove a statement of the form �∀x ∈ D, if P (x) then Q(x)��nd a value of x in D for whih P (x) is true and Q(x) is false.Suh an x is alled a ounterexample.

Example: Disproof of �a4 + b4 + c4 = d4 does not have any positiveinteger solutions.�
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Review: Proof Tehniques � Division into Cases
Proof by Division into CasesConjetures an often be simpli�ed by dividing a proof into ases.When a onjeture is true in all ases, it is a theorem. If a on-jeture is a theorem, a proof by ases may simplify the argument,sine eah ase is a simpler form of the onjeture.Also, if a onjeture is not a theorem, an attempted proof byases may simplify the onjeture and make it easier to understandwhy the proof is not sueeding.

Example: The suessful proof of �Any two integers onseutivehave opposite parity.�
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Review: Number Theory � Divisibility

De�nition: Divisibility �If n and d are integers and d 6= 0, then

n is divisible by d if, and only if, n = d · k for some integer kAlternatively, we say that

n is a multiple of d, or
d is a fator of n, or
d is a divisor of n, or
d divides n.The notation d|n is read �d divides n.� Symbolially if n and dare integers and d 6= 0,

d|n ⇔ ∃k ∈ Z : n = d · k
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Review: Number Theory � Primeness, Two De�nitions

De�nition: Prime / Composite Integers �An integer n is prime if, and only if, n > 1 and for all positiveintegers r and s, if n = r · s, then r = 1 or s = 1. An integer nis omposite if, and only if n = r · s for some positive integers rand s with r 6= 1 and s 6= 1.Symbolially, if n ∈ N \ {1}, then
n is prime ⇔ ∀r, s ∈ N if n = r · s, then r = 1 or s = 1

n is omposite ⇔ ∃r, s ∈ N suh that n = r · sand r 6= 1 and s 6= 1

De�nition: Prime (Alternative) �A positive integer n > 1 is prime, if and only if, its only divisorsare 1 and n.
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Review: Number Theory � Integer Division and Modulus

De�nition: Integer Division and Modulus �Given a non-negative integer n and a positive integer d, we de�nen div d = q the integer quotientobtained when n is divided by dn mod d = r the integer remainderobtained when n is divided by d
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Review: Number Theory � Unique Fatorization Theorem

Theorem: The Unique Fatorization Theorem �Given any integer n > 1, there exists a positive integer k, distintprime numbers p1, p2, . . ., pk, and positive integers e1, e2, . . .,
ek, suh that

n = pe1

1
· pe2

2
· · · p

ek

kand any other expression of n as a produt of prime numbers isidential to this (exept, possibly, for the order in whih the fatorsare written).
The proof is beyond the sope of this lass, but the theorem is impor-tant enough that you should know it! � Know the statement, andhow to use it.If you write the fators suh that p1 < p2 < · · · < pk, then the formis alled the standard fatored form.
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Review: Number Theory � Quotient-Remainder Theorem

Theorem: Quotient-Remainder �Given any integer n and a positive integer d, there exist uniqueintegers q (the quotient) and r (the remainder) suh that
n = d · q + r, and 0 ≤ r < d.

Those are our theoretial �toys� so far...

Now, lets move forward...
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Exerise: Representation of Integers Modulo 4Conjeture: All integers an be written in one of the forms
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.

Solution: Let∗ n be an integer. We apply the quotient-remaindertheorem with d = 4, this implies there exists a unique pairof quotient-remainder pair q and r suh that
n = 4 · q + r, where r ∈ {0, 1, 2, 3}.This shows that the onjeture is true.This (seemingly simple) result will be useful in a few slides...
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The Mathematial �Let�The statement �Let n be an integer� means: �Suppose n is apartiular but arbitrarily hosen integer.�

That is, we randomly selet an integer from Z.

The statement may look asual , but it means something veryspei� in the language of mathematis.

You will see similar statements all over the math-literature:

• �Let p be a prime suh that p = 2n − 1, for some n ∈ Z.�

• �Let r and s be two real numbers suh that....�
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Exerise: The form of the Square of an Odd Integer 1 of 2Conjeture: The square of any odd integer has the form 8m + 1for some integer m.Solution: Let n be an odd integer. By the quotient-remainder theo-rem, n an be written in one of the forms (see previous exerise):
n = 4q or n = 4q + 1 or n = 4q + 2 or n = 4q + 3.Now, sine n is odd, this redues the possibilities to the forms

n = 4q + 1 or n = 4q + 3.ase-1: We have that n = 4q + 1 for some integer q, therefore

n2 = (4q + 1)2 = 16q2 + 8q + 1 = 8 (2q2 + q)
︸ ︷︷ ︸

integer

+1

Identifying m = 2q2 + q shows that n2 = 8m+1 for some integer m.[end ase-1℄.
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Exerise: The form of the Square of an Odd Integer 2 of 2ase-2: We have that n = 4q + 3 for some integer q, therefore
n2 = (4q + 3)2 = 16q2 + 24q + 9 = 8 (2q2 + 3q + 1)

︸ ︷︷ ︸

integer

+1

Identifying m = 2q2 + 3q + 1 shows that n2 = 8m + 1 for someinteger m. [end ase-2℄.

ase-1 and ase-2 shows that given any odd integer n, whether ofthe form 4q + 1 or 4q + 3, its square an be written on the form

n2 = 8m + 1 for some integer m. �
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Exerise: Making ChangeThe following algorithms gives makes hange: it determines howmany quarters (25) q, dimes (10) d, nikels (5), and pennies (1)
p equals c (the total amount of hange).

Given c c = 99 c = 69 c = 83

q = c div 25 3 2 3
c2 = c mod 25 24 19 8
d = c2 div 10 2 1 0

c3 = c2 mod 10 4 9 8

n = c3 div 5 0 1 1

p = c3 mod 5 4 4 3
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Exerise: (n mod 3) ∈ {0, 1, 2}Conjeture: Any integer n an be written in one of the three forms:
n = 3q or n = 3q + 1 or n = 3q + 2.

Solution: Let n be an integer. By the quotient-remainder theoremwith d = 3 there exist unique integers q and r suh that

n = 3 · q + r, where 0 ≤ r < dThis shows that n an be written in one of the formsabove. �.We are now going to use this result to show something a little moreompliated...
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Exerise: The Produt of Three Conseutive Integers 1 of 2Conjeture: The produt of three onseutive integers is divisibleby 3.Solution: Let n, n + 1 and n + 2 be three onseutive integers.By the quotient-remainder theorem (see previous exerise), n an bewritten in one of the forms

n = 3q or n = 3q + 1 or n = 3q + 2

ase-1: n = 3q for some integer q, in this ase the produt

n(n + 1)(n + 2) = 3q(3q + 1)(3q + 2) = 3 · (q(3q + 1)(3q + 2))
︸ ︷︷ ︸

integerwhih shows that 3|n(n + 1)(n + 2).
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Exerise: The Produt of Three Conseutive Integers 2 of 2ase-2: n = 3q + 1 for some integer q, in this ase the produt
n(n+1)(n+2) = (3q+1)(3q+2)(3q+3) = 3·((3q + 1)(3q + 2)(q + 1))

︸ ︷︷ ︸

integerwhih shows that 3|n(n + 1)(n + 2).

ase-3: n = 3q + 2 for some integer q, in this ase the produt

n(n+1)(n+2) = (3q+2)(3q+3)(3q+4) = 3·((3q + 2)(q + 1)(3q + 4))
︸ ︷︷ ︸

integerwhih shows that 3|n(n + 1)(n + 2).

In all three ases we have 3|n(n+1)(n+2), thus we have shown thatthe produt of any three onseutive integers is divisible by 3. �
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Homework #4 � Due 10/6/2006, 12noon, GMCS-587 Final Version3rd Edition 2nd EditionProblems3.1: 27, 31, 37, 49 3.1: 12, �, 24, 353.3: 17, 25, 26, 36a, 36b 3.3: 16, 24, 25, 35, �3.4: 7, 8, 9, 10, 24, 29, 43 3.4: 7, �, �, �, 18, �, 30

Please use the 3rd Edition numbering when handing in your solutions.Writing your name on, and stapling your homework is highly re-ommended.
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