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The floor and ceiling of a Real Number

X
- -
floor(x) ceil(x)

Imagine a real number x € R sitting on the number line...

The floor of z is the integer n € Z which is to the left of  (i.e. the

largest integer, which is smaller than or equal to z).

The ceiling of x is the integer @ € Z which is to the right of = (i.e.
the smallest integer, which is larger than or equal to ).

We have,

IN

n<zx<n

where equality holds if and only if x is an integer:

n=x=n, & x€E€LZ
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Floor — Formal Definition and Notation

n n+1

e | I

floor(x)

—

Definition: The floor of x —
Given any real number z, the floor of z, denoted | x |, is defined

as follows:
| z | = the unique integer n such that n <z <n+ 1.
Symbolically, if z is a real number and n is an integer, then

lz]=n & n<z<n+l
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Ceiling — Formal Definition and Notation

n-1 n

Definition: The ceiling of x —
Given any real number z, the ceiling of x, denoted [ z ], is defined

as follows:
[ ] = the unique integer n such that n — 1 < z < n.
Symbolically, if z is a real number and n is an integer, then

[z]=n & n—-1<z<n

Floor and Ceiling & Proofs by Contradiction and Contraposition — p. 4/33




Examples

#1 — Loading students into Buses: 1370 students are going to the
zoo. Due to budget constraints the principal will only allow full
buses to leave. Each bus holds at most 40 students. How many

buses can leave?

Solution: | 1370/40 | = | 34.25 | = 34.
Comment:  This example may seem a little silly — since we are dealing

with integer quantities we could have used 1370 div 40 =
34.
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Examples

#2 — Tax Refund: Due to a sudden miracle, the state controller has
found a surplus of $4,168,325,218.32 in the budget. This money
is to be distributed among 24,123,451 taxpayers. However, each
check must be in whole dollars only (no pennies). How large
will the tax refund be?

Solution:
L4, 168, 325, 218.32/24, 123, 451J = L172.791414392576J = $172.
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Examples

#3 — Hot Dogs on the Grill: You are expecting 12 friends to come
over for a BBQ. An average person eats 3.2 hot-dogs. Hot-dogs
are packaged 12/pack and buns 10/pack. How many packs of
hot-dogs and buns do you have to buy?

Solution:
Hot-dogs:

[13-3.2/12] = [3.4667] =4
Buns:

[13-3.2/10] = [4.1600] =5

Why 13777 — You're eating too, right?!?
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Examples

#4 — Disproving an alleged property of the floor function.

Statement: For all real numbers z and y, |z +y | =z ]+ |y ]

Disproof by Counter-example:

Consider the case z =y = % Then

o)+ Ly = H+H —040=0

But

|
+
N =
|
I
—
—
| I
I
—_

Lw+yJ={;
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A Theorem...

Theorem:
VeeRandmeZ, |[z+m]|=|z|+m.

Proof: Let* z be real number and m be an integer. Let n = |z |.
By the definition of floor, n is an integer and n <z <n+1. Add m
to all three entries in the inequality to get

(n+m)<(z+m)<(n+m)+1
Since n 4+ m is an integer, by the definition of floor
lz+m]=n+m
Now we recall that n = | x |, and by substitution we have

lz4+m]=|z]+m. O
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Theorem: The Floor of n/2 1 of 2

Theorem: For any integer n

n .
— if n is even

J_ 2
n n—1

if n is odd

Proof: Let n be an integer. By the quotient-remainder theorem, n is

odd or n is even.

case 1: When n is odd, then n = 2k + 1 for some integer k. By
substitution,

LEJ_ 2k+11] %_'_1 _ k:—f—l e
20 | 2 | L2 2] 2]
because k is an integer and k < k+1/2 < k+ 1. Now since

n = 2k +1 it follows that & = "T_l and we have shown that
L@J = =1 when n is odd.

2 2
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Theorem: The Floor of n/2 2 of 2

case 2: When n is even, then n = 2k for some integer k. By substi-

HREIRES

because k is an integer and £k < k < k + 1. Now since

tution,

n = 2k it follows that k£ = 5 and we have shown that

L%J = 5 when n is even.

Together, case 1 (n odd) and case 2 (n even) shows that the statement
is true. [
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Theorem: Floor and the Quotient-Remainder Theorem

Theorem:
If n is a non-negative integer and d is a positive integer, and if

g=|n/d] andr=n—d-|n/d], then

n=d-qg+r, and 0<r<d.

Proof: Let n be a non-negative integer, d a positive integer, ¢ =
|n/d],and r=n—d-|n/d]. By substitution

dg+r=d- {%J +(n—d- {%J) —n.

So it remains to show that 0 < r < d. But ¢ = | n/d |. Thus by the
definition of floor,

< =<qg+1

als
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Proof, continued

Then

dg<n<dg+d
and so

0<n-—-dg<d
But

r:nfd'{%J =n—dq

Hence, we have shown
0<r<d

Both parts of the theorem have been proved. (1.
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Examples:

Epp-3.5.19: s the following statement true or false — For all real
numbers z, [z+ 1] =[z]+17

Solution: Let x be a real number. Then n = [z + 1] is an integer.

By the definition of ceiling
n—1<(x+1)<n
Subtracting 1 from all parts of the inequality gives
n—2<xr<n-—1

and by the definition of ceiling, [ ] = (n—1). Solving this expression
forn givesn =[x+ 1.

Putting the two expressions for n together shows
[+ 1]=[z]+1. Hence, the statement is true
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Homework #5 — Due 10/13/2006, 12noon, GMCS-587 Version 1

Know this by the midterm; turn in problems on 10/13/2006.
Epp, 2nd/3rd edition:

Understand the following theorems with proofs: Theorem-3.5.1,
Theorem-3.5.2, Theorem-3.5.3; Problems 3.5.13, 3.5.17

Next: New methods of proof — Proof by Contradiction, Proof by
Contraposition.
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Indirect Arguments: Introduction Contradiction

In Direct proof we start with the hypothesis of a statement and
make a series of deductions (using known theorems, definition, and

some algebraic manipulations) until we reach the conclusion.

Indirect proofs are a little more complicated... In arguments by
contradiction we use the fact that a well formed argument is either

true or false, but not both.

If you can show that a given assumption is not true leads to a con-
tradiction, impossibility, or absurdity, then that assumption must be

false; hence the given statement must be true.

If ~P(x) = Q(z), and Q(z) clearly is wrong, then P(z)

Q(x) could be something like “all integers are negative,” or “all real
numbers equal to 4.”
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Indirect Arguments: Introduction Contraposition

In arguments by contraposition we rely on the fact that a statement
is logically equivalent to its contrapositive.

To prove something by contraposition, we write down the contrapos-
itive of the statement, prove that this form is true by direct proof.
Then we can conclude that the original statement is true, by the

logical equivalence of the two statements.

Recall: Definition
The contrapositive of a conditional statement of the form “if p

then ¢" is,
If (~ ¢) then (~ p)

Symbolically, the contrapositive of (p — ¢q) is ((~ q) — (~ p)).
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Method of Proof by Contradiction

Method of Proof by Contradiction

1. Suppose the statement to be proved is false.
2. Show that this supposition leads logically to a contradiction.

3. Conclude that the statement to be proved is true.

Keep in mind that supposing that a statement is false is the same
thing as supposing that the negation of the statement it true. Hence,

step 1 means we must write down the negation of the statement.

Here, we are using quite a few of our tools from chapters 1-2.
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When to Use Method of Proof by Contradiction???

Unfortunately, there are no clear “rules” for when a proof by contra-

diction is better (or easier to execute) than a direct proof.

Proofs by contradiction tends to come in handy when you want to
show that there is no object with a certain property, or if you want

to show that a certain object does not have a certain property.
As you see more proofs throughout you mathematical career, you
will get a better gut-feeling for when proofs by contradiction are the

preferred method.

The next few examples is a starting point...
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Example: Proof by Contradiction

Theorem:

There is no greatest integer.

Proof: Suppose the statement is false. That is, suppose there is a
greatest integer V. Since NV is the greatest integer, N > n Vn € Z.
Now, let M = N+1. M being a sum of integers, must be an integer.
Further, M > N since M = N + 1.

Thus M is an integer greater than the greatest integer, which is
a contradiction. The contradiction shows that the supposition is
false and, therefore the theorem is true. O

Note: After a contradiction has been reached, the argument is always
the same — This is a contradiction. Hence the supposition is false
and the theorem is true. Most mathematical texts end proofs by

contradiction once the contradiction has been reached.
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Example#2: Proof by Contradiction

Theorem: The sum of any rational number and any irrational

number is irrational.

The theorem talks about the sum of a rational and irrational number
not having the property of being rational... Suggesting a proof by

contradiction.

Proof: Suppose the theorem is false. That is, suppose there is a
rational number r and an irrational number s so that the sum r + s
is rational. By the definition of rational, we must have
c
r= E, r+s= E

for some integers a, b, ¢, d. [continued.. ]
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Example#2: Proof by Contradiction 2 of 2

Proof: Suppose the theorem is false. That is, suppose there is a
rational number r and an irrational number s so that the sum r + s

is rational. By the definition of rational, we must have

c
r=-—-, r+s=

b’ d
for some integers a, b, ¢, d. By substitution,

a C
—4s=-—

b d
Hence, a little bit of algebra shows:

_ ¢ a_bc—ad

T4 b
Now, (bc—ad) and bd are both integers, and bd # 0 (since both b # 0
and d # 0). Hence s is a quotient of two integers. By the definition

of a rational number s is rational. This contradicts the supposition

that s is irrational. O

Floor and Ceiling & Proofs by Contradiction and Contraposition — p. 22/33

Method of Proof by Contraposition

Method of Proof by Contraposition
1. Express the statement to be proved in the form
Vo € D, if P(x), then Q(x).
2. Rewrite this statement in the contrapositive form
Vo € D, if (~ Q(x)), then (~ P(z)).
3. Prove the contrapositive by a direct proof.

a. Suppose z is a (particular but arbitrarily chosen) element
of D such that Q(z) is false.

b. Show that P(z) is false.
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Example#3: Proof by Contraposition

Theorem:

Given any integer n, if n? is even, then n is even.

Proof: Suppose 7 is odd (and show n? is odd). Since n is odd,
n = 2k + 1 by the quotient-remainder theorem (with d = 2)
[or by the definition of odd]. Now,
n-n=2k+1)(2k+1) = 4k® + 4k +1 = 2 (2k* + 2k) +1

N—_——
integer

Hence n? = 2 - (integer) + 1, which by the definition of odd
shows that n? is odd. O
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Some Notes...

Proof by contraposition only works for statements that are universal
and conditional, i.e. of the form

(S) Vx € D, if P(z), then Q(x)

It turns out that any statement that can be proved by contraposition

can also be proved by contradiction (but not the other way around).

The contrapositive of the statement (S) (above) is

(C) VzeD, if (~Q(x)), then (~ P(x))
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Some Notes... Contrapositive vs. Contradiction

In a proof by contraposition we

1. Suppose x is an arbitrary element of D such that (~ Q(x)).
2. Execute a sequence of steps to show (~ P(z)).

We can use the same(!) sequence of steps to show the result by
contradiction.

In a proof by contradiction we

1. Suppose x is an arbitrary element of D such that P(z) and

(~ Q(x)).

2. Execute a sequence of steps to show a contradiction,
(~ P(z)) NP(x).
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Example#4: Proof by Contradiction

Theorem:

Given any integer n, if n? is even, then n is even.

Proof: Suppose there exists an integer n such that n? is even and n
is odd. Since n is odd, n = 2k+1 by the quotient-remainder
theorem (with d = 2) [or the definition of odd]. Now,
n-n=2k+1)(2k+1) = 4k® + 4k +1 = 2 (2k* + 2k) +1

———
integer
Hence n? = 2 - (integer) + 1, which by the definition of odd
shows that n? is odd. Now, n? is odd and n2 is even, a
contradiction. []

Note: The steps of the proof are exactly the same as in the proof

by contraposition.
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Contradiction vs. Contraposition

In a sense, we don't need proofs by contraposition (since they can
always be converted to proofs by contradiction).

The advantage of the proof by contraposition is that you know
exactly what conclusion you need to show — j.e. the negation of the
hypothesis.

In a proof by contradiction it may be difficult to see where the

contradiction will appear.

Further, in a proof by contradiction you have to negate the full

statement (of the theorem), which may be complicated.

We like contraposition since it seems easier to argue “forward” toward a
known goal. However, these proofs only work for universal conditional
statements.
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The Irrationality of /2

Theorem:
V2 is irrational.

Proof: Suppose not (proof by contradiction). Then there are two
integers m and m with no common factors, so that
m
V2 =—.
n
Squaring both sides gives

m

9=

n2
or equivalently, m? = 2n2. This shows that m? is even by
the definition of even. We have previously [slide #24] shown

that this implies that m is even. [continued.. ]

The Irrationality of /2 2 of 2

Now, since m is even, we can write m = 2k for some integer k.
Substituting this into m? = 2n? gives
m? = (2k)? = 4k* = 2n®
Dividing both sides (of 4k% = 2n?) by 2 gives
n? = 2k*

which shows that n2, is even; therefore n is even. Now, both m and
n are even; hence they have a common factor of 2. This contradicts
the supposition that m and n does not have any common factors. [J

Something to think about: is /3 irrational? How would you prove it?
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Infinitely Many Primes... 1of 2 Infinitely Many Primes... 2 of 2
There are infinitely many prime numbers; i.e. there is no largest prime.
Theorem:

In order the show this we first need to prove the following result:

Theorem:
For any integer a and prime number p, if p|a, then p f(a + 1).

Proof: Suppose the statement is false, then there is an integer a and
a prime number p such that pla and p|(a+ 1). By definition
we can find integers r and s such that @ = pr and (a+1) =
ps. It follows that 1 = (a+ 1) —a = ps — pr = p(s — ).
Since (s—r) is an integer, it follows that p|1, but +1 are the
only divisors of 1. Since p is a prime, we must have p > 1,

a contradiction. .
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The set of prime numbers is infinite.

Proof: Suppose not — suppose the set of prime numbers if finite.
Then all prime numbers can be listed in ascending order

p1:27 p2:3a p3:57 sy pn:?
Now consider the integer
N:plpngpn+1

Then N > 1, so by theorem-3.3.2 (see Epp), N is divisible by some
prime number p, (p|IN). Also, since p is prime it must equal one of
the primes p; (1 < i <n). Thus p|(p1-p2-ps---pn). By the previous
theorem [slide 31] p f(p1-p2-ps---pn+1). This contradicts p|N. O
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Homework #5 — Due 10/13/2006, 12noon, GMCS-587 Final Version

Know this by the midterm; turn in problems on 10/13/2006.

Epp, 2nd/3rd edition:
Understand the following theorems with proofs: Theorem-3.5.1,
Theorem-3.5.2, Theorem-3.5.3; Problems Epp-3.5.13, Epp-
3.5.17.

Epp, 3rd edition:
Epp-3.6.5, Epp-3.6.8a, Epp-3.6.8b, Epp-3.6.30

Epp, 2nd edition:
Epp-3.6.2, —, Epp-3.6.6, —

If you do not have the 3rd edition, it is your
responsibility to seek out the “missing” questions.
— Phone-a-Friend, or come to office hours!
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