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The �oor and 
eiling of a Real Number

x

floor(x) ceil(x)Imagine a real number x ∈ R sitting on the number line...The �oor of x is the integer n ∈ Z whi
h is to the left of x (i.e. thelargest integer, whi
h is smaller than or equal to x).The 
eiling of x is the integer n ∈ Z whi
h is to the right of x (i.e.the smallest integer, whi
h is larger than or equal to x).We have,

n ≤ x ≤ nwhere equality holds if and only if x is an integer:

n = x = n, ⇔ x ∈ Z
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Floor � Formal De�nition and Notation

x

floor(x)

n n+1

De�nition: The �oor of x �Given any real number x, the �oor of x, denoted ⌊x ⌋, is de�nedas follows:

⌊x ⌋ = the unique integer n su
h that n ≤ x < n + 1.Symboli
ally, if x is a real number and n is an integer, then
⌊x ⌋ = n ⇔ n ≤ x < n + 1
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Ceiling � Formal De�nition and Notation

x

ceil(x)

nn−1

De�nition: The 
eiling of x �Given any real number x, the 
eiling of x, denoted ⌈x ⌉, is de�nedas follows:

⌈x ⌉ = the unique integer n su
h that n− 1 < x ≤ n.Symboli
ally, if x is a real number and n is an integer, then

⌈x ⌉ = n ⇔ n− 1 < x ≤ n
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Examples

#1 — Loading students into Buses: 1370 students are going to thezoo. Due to budget 
onstraints the prin
ipal will only allow fullbuses to leave. Ea
h bus holds at most 40 students. How manybuses 
an leave?

Solution: ⌊ 1370/40 ⌋ = ⌊ 34.25 ⌋ = 34.

Comment: This example may seem a little silly � sin
e we are dealingwith integer quantities we 
ould have used 1370 div 40 =

34.
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Examples

#2 — Tax Refund: Due to a sudden mira
le, the state 
ontroller hasfound a surplus of $4,168,325,218.32 in the budget. This moneyis to be distributed among 24,123,451 taxpayers. However, ea
h
he
k must be in whole dollars only (no pennies). How largewill the tax refund be?

Solution:

⌊ 4, 168, 325, 218.32/24, 123, 451 ⌋ = ⌊ 172.791414392576 ⌋ = $172.
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Examples

#3 — Hot Dogs on the Grill: You are expe
ting 12 friends to 
omeover for a BBQ. An average person eats 3.2 hot-dogs. Hot-dogsare pa
kaged 12/pa
k and buns 10/pa
k. How many pa
ks ofhot-dogs and buns do you have to buy?

Solution:Hot-dogs:

⌈ 13 · 3.2/12 ⌉ = ⌈ 3.4667 ⌉ = 4Buns:

⌈ 13 · 3.2/10 ⌉ = ⌈ 4.1600 ⌉ = 5

Why 13??? � You're eating too, right?!?
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Examples
#4 — Disproving an alleged property of the floor function.Statement: For all real numbers x and y, ⌊x + y ⌋ = ⌊x ⌋+ ⌊ y ⌋.

Disproof by Counter-example:Consider the 
ase x = y = 1

2

. Then

⌊x ⌋+ ⌊ y ⌋ =

⌊
1

2

⌋

+

⌊
1

2

⌋

= 0 + 0 = 0But

⌊x + y ⌋ =

⌊
1

2
+

1

2

⌋

= ⌊ 1 ⌋ = 1
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A Theorem...
Theorem:

∀x ∈ R and m ∈ Z, ⌊x + m ⌋ = ⌊x ⌋+ m.

Proof: Let∗ x be real number and m be an integer. Let n = ⌊x ⌋.By the de�nition of �oor, n is an integer and n ≤ x < n + 1. Add mto all three entries in the inequality to get

(n + m) ≤ (x + m) < (n + m) + 1Sin
e n + m is an integer, by the de�nition of �oor

⌊x + m ⌋ = n + mNow we re
all that n = ⌊x ⌋, and by substitution we have

⌊x + m ⌋ = ⌊x ⌋+ m. �
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Theorem: The Floor of n/2 1 of 2Theorem: For any integer n

⌊ n

2

⌋

=







n

2

if n is even
n− 1

2

if n is odd

Proof: Let n be an integer. By the quotient-remainder theorem, n isodd or n is even.
ase 1: When n is odd, then n = 2k + 1 for some integer k. Bysubstitution,
⌊ n

2

⌋

=

⌊
2k + 1

2

⌋

=

⌊
2k

2
+

1

2

⌋

=

⌊

k +
1

2

⌋

= kbe
ause k is an integer and k ≤ k + 1/2 < k + 1. Now sin
e

n = 2k +1 it follows that k = n−1

2

, and we have shown that

⌊
n

2

⌋
= n−1

2

when n is odd.
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Theorem: The Floor of n/2 2 of 2
ase 2: When n is even, then n = 2k for some integer k. By substi-tution,

⌊ n

2

⌋

=

⌊
2k

2

⌋

= ⌊ k ⌋ = kbe
ause k is an integer and k ≤ k < k + 1. Now sin
e
n = 2k it follows that k = n

2

, and we have shown that
⌊

n

2

⌋
= n

2

when n is even.Together, 
ase 1 (n odd) and 
ase 2 (n even) shows that the statementis true. �
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Theorem: Floor and the Quotient-Remainder Theorem

Theorem:If n is a non-negative integer and d is a positive integer, and if

q = ⌊n/d ⌋ and r = n− d · ⌊n/d ⌋, then

n = d · q + r, and 0 ≤ r < d.

Proof: Let n be a non-negative integer, d a positive integer, q =

⌊n/d ⌋, and r = n− d · ⌊n/d ⌋. By substitution

dq + r = d ·
⌊ n

d

⌋

+
(

n− d ·
⌊ n

d

⌋)

= n.So it remains to show that 0 ≤ r < d. But q = ⌊n/d ⌋. Thus by thede�nition of �oor,

q ≤ n

d
< q + 1
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Proof, 
ontinuedThen

dq ≤ n < dq + dand so

0 ≤ n− dq < dBut

r = n− d ·
⌊ n

d

⌋

= n− dqHen
e, we have shown

0 ≤ r < dBoth parts of the theorem have been proved. �.
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Examples:Epp-3.5.19 : Is the following statement true or false � For all realnumbers x, ⌈x + 1 ⌉ = ⌈x ⌉+ 1?Solution: Let x be a real number. Then n = ⌈x + 1 ⌉ is an integer.By the de�nition of 
eiling

n− 1 < (x + 1) ≤ nSubtra
ting 1 from all parts of the inequality gives
n− 2 < x ≤ n− 1and by the de�nition of 
eiling, ⌈x ⌉ = (n−1). Solving this expressionfor n gives n = ⌈x ⌉+ 1.Putting the two expressions for n together shows

⌈x + 1 ⌉ = ⌈x ⌉+ 1. Hen
e, the statement is true
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Homework #5 � Due 10/13/2006, 12noon, GMCS-587 Version 1

3Know this by the midterm; turn in problems on 10/13/2006.

Epp, 2nd/3rd edition:Understand the following theorems with proofs: Theorem-3.5.1,Theorem-3.5.2, Theorem-3.5.3; Problems 3.5.13, 3.5.17

Next: New methods of proof � Proof by Contradi
tion, Proof byContraposition.
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Indire
t Arguments: Introdu
tion Contradi
tionIn Dire
t proof we start with the hypothesis of a statement andmake a series of dedu
tions (using known theorems, de�nition, andsome algebrai
 manipulations) until we rea
h the 
on
lusion.Indire
t proofs are a little more 
ompli
ated... In arguments by
ontradi
tion we use the fa
t that a well formed argument is eithertrue or false, but not both.If you 
an show that a given assumption is not true leads to a 
on-tradi
tion, impossibility, or absurdity, then that assumption must befalse; hen
e the given statement must be true.

If ∼ P (x) ⇒ Q(x), and Q(x) 
learly is wrong, then P (x)

Q(x) 
ould be something like �all integers are negative,� or �all realnumbers equal to 4.�
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Indire
t Arguments: Introdu
tion ContrapositionIn arguments by 
ontraposition we rely on the fa
t that a statementis logi
ally equivalent to its 
ontrapositive.To prove something by 
ontraposition, we write down the 
ontrapos-itive of the statement, prove that this form is true by dire
t proof.Then we 
an 
on
lude that the original statement is true, by thelogi
al equivalen
e of the two statements.

Re
all: De�nitionThe 
ontrapositive of a 
onditional statement of the form �if pthen q� is,
If (∼ q) then (∼ p)

Symboli
ally, the 
ontrapositive of (p → q) is ((∼ q) → (∼ p)).
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Method of Proof by Contradi
tion

Method of Proof by Contradiction1. Suppose the statement to be proved is false.2. Show that this supposition leads logi
ally to a 
ontradi
tion.3. Con
lude that the statement to be proved is true.

Keep in mind that supposing that a statement is false is the samething as supposing that the negation of the statement it true. Hen
e,step 1 means we must write down the negation of the statement.

Here, we are using quite a few of our tools from 
hapters 1�2.
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When to Use Method of Proof by Contradi
tion???Unfortunately, there are no 
lear �rules� for when a proof by 
ontra-di
tion is better (or easier to exe
ute) than a dire
t proof.

Proofs by 
ontradi
tion tends to 
ome in handy when you want toshow that there is no obje
t with a 
ertain property, or if you wantto show that a 
ertain obje
t does not have a 
ertain property.

As you see more proofs throughout you mathemati
al 
areer, youwill get a better gut-feeling for when proofs by 
ontradi
tion are thepreferred method.

The next few examples is a starting point...
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Example: Proof by Contradi
tion

Theorem:There is no greatest integer.Proof: Suppose the statement is false. That is, suppose there is agreatest integer N . Sin
e N is the greatest integer, N ≥ n ∀n ∈ Z.Now, let M = N +1. M being a sum of integers, must be an integer.Further, M > N sin
e M = N + 1.Thus M is an integer greater than the greatest integer, whi
h isa 
ontradi
tion. The 
ontradi
tion shows that the supposition isfalse and, therefore the theorem is true. �Note: After a 
ontradi
tion has been rea
hed, the argument is alwaysthe same � This is a 
ontradi
tion. Hen
e the supposition is falseand the theorem is true. Most mathemati
al texts end proofs by
ontradi
tion on
e the 
ontradi
tion has been rea
hed.
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Example#2: Proof by Contradi
tion

Theorem: The sum of any rational number and any irrationalnumber is irrational.The theorem talks about the sum of a rational and irrational numbernot having the property of being rational... Suggesting a proof by
ontradi
tion.
Proof: Suppose the theorem is false. That is, suppose there is arational number r and an irrational number s so that the sum r + sis rational. By the de�nition of rational, we must have

r =
a

b
, r + s =

c

dfor some integers a, b, c, d. [
ontinued...℄
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Example#2: Proof by Contradi
tion 2 of 2Proof: Suppose the theorem is false. That is, suppose there is arational number r and an irrational number s so that the sum r + sis rational. By the de�nition of rational, we must have
r =

a

b
, r + s =

c

dfor some integers a, b, c, d. By substitution,
a

b
+ s =

c

dHen
e, a little bit of algebra shows:
s =

c

d
− a

b
=

bc− ad

bd
.Now, (bc−ad) and bd are both integers, and bd 6= 0 (sin
e both b 6= 0and d 6= 0). Hen
e s is a quotient of two integers. By the de�nitionof a rational number s is rational. This 
ontradi
ts the suppositionthat s is irrational. �
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Method of Proof by Contraposition

Method of Proof by Contraposition1. Express the statement to be proved in the form

∀x ∈ D, if P (x), then Q(x).2. Rewrite this statement in the 
ontrapositive form
∀x ∈ D, if (∼ Q(x)), then (∼ P (x)).3. Prove the 
ontrapositive by a dire
t proof.

a. Suppose x is a (parti
ular but arbitrarily 
hosen) elementof D su
h that Q(x) is false.
b. Show that P (x) is false.
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Example#3: Proof by Contraposition

Theorem:Given any integer n, if n2 is even, then n is even.

Proof: Suppose n is odd (and show n2 is odd). Sin
e n is odd,

n = 2k +1 by the quotient-remainder theorem (with d = 2)[or by the de�nition of odd℄. Now,

n · n = (2k + 1)(2k + 1) = 4k2 + 4k + 1 = 2 (2k2 + 2k)
︸ ︷︷ ︸

integer

+1

Hen
e n2 = 2 · (integer) + 1, whi
h by the de�nition of oddshows that n2 is odd. �
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Some Notes...Proof by 
ontraposition only works for statements that are universaland 
onditional, i.e. of the form
(S) ∀x ∈ D, if P (x), then Q(x)It turns out that any statement that 
an be proved by 
ontraposition
an also be proved by 
ontradi
tion (but not the other way around).

The 
ontrapositive of the statement (S) (above) is

(C) ∀x ∈ D, if (∼ Q(x)), then (∼ P (x))
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Some Notes... Contrapositive vs. Contradi
tionIn a proof by 
ontraposition we1. Suppose x is an arbitrary element of D su
h that (∼ Q(x)).2. Exe
ute a sequen
e of steps to show (∼ P (x)).We 
an use the same(!) sequen
e of steps to show the result by
ontradi
tion.
In a proof by 
ontradi
tion we1. Suppose x is an arbitrary element of D su
h that P (x) and

(∼ Q(x)).2. Exe
ute a sequen
e of steps to show a 
ontradi
tion,

(∼ P (x)) ∧ P (x).
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Example#4: Proof by Contradi
tion

Theorem:Given any integer n, if n2 is even, then n is even.

Proof: Suppose there exists an integer n su
h that n2 is even and nis odd. Sin
e n is odd, n = 2k+1 by the quotient-remaindertheorem (with d = 2) [or the de�nition of odd℄. Now,
n · n = (2k + 1)(2k + 1) = 4k2 + 4k + 1 = 2 (2k2 + 2k)

︸ ︷︷ ︸

integer

+1

Hen
e n2 = 2 · (integer) + 1, whi
h by the de�nition of oddshows that n
2 is odd. Now, n2 is odd and n2 is even, a
ontradi
tion. �Note: The steps of the proof are exa
tly the same as in the proofby 
ontraposition.
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Contradi
tion vs. ContrapositionIn a sense, we don't need proofs by 
ontraposition (sin
e they 
analways be 
onverted to proofs by 
ontradi
tion).The advantage of the proof by 
ontraposition is that you knowexa
tly what 
on
lusion you need to show � i.e. the negation of thehypothesis.In a proof by 
ontradi
tion it may be di�
ult to see where the
ontradi
tion will appear.Further, in a proof by 
ontradi
tion you have to negate the fullstatement (of the theorem), whi
h may be 
ompli
ated.We like 
ontraposition sin
e it seems easier to argue �forward� toward aknown goal. However, these proofs only work for universal 
onditionalstatements.
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The Irrationality of √2

Theorem:√
2 is irrational.

Proof: Suppose not (proof by 
ontradi
tion). Then there are twointegers m and n with no 
ommon fa
tors, so that

√
2 =

m

n
.Squaring both sides gives

2 =
m2

n2or equivalently, m2 = 2n2. This shows that m2 is even bythe de�nition of even. We have previously [slide#24℄ shownthat this implies that m is even. [
ontinued...℄
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The Irrationality of √2 2 of 2Now, sin
e m is even, we 
an write m = 2k for some integer k.Substituting this into m2 = 2n2 gives

m2 = (2k)2 = 4k2 = 2n2

Dividing both sides (of 4k2 = 2n2) by 2 gives
n2 = 2k2

whi
h shows that n2, is even; therefore n is even. Now, both m and

n are even; hen
e they have a 
ommon fa
tor of 2. This 
ontradi
tsthe supposition that m and n does not have any 
ommon fa
tors. �

Something to think about: is √3 irrational? How would you prove it?
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In�nitely Many Primes... 1 of 2There are in�nitely many prime numbers; i.e. there is no largest prime.

In order the show this we �rst need to prove the following result:

Theorem:For any integer a and prime number p, if p|a, then p 6 |(a + 1).

Proof: Suppose the statement is false, then there is an integer a anda prime number p su
h that p|a and p|(a+1). By de�nitionwe 
an �nd integers r and s su
h that a = pr and (a+1) =

ps. It follows that 1 = (a + 1) − a = ps − pr = p(s − r).Sin
e (s−r) is an integer, it follows that p|1, but ±1 are theonly divisors of 1. Sin
e p is a prime, we must have p > 1,a 
ontradi
tion. �.
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In�nitely Many Primes... 2 of 2

Theorem:The set of prime numbers is in�nite.Proof: Suppose not � suppose the set of prime numbers if �nite.Then all prime numbers 
an be listed in as
ending order

p1 = 2, p2 = 3, p3 = 5, . . . , pn =?Now 
onsider the integer

N = p1 · p2 · p3 · · · pn + 1Then N > 1, so by theorem-3.3.2 (see Epp), N is divisible by someprime number p, (p|N). Also, sin
e p is prime it must equal one ofthe primes pi (1 < i < n). Thus p|(p1 ·p2 ·p3 · · · pn). By the previoustheorem [slide 31℄ p 6 |(p1 ·p2 ·p3 · · · pn +1). This 
ontradi
ts p|N . �

Floor and Ceiling & Proofs by Contradiction and Contraposition – p. 32/33



Homework #5 � Due 10/13/2006, 12noon, GMCS-587 Final VersionKnow this by the midterm; turn in problems on 10/13/2006.

Epp, 2nd/3rd edition:Understand the following theorems with proofs: Theorem-3.5.1,Theorem-3.5.2, Theorem-3.5.3; Problems Epp-3.5.13, Epp-3.5.17 .
Epp, 3rd edition:Epp-3.6.5, Epp-3.6.8a, Epp-3.6.8b, Epp-3.6.30Epp, 2nd edition:Epp-3.6.2, �, Epp-3.6.6, �If you do not have the 3rd edition, it is yourresponsibility to seek out the �missing� questions.� Phone-a-Friend, or 
ome to o�
e hours!
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