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The �oor and eiling of a Real Number

x

floor(x) ceil(x)Imagine a real number x ∈ R sitting on the number line...The �oor of x is the integer n ∈ Z whih is to the left of x (i.e. thelargest integer, whih is smaller than or equal to x).The eiling of x is the integer n ∈ Z whih is to the right of x (i.e.the smallest integer, whih is larger than or equal to x).We have,

n ≤ x ≤ nwhere equality holds if and only if x is an integer:

n = x = n, ⇔ x ∈ Z
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Floor � Formal De�nition and Notation

x

floor(x)

n n+1

De�nition: The �oor of x �Given any real number x, the �oor of x, denoted ⌊x ⌋, is de�nedas follows:

⌊x ⌋ = the unique integer n suh that n ≤ x < n + 1.Symbolially, if x is a real number and n is an integer, then

⌊x ⌋ = n ⇔ n ≤ x < n + 1
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Ceiling � Formal De�nition and Notation
x

ceil(x)

nn−1

De�nition: The eiling of x �Given any real number x, the eiling of x, denoted ⌈x ⌉, is de�nedas follows:

⌈x ⌉ = the unique integer n suh that n − 1 < x ≤ n.Symbolially, if x is a real number and n is an integer, then

⌈x ⌉ = n ⇔ n − 1 < x ≤ n
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Examples

#1 — Loading students into Buses: 1370 students are going to thezoo. Due to budget onstraints the prinipal will only allow fullbuses to leave. Eah bus holds at most 40 students. How manybuses an leave?

Solution: ⌊ 1370/40 ⌋ = ⌊ 34.25 ⌋ = 34.
Comment: This example may seem a little silly � sine we are dealingwith integer quantities we ould have used 1370 div 40 =

34.
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Examples

#2 — Tax Refund: Due to a sudden mirale, the state ontroller hasfound a surplus of $4,168,325,218.32 in the budget. This moneyis to be distributed among 24,123,451 taxpayers. However, eahhek must be in whole dollars only (no pennies). How largewill the tax refund be?

Solution:

⌊ 4, 168, 325, 218.32/24, 123, 451 ⌋ = ⌊ 172.791414392576 ⌋ = $172.
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Examples

#3 — Hot Dogs on the Grill: You are expeting 12 friends to omeover for a BBQ. An average person eats 3.2 hot-dogs. Hot-dogsare pakaged 12/pak and buns 10/pak. How many paks ofhot-dogs and buns do you have to buy?
Solution:Hot-dogs:

⌈ 13 · 3.2/12 ⌉ = ⌈ 3.4667 ⌉ = 4Buns:

⌈ 13 · 3.2/10 ⌉ = ⌈ 4.1600 ⌉ = 5

Why 13??? � You're eating too, right?!?
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Examples

#4 — Disproving an alleged property of the floor function.Statement: For all real numbers x and y, ⌊x + y ⌋ = ⌊x ⌋ + ⌊ y ⌋.
Disproof by Counter-example:Consider the ase x = y = 1

2

. Then
⌊x ⌋ + ⌊ y ⌋ =

⌊
1

2

⌋

+

⌊
1

2

⌋

= 0 + 0 = 0But

⌊x + y ⌋ =

⌊
1

2
+

1

2

⌋

= ⌊ 1 ⌋ = 1
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A Theorem...
Theorem:

∀x ∈ R and m ∈ Z, ⌊x + m ⌋ = ⌊x ⌋ + m.

Proof:

Let be real number and be an integer. Let .By the de�nition of �oor, is an integer and . Addto all three entries in the inequality to get

Sine is an integer, by the de�nition of �oor

Now we reall that , and by substitution we have
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Theorem: The Floor of n/2 1 of 2Theorem: For any integer n

⌊ n

2

⌋

=







n

2

if n is even
n − 1

2

if n is odd

Proof:

Let be an integer. By the quotient-remainder theorem,is odd or is even.ase 1: When is odd, then for some integer . Bysubstitution,
beause is an integer and . Now sineit follows that , and we have shown thatwhen is odd.
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Theorem: The Floor of n/2 2 of 2ase 2: When n is even, then n = 2k for some integer k.

By substi-tution,
beause is an integer and . Now sineit follows that , and we have shown thatwhen is even.Together, ase 1 ( odd) and ase 2 ( even) shows that the statementis true.
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Theorem: Floor and the Quotient-Remainder Theorem

Theorem:If n is a non-negative integer and d is a positive integer, and if
q = ⌊n/d ⌋ and r = n − d · ⌊n/d ⌋, then

n = d · q + r, and 0 ≤ r < d.

Proof:

Let be a non-negative integer, a positive integer,, and . By substitution

So it remains to show that . But . Thus by thede�nition of �oor,
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Proof, ontinuedThen

dq ≤ n < dq + dand so

0 ≤ n − dq < dBut

r = n − d ·
⌊ n

d

⌋

= n − dqHene, we have shown

0 ≤ r < dBoth parts of the theorem have been proved. �.
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Examples:Epp-3.5.19 : Is the following statement true or false � For all realnumbers x, ⌈x + 1 ⌉ = ⌈x ⌉ + 1?Solution:

Let be a real number. Then is an integer.By the de�nition of eiling

Subtrating 1 from all parts of the inequality gives

and by the de�nition of eiling, . Solving this expressionfor gives .Putting the two expressions for together showsHene, the statement is true
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Homework #5 � Due 10/13/2006, 12noon, GMCS-587 Version 1

3Know this by the midterm; turn in problems on 10/13/2006.

Epp, 2nd/3rd edition:Understand the following theorems with proofs: Theorem-3.5.1,Theorem-3.5.2, Theorem-3.5.3; Problems 3.5.13, 3.5.17

Next: New methods of proof � Proof by Contradition, Proof byContraposition.
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Indiret Arguments: Introdution ContraditionIn Diret proof we start with the hypothesis of a statement andmake a series of dedutions (using known theorems, de�nition, andsome algebrai manipulations) until we reah the onlusion.Indiret proofs are a little more ompliated... In arguments byontradition we use the fat that a well formed argument is eithertrue or false, but not both.If you an show that a given assumption is not true leads to a on-tradition, impossibility, or absurdity, then that assumption must befalse; hene the given statement must be true.

If ∼ P (x) ⇒ Q(x), and Q(x) learly is wrong, then P (x)

Q(x) ould be something like �all integers are negative,� or �all realnumbers equal to 4.�
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Indiret Arguments: Introdution ContrapositionIn arguments by ontraposition we rely on the fat that a statementis logially equivalent to its ontrapositive.To prove something by ontraposition, we write down the ontrapos-itive of the statement, prove that this form is true by diret proof.Then we an onlude that the original statement is true, by thelogial equivalene of the two statements.

Reall: De�nitionThe ontrapositive of a onditional statement of the form �if pthen q� is,
If (∼ q) then (∼ p)

Symbolially, the ontrapositive of (p → q) is ((∼ q) → (∼ p)).
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Method of Proof by Contradition

Method of Proof by Contradiction1. Suppose the statement to be proved is false.2. Show that this supposition leads logially to a ontradition.3. Conlude that the statement to be proved is true.

Keep in mind that supposing that a statement is false is the samething as supposing that the negation of the statement it true. Hene,step 1 means we must write down the negation of the statement.

Here, we are using quite a few of our tools from hapters 1�2.
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When to Use Method of Proof by Contradition???Unfortunately, there are no lear �rules� for when a proof by ontra-dition is better (or easier to exeute) than a diret proof.

Proofs by ontradition tends to ome in handy when you want toshow that there is no objet with a ertain property, or if you wantto show that a ertain objet does not have a ertain property.

As you see more proofs throughout you mathematial areer, youwill get a better gut-feeling for when proofs by ontradition are thepreferred method.

The next few examples is a starting point...
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Example: Proof by Contradition

Theorem:There is no greatest integer.Proof:

Suppose the statement is false. That is, suppose there is agreatest integer . Sine is the greatest integer, .Now, let . being a sum of integers, must be an integer.Further, sine .Thus is an integer greater than the greatest integer, whih isa ontradition. The ontradition shows that the supposition isfalse and, therefore the theorem is true.Note: After a ontradition has been reahed, the argument is alwaysthe same � This is a ontradition. Hene the supposition is falseand the theorem is true. Most mathematial texts end proofs byontradition one the ontradition has been reahed.
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Floor and Ceiling & Proofs by Contradiction and Contraposition – p. 20/33



Example: Proof by Contradition

Theorem:There is no greatest integer.Proof: Suppose the statement is false. That is, suppose there is agreatest integer N . Sine N is the greatest integer, N ≥ n ∀n ∈ Z.Now, let M = N +1. M being a sum of integers, must be an integer.Further, M > N sine M = N + 1.

Thus is an integer greater than the greatest integer, whih isa ontradition. The ontradition shows that the supposition isfalse and, therefore the theorem is true.Note: After a ontradition has been reahed, the argument is alwaysthe same � This is a ontradition. Hene the supposition is falseand the theorem is true. Most mathematial texts end proofs byontradition one the ontradition has been reahed.

Floor and Ceiling & Proofs by Contradiction and Contraposition – p. 20/33



Example: Proof by Contradition

Theorem:There is no greatest integer.Proof: Suppose the statement is false. That is, suppose there is agreatest integer N . Sine N is the greatest integer, N ≥ n ∀n ∈ Z.Now, let M = N +1. M being a sum of integers, must be an integer.Further, M > N sine M = N + 1.Thus M is an integer greater than the greatest integer, whih isa ontradition. The ontradition shows that the supposition isfalse and, therefore the theorem is true. �

Note: After a ontradition has been reahed, the argument is alwaysthe same � This is a ontradition. Hene the supposition is falseand the theorem is true. Most mathematial texts end proofs byontradition one the ontradition has been reahed.

Floor and Ceiling & Proofs by Contradiction and Contraposition – p. 20/33



Example: Proof by Contradition

Theorem:There is no greatest integer.Proof: Suppose the statement is false. That is, suppose there is agreatest integer N . Sine N is the greatest integer, N ≥ n ∀n ∈ Z.Now, let M = N +1. M being a sum of integers, must be an integer.Further, M > N sine M = N + 1.Thus M is an integer greater than the greatest integer, whih isa ontradition. The ontradition shows that the supposition isfalse and, therefore the theorem is true. �Note: After a ontradition has been reahed, the argument is alwaysthe same � This is a ontradition. Hene the supposition is falseand the theorem is true. Most mathematial texts end proofs byontradition one the ontradition has been reahed.

Floor and Ceiling & Proofs by Contradiction and Contraposition – p. 20/33



Example#2: Proof by Contradition

Theorem: The sum of any rational number and any irrationalnumber is irrational.The theorem talks about the sum of a rational and irrational numbernot having the property of being rational... Suggesting a proof byontradition.
Proof:

Suppose the theorem is false. That is, suppose there is arational number and an irrational number so that the sumis rational. By the de�nition of rational, we must have

for some integers . [ontinued...℄
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Example#2: Proof by Contradition

Theorem: The sum of any rational number and any irrationalnumber is irrational.The theorem talks about the sum of a rational and irrational numbernot having the property of being rational... Suggesting a proof byontradition.
Proof: Suppose the theorem is false. That is, suppose there is arational number r and an irrational number s so that the sum r + sis rational. By the de�nition of rational, we must have

r =
a

b
, r + s =

c

dfor some integers a, b, c, d. [ontinued...℄
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Example#2: Proof by Contradition 2 of 2Proof: Suppose the theorem is false. That is, suppose there is arational number r and an irrational number s so that the sum r + sis rational. By the de�nition of rational, we must have
r =

a

b
, r + s =

c

dfor some integers a, b, c, d.

By substitution,

Hene, a little bit of algebra shows:

Now, and are both integers, and (sine bothand ). Hene is a quotient of two integers. By the de�nitionof a rational number is rational. This ontradits the suppositionthat is irrational.
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Method of Proof by Contraposition

Method of Proof by Contraposition1. Express the statement to be proved in the form
∀x ∈ D, if P (x), then Q(x).2. Rewrite this statement in the ontrapositive form

∀x ∈ D, if (∼ Q(x)), then (∼ P (x)).3. Prove the ontrapositive by a diret proof.
a. Suppose x is a (partiular but arbitrarily hosen) elementof D suh that Q(x) is false.
b. Show that P (x) is false.
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Example#3: Proof by Contraposition

Theorem:Given any integer n, if n2 is even, then n is even.

Proof:

Suppose is odd (and show is odd). Sine is odd,by the quotient-remainder theorem (with )[or by the de�nition of odd℄. Now,

Hene , whih by the de�nition of oddshows that is odd.
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Proof: Suppose n is odd (and show n2 is odd). Sine n is odd,

n = 2k +1 by the quotient-remainder theorem (with d = 2)[or by the de�nition of odd℄. Now,
n ·n = (2k + 1)(2k + 1) = 4k2 + 4k + 1 = 2 (2k2 + 2k)

︸ ︷︷ ︸

integer

+1

Hene n2 = 2 · (integer) + 1, whih by the de�nition of oddshows that n2 is odd. �
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Some Notes...Proof by ontraposition only works for statements that are universaland onditional, i.e. of the form
(S) ∀x ∈ D, if P (x), then Q(x)It turns out that any statement that an be proved by ontrapositionan also be proved by ontradition (but not the other way around).

The ontrapositive of the statement (S) (above) is

(C) ∀x ∈ D, if (∼ Q(x)), then (∼ P (x))
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Some Notes... Contrapositive vs. ContraditionIn a proof by ontraposition we1. Suppose x is an arbitrary element of D suh that (∼ Q(x)).2. Exeute a sequene of steps to show (∼ P (x)).We an use the same(!) sequene of steps to show the result byontradition.
In a proof by ontradition we1. Suppose x is an arbitrary element of D suh that P (x) and

(∼ Q(x)).2. Exeute a sequene of steps to show a ontradition,

(∼ P (x)) ∧ P (x).
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Example#4: Proof by Contradition

Theorem:Given any integer n, if n2 is even, then n is even.Proof:

Suppose there exists an integer suh that is even andis odd. Sine is odd, by the quotient-remaindertheorem (with ) [or the de�nition of odd℄. Now,

Hene , whih by the de�nition of oddshows that is odd. Now, is odd and is even, aontradition.Note: The steps of the proof are exatly the same as in the proofby ontraposition.
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Proof: Suppose there exists an integer n suh that n2 is even and nis odd. Sine n is odd, n = 2k+1 by the quotient-remaindertheorem (with d = 2) [or the de�nition of odd℄. Now,

n ·n = (2k + 1)(2k + 1) = 4k2 + 4k + 1 = 2 (2k2 + 2k)
︸ ︷︷ ︸

integer

+1

Hene n2 = 2 · (integer) + 1, whih by the de�nition of oddshows that n
2 is odd. Now, n2 is odd and n2 is even, aontradition. �Note: The steps of the proof are exatly the same as in the proofby ontraposition.
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Contradition vs. ContrapositionIn a sense, we don't need proofs by ontraposition (sine they analways be onverted to proofs by ontradition).The advantage of the proof by ontraposition is that you knowexatly what onlusion you need to show � i.e. the negation of thehypothesis.In a proof by ontradition it may be di�ult to see where theontradition will appear.Further, in a proof by ontradition you have to negate the fullstatement (of the theorem), whih may be ompliated.We like ontraposition sine it seems easier to argue �forward� toward aknown goal. However, these proofs only work for universal onditionalstatements.
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The Irrationality of √2

Theorem:√
2 is irrational.

Proof:

Suppose not (proof by ontradition). Then there are twointegers and with no ommon fators, so that

Squaring both sides gives

or equivalently, . This shows that is even bythe de�nition of even. We have previously [slide#24℄ shownthat this implies that is even. [ontinued...℄
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The Irrationality of √2

Theorem:√
2 is irrational.

Proof: Suppose not (proof by ontradition). Then there are twointegers m and n with no ommon fators, so that
√

2 =
m

n
.

Squaring both sides gives

or equivalently, . This shows that is even bythe de�nition of even. We have previously [slide#24℄ shownthat this implies that is even. [ontinued...℄
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The Irrationality of √2

Theorem:√
2 is irrational.

Proof: Suppose not (proof by ontradition). Then there are twointegers m and n with no ommon fators, so that
√

2 =
m

n
.Squaring both sides gives

2 =
m2

n2or equivalently, m2 = 2n2.

This shows that is even bythe de�nition of even. We have previously [slide#24℄ shownthat this implies that is even. [ontinued...℄
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Theorem:√
2 is irrational.

Proof: Suppose not (proof by ontradition). Then there are twointegers m and n with no ommon fators, so that
√

2 =
m

n
.Squaring both sides gives

2 =
m2

n2or equivalently, m2 = 2n2. This shows that m2 is even bythe de�nition of even. We have previously [slide#24℄ shownthat this implies that m is even. [ontinued...℄
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The Irrationality of √2 2 of 2Now, sine m is even, we an write m = 2k for some integer k.

Substituting this into gives

Dividing both sides (of ) by 2 gives

whih shows that , is even; therefore is even. Now, both andare even; hene they have a ommon fator of . This ontraditsthe supposition that and does not have any ommon fators.

Something to think about: is irrational? How would you prove it?
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The Irrationality of √2 2 of 2Now, sine m is even, we an write m = 2k for some integer k.Substituting this into m2 = 2n2 gives

m2 = (2k)2 = 4k2 = 2n2

Dividing both sides (of 4k2 = 2n2) by 2 gives
n2 = 2k2

whih shows that n2, is even; therefore n is even. Now, both m and

n are even; hene they have a ommon fator of 2. This ontraditsthe supposition that m and n does not have any ommon fators. �

Something to think about: is √3 irrational? How would you prove it?
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In�nitely Many Primes... 1 of 2There are in�nitely many prime numbers; i.e. there is no largest prime.

In order the show this we �rst need to prove the following result:

Theorem:For any integer a and prime number p, if p|a, then p 6 |(a + 1).

Proof:

Suppose the statement is false, then there is an integer anda prime number suh that and . By de�nitionwe an �nd integers and suh that and. It follows that .Sine is an integer, it follows that , but are theonly divisors of 1. Sine is a prime, we must have ,a ontradition. .
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In order the show this we �rst need to prove the following result:

Theorem:For any integer a and prime number p, if p|a, then p 6 |(a + 1).

Proof: Suppose the statement is false, then there is an integer a anda prime number p suh that p|a and p|(a+1). By de�nitionwe an �nd integers r and s suh that a = pr and (a+1) =

ps. It follows that 1 = (a + 1) − a = ps − pr = p(s − r).
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In�nitely Many Primes... 1 of 2There are in�nitely many prime numbers; i.e. there is no largest prime.

In order the show this we �rst need to prove the following result:

Theorem:For any integer a and prime number p, if p|a, then p 6 |(a + 1).

Proof: Suppose the statement is false, then there is an integer a anda prime number p suh that p|a and p|(a+1). By de�nitionwe an �nd integers r and s suh that a = pr and (a+1) =

ps. It follows that 1 = (a + 1) − a = ps − pr = p(s − r).Sine (s−r) is an integer, it follows that p|1, but ±1 are theonly divisors of 1. Sine p is a prime, we must have p > 1,a ontradition. �.
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In�nitely Many Primes... 2 of 2

Theorem:The set of prime numbers is in�nite.Proof:

Suppose not � suppose the set of prime numbers if �nite.Then all prime numbers an be listed in asending order

Now onsider the integer

Then , so by theorem-3.3.2 (see Epp), is divisible by someprime number , . Also, sine is prime it must equal one ofthe primes ( ). Thus . By the previoustheorem [slide 31℄ . This ontradits .
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Theorem:The set of prime numbers is in�nite.Proof: Suppose not � suppose the set of prime numbers if �nite.Then all prime numbers an be listed in asending order
p1 = 2, p2 = 3, p3 = 5, . . . , pn =?
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Theorem:The set of prime numbers is in�nite.Proof: Suppose not � suppose the set of prime numbers if �nite.Then all prime numbers an be listed in asending order
p1 = 2, p2 = 3, p3 = 5, . . . , pn =?Now onsider the integer

N = p1 · p2 · p3 · · · pn + 1Then N > 1, so by theorem-3.3.2 (see Epp), N is divisible by someprime number p, (p|N).

Also, sine is prime it must equal one ofthe primes ( ). Thus . By the previoustheorem [slide 31℄ . This ontradits .
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Theorem:The set of prime numbers is in�nite.Proof: Suppose not � suppose the set of prime numbers if �nite.Then all prime numbers an be listed in asending order
p1 = 2, p2 = 3, p3 = 5, . . . , pn =?Now onsider the integer

N = p1 · p2 · p3 · · · pn + 1Then N > 1, so by theorem-3.3.2 (see Epp), N is divisible by someprime number p, (p|N). Also, sine p is prime it must equal one ofthe primes pi (1 < i < n). Thus p|(p1 ·p2 ·p3 · · · pn). By the previoustheorem [slide 31℄ p 6 |(p1 ·p2 ·p3 · · · pn +1). This ontradits p|N . �
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Homework #5 � Due 10/13/2006, 12noon, GMCS-587 Final VersionKnow this by the midterm; turn in problems on 10/13/2006.

Epp, 2nd/3rd edition:Understand the following theorems with proofs: Theorem-3.5.1,Theorem-3.5.2, Theorem-3.5.3; Problems Epp-3.5.13, Epp-3.5.17 .
Epp, 3rd edition:Epp-3.6.5, Epp-3.6.8a, Epp-3.6.8b, Epp-3.6.30Epp, 2nd edition:Epp-3.6.2, �, Epp-3.6.6, �If you do not have the 3rd edition, it is yourresponsibility to seek out the �missing� questions.� Phone-a-Friend, or ome to o�e hours!

Floor and Ceiling & Proofs by Contradiction and Contraposition – p. 33/33


	Math 245: Discrete Mathematics
	The floor and ceiling of a Real Number
	Floor --- Formal Definition and Notation
	Ceiling --- Formal Definition and Notation
	Examples
	Examples
	Examples
	Examples
	A Theorem...
	A Theorem...
	A Theorem...
	A Theorem...
	A Theorem...
	A Theorem...

	Theorem: The Floor of $n/2$ hfill 1 of 2
	Theorem: The Floor of $n/2$ hfill 1 of 2
	Theorem: The Floor of $n/2$ hfill 1 of 2
	Theorem: The Floor of $n/2$ hfill 1 of 2
	Theorem: The Floor of $n/2$ hfill 1 of 2
	Theorem: The Floor of $n/2$ hfill 1 of 2

	Theorem: The Floor of $n/2$ hfill 2 of 2
	Theorem: The Floor of $n/2$ hfill 2 of 2
	Theorem: The Floor of $n/2$ hfill 2 of 2
	Theorem: The Floor of $n/2$ hfill 2 of 2

	Theorem: Floor and the Quotient-Remainder Theorem
	Theorem: Floor and the Quotient-Remainder Theorem
	Theorem: Floor and the Quotient-Remainder Theorem
	Theorem: Floor and the Quotient-Remainder Theorem

	Proof, continued
	Examples:
	Examples:
	Examples:
	Examples:
	Examples:
	Examples:

	scriptsize Homework #5 --- Due 10/13/2006, 12noon, GMCS-587 hfill {	iny Version $�rac {1}{3}$}
	Indirect Arguments: Introduction hfill Contradiction
	Indirect Arguments: Introduction hfill Contraposition
	Method of Proof by Contradiction
	When to Use Method of Proof by Contradiction???
	Example: Proof by Contradiction
	Example: Proof by Contradiction
	Example: Proof by Contradiction
	Example: Proof by Contradiction
	Example: Proof by Contradiction
	Example: Proof by Contradiction
	Example: Proof by Contradiction
	Example: Proof by Contradiction

	Example#2: Proof by Contradiction
	Example#2: Proof by Contradiction
	Example#2: Proof by Contradiction
	Example#2: Proof by Contradiction

	Example#2: Proof by Contradiction hfill 2 of 2
	Example#2: Proof by Contradiction hfill 2 of 2
	Example#2: Proof by Contradiction hfill 2 of 2
	Example#2: Proof by Contradiction hfill 2 of 2
	Example#2: Proof by Contradiction hfill 2 of 2

	Method of Proof by Contraposition
	Example#3: Proof by Contraposition
	Example#3: Proof by Contraposition
	Example#3: Proof by Contraposition
	Example#3: Proof by Contraposition
	Example#3: Proof by Contraposition

	Some Notes...
	Some Notes... Contrapositive vs. Contradiction
	Example#4: Proof by Contradiction
	Example#4: Proof by Contradiction
	Example#4: Proof by Contradiction
	Example#4: Proof by Contradiction
	Example#4: Proof by Contradiction
	Example#4: Proof by Contradiction

	Contradiction vs. Contraposition
	The Irrationality of $sqrt {2}$
	The Irrationality of $sqrt {2}$
	The Irrationality of $sqrt {2}$
	The Irrationality of $sqrt {2}$
	The Irrationality of $sqrt {2}$

	The Irrationality of $sqrt {2}$ hfill 2 of 2
	The Irrationality of $sqrt {2}$ hfill 2 of 2
	The Irrationality of $sqrt {2}$ hfill 2 of 2
	The Irrationality of $sqrt {2}$ hfill 2 of 2

	Infinitely Many Primes... hfill 1 of 2
	Infinitely Many Primes... hfill 1 of 2
	Infinitely Many Primes... hfill 1 of 2
	Infinitely Many Primes... hfill 1 of 2
	Infinitely Many Primes... hfill 1 of 2

	Infinitely Many Primes... hfill 2 of 2
	Infinitely Many Primes... hfill 2 of 2
	Infinitely Many Primes... hfill 2 of 2
	Infinitely Many Primes... hfill 2 of 2
	Infinitely Many Primes... hfill 2 of 2

		iny Homework #5 --- Due 10/13/2006, 12noon, GMCS-587 hfill {	iny Final Version}

