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Introduction

So far we have talked about the fundamentals of logic;, we have
looked at compound and quantified statements (Chapters 1-2).

Then we explored some introductory number theory, and tried our
hands at a couple of different methods of proof: direct proofs,
proofs by contradiction, and proofs by contraposition; as well as
“anti-proofs”, i.e. counterexamples (Chapter 3).

Now we'll switch gears a little — we'll look at sequences (the computer
scientists among us should think of for- and while-loops). We will
look at sequences of numbers — looking for patterns, etc. Also, we

will prove things sequentially (using mathematical induction).
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Sequences

A powerful tool in mathematics (and other sciences, and life itself)
is to discover and make use of patterns (c.f. Math 596 “Pattern

Formation.”)
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Figure: To the left we see a picture of a chemical reaction (Belouzov-
Zhabotinsky) in progress, and to the right a mathematical model of the

reaction mimicking the complex time evolution of the pattern.

We will study slightly less complicated patterns, starting with se-
quences of numbers, — and we’ll verify conjectures about patterns.
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Sequences: Counting your ancestors...

Imagine you want to trace down your family tree, and write down all

your ancestors.

First, there is you — the center of the universe as we know it.

You have two parents, 4 grand parents, 8 great-grand-parents, etc...
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Sequences: Counting your ancestors...

Generation (g) 1 2 3 4 5 6
Number of Ancestors | 2 4 8 16 32 64

ag =29 2t 22 23 2t 25 26

We can write down the sequence:
2, 4, 8, 16, 32, 64, 128, ...

The symbol “..." is called an ellipsis and is shorthand for “and so

forth” (showing that the sequence continues in a predictable way).

For a general generation g back, the number of ancestors in that
generation is

_ 98
ag = 2
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Sequences: Terminology

We write down a sequence (a set of elements written in a row)

ay, a2, ..., Gk, Qg41,---

the individual elements in the sequence are called terms, and the

element ay, is read “a-sub-k”. The k is called a subscript or index.

The term a; with the lowest subscript is called the initial term. If
the sequence is finite then the term aj with the highest subscript is
called the final term.

For the sequence above a; is the initial term, and there is no final

terms, since the ellipsis indicates an infinite sequence.

An explicit formula or general formula for a sequence is a rule
that shows how the values of aj depend on k. (This is not always

available.)
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Examples: Finding Terms Given by Explicit Formulas

Let the sequences a, b, and ¢ be defined by
k k-1

ap =2", k> 1, o= bzl = k22
then we have the following
k ay by Ck
1 2 1/2 —
2 4 2/3 1/2
3 8 3/4 2/3
4 16 4/5 3/4
5 32 5/6 4/5
6 64 6/7 5/6
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Examples: Alternating Sequence

Let

Then,

60:1, 61:—1, 6221, 63:—1, C4=1, 052—1,

Even though the sequence is infinite, but it only takes a finite
number of values: {—1,+1}.
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Given a Sequence, Can We Find an Explicit Formula?

Ponder the sequence

Rewriting it a bit helps...

1 -1 1 -1 1 -1

We can now identify

and we can answer the Sunday-Newspaper-Puzzle-Question “what

" o1
comes next?’ — The answer is 19"
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What it the Next Term?

Ponder this sequence

4, 14, 23, 34, 42,
What is the next term?
Any New Yorkers in the audience?

These are NYC subway stops (weekdays only) on the F-line — the
next stop is on 47th Street.

Moral: Not every sequence (even if it makes sense) can be described

with an explicit formulal
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Diverging Sequences

Two sequences can start out the same, but diverge (have different
values) later...

Consider the sequence of odd numbers greater than 1
3,5, 7,9, 11, ...
and the sequence of primes greater than 2

3,5 7, 11, 13, ...

The first three terms are the same, but then they differ...

Sequences and Mathematical Induction: Sequences — p. 11/21

Sums of Sequences

One thing you're frequently asked to do is to compute the sum of the

terms in a sequence...
s=a;+az+az+...+ay, (finite sum)
t=0b;+by+bs+ ..., (infinite sum)

We use the following short-hand notation for the sums above:
n o0
s = Z ag, t= Z b;j.
k=1 Jj=1

We call the sum from the lowest subscript (lower limit) to the highest
subscript (upper limit) [possibly co].

History: According to Epp, the use of the Greek letter sigma (X) to denote
summation was introduced by Joseph Louis Lagrange in 1772. However,
according to O'Connor and Robertson (see “Mathematics Personae” on the
class web-page) it was introduced in 1755 by Leonhard Euler.
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Know What the Short-Hand Means! HW/Test Warning!

4
Compute the sum Zkz?’ :
k=1

4
Zk3:13+23+33+43:1+8+27+64:100.
k=1

Write the following sum in compact form, using the summation

“Telescoping Sums”

Sometimes the sum of the terms simplify greatly since terms, or
part of terms may cancel each other. — The sum "“telescopes”

(compresses) down to only a few remaining terms... For example

S[E B _qL_2) 2 8] 13 4]
k:1k+1 E+2| |2 3 3 4 4 5

we notice that the second part of the a; term gets canceled out by the

first part of the aj4, term (its successor). The whole sum telescopes

notation
1 2 3 n+1
I RN, SRR down to .
n n+l n+2 2n Z[ k k—i—l]_l n+1
LR lk+1 k+2] 2 n+2
k=0 k+mn where the only non-canceled parts are the first part of the initial term
term, and the second part of the final term. (This is sometimes quite
useful in proving complicated theorems... e.g. in Math 693b.)
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“Dummy Variables” (Place-holder) Changes of Variable

Consider the two sums

3
> VE=vVi+v2+V3
k=1

and

Vi=V1i+V24+V3

1

3
Jj=

Clearly,

3 3

DY

k=1 j=1
The symbol used to represent the index of a summation can
be replaced by any other symbol, as long as the replacement

is made in each location where the symbol occurs. The index-

symbol is frequently referred to as a dummy variable.
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If you have a summation

Z(k:+1)(k+2) IR R i TPy

k=1

you can introduce the change of variables j = k+1, (k=j—1)
and get the (equivalent) summation

"2 T T i)ty

1~

% Vi—1 1 vn

245G+
This may seem like a silly exercise, but sometimes it is really helpful
to transform the summation — if you can show that your summation
is equivalent to a summation for which you know the value, you're

done!
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Notation: Products of Sequences

We use the Greek (capital) letter IT to denote products, e.g.

4
Hk:2:12~22-32~42:1'4-9-16:576

More generally

Properties of Summations and Products

The following properties hold for summations and products:

Theorem: If ap,, ama1, @mao, --- and by, byi1, byya, ... are
sequences of real numbers and ¢ € R, then the following equations

hold for any integer n>m:

k:m
n
Hak:am‘am+l'-~-'an—1'an 2. ¢ Zakzzc ay
k=m k=m
n n n
k=m k=m k=m
We will prove these results later, when we talk about recursion; for
now, they enable us to manipulate sums and products.
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Definition of n factorial (n!) Playing With Factorials
The product of all consecutive integers up to a given integer occurs n o | value | n Al Value
!n many mat|.1emat|ca| forrrmlas — .therefore it has been designated 1 1 11 s 1.2.3.4.5-6 720
its own notation — factorial notation 9 1.9 ol 7 1.2.3.4.5.6.7 5,040
3 1-2.3 6 8 1-2.3-4-5-6-7-8 40,320
Definition: For all positive integers n, the quantity n factorial, 4 1-2-3-4 24 || 9 1-2.3-4-5-6-7-8-9 362,880
denoted n!, is defined to be the product of all integers from 1 to 5/1-2-3-4-5 120 | 10 | 1-2-3-4-5-6-7-8-9-10 | 3,628,800
n:
Note that

nl=n-n—1)-n—-2)-...-3-2-1

Further zero factorial is defined to be 1:

or=1

Note: The definition 0! = 1 is for convenience.
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5:6-7-8-9-10 =

.9. |
1-2-3- 5263 8910:&:1517200.

and for integers n > 0:

1 ifn=0
n-(n—1 ifn>0

n! =
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Homework #6 — Due Friday 10/27 /2006, 12noon, GMCS-587 Final Version

We covered a lot of definitions and terms today — the sooner you

make them your “friends,” the better!

Epp, 3rd Edition:
4.1.3, 4.1.7, 4.1.27, 4.1.36, 4.1.52, 4.1.60

Epp, 2nd Edition:
4.1.3, 4.1.7, 4.1.24, —, 4.1.39, 4.1.46

Next Time: Mathematical Induction — “Proof by sequence.”

If you do not have the 3rd edition, it is your
responsibility to seek out the “missing” questions.

— Phone-a-Friend, or come to office hours!
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