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Last Time: Sequen
esLast time we talked about sequen
es, and introdu
ed quite a bit ofterminology. Some new words in our vo
abulary:sequen
e A list of elements (numbers) arranged in a linearfashion; su
h that ea
h member 
omes either before, orafter, every other member, and the order of members isimportant.term An individual element ak in a sequen
e.index The index / subs
ript k in the term ak. It indi
ates thethe term's lo
ation in the sequen
e.initial term The term in a sequen
e with the lowest index.�nite sequen
e A sequen
e with a �nite number of terms.in�nite sequen
e A sequen
e with in�nitely many terms.�nal term In a �nite sequen
e, the term with the largest index.expli
it formula An expression for the terms ak, using k only. (No de-penden
e on pre
eding terms.) [also: General Formula℄.
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Sequen
es: The Collatz Conje
ture 1 of 2Consider the following sequen
e: Given an initial term a1 ∈ Z
+, wede�ne the rest of the sequen
e as follows:

an+1 =







an/2 if an is even

3an + 1 if an is odd

We noti
e that if ak = 1, then

ak+1 = 4, ak+2 = 2, ak+3 = 1and we end up 
y
ling through the values {1,4,2} forever.

In 1937 L. Collatz 
onje
tured �∀a1 ∈ Z
+, the sequen
e will rea
hthe {1,4,2}-
y
le.�

The proof is left as a homework exer
ise... (Not!)
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Sequen
es: The Collatz Conje
ture 2 of 2The Collatz 
onje
ture is another example of a mathemati
al questionthat is easy to ask (it almost looks like a homework / test problem),but very hard to answer.There is still no proof (or 
ounter-example) to the 
onje
ture.In 1972 H. Conway (Prin
eton) showed �if the sequen
e enters into an-other 
y
le, that 
y
le must have at least 400 di�erent numbers.�In 1985 J.C. Lagarias extended the bound from 400 to 275,000.In 1999 Tomás Oliveira e Silva showed (using a 
omputer) that theCollatz 
onje
ture is true for starting values less than 2.7 · 1016.2005 (Mar
h) Eri
 Roosendaal (and 
ollaborators) have independently
he
ked up to 322 · 250.2006 (May) 10 · 258...Web referen
es: (http://www-personal.ksu.edu/∼k
onrow/allgifs.html)(http://www.ieeta.pt/∼tos/3x+1.html)
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Mathemati
al Indu
tion: Introdu
tionMathemati
al Indu
tion is a proof te
hnique used to validate
onje
tures about statements that follow de�nite sequential patterns.Brief history:The �rst known use of mathemati
al indu
tion: Fran
es
o Mau-roli
o (1575); In the 17th 
entury Pierre de Fermat (�the Fermat�)and Blaise Pas
al (you may re
all Pas
al's Triangle?) used thete
hnique. Augustus De Morgan (remember his laws for logi
?)gave mathemati
al indu
tion its name and des
ribed the pro
essrigorously (1883).The Idea (informally):If we know how to solve a problem (prove a statement) of size k,and we 
an use that knowledge to solve a problem of size k+1, andwe 
an solve a problem of a parti
ular size, e.g. k = 1, then we 
ansolve a problem of any size.
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Mathemati
al Indu
tion Formal Statement

The Prin
iple of Mathemati
al Indu
tion:Let P (n) be a predi
ate that is de�ned for integers n, and let abe a �xed integer. Suppose the following two statements are true:1. P (a) is true.2. For all integers k ≥ a, if P (k) is true, then P (k + 1) istrue, i.e.

∀k ∈ Z, k ≥ a, P (k) ⇒ P (k + 1)Then the statement
∀n ≥ a, P (n)is true.

2. is referred to as the indu
tive hypothesis.
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Mathemati
al Indu
tion Another ViewConne
ting to our logi
 �toolbox� we 
an think of the se
ond suppo-sition as a 
hain of impli
ations:

· · · ⇒ P (k) ⇒ P (k + 1) ⇒ P (k + 2) ⇒ · · · ⇒ P (k + n) ⇒ · · ·We use the �rst supposition (that P (a) is true for a parti
ular a) andUniversal Modus Ponens to show:

∀k ∈ Z, P (k) ⇒ P (k + 1)

P (a), for a parti
ular a ∈ Z

∴ P (a + 1)Now that we have established that P (a + 1) is true, we 
an useUniversal Modus Ponens again:

∀k ∈ Z, P (k) ⇒ P (k + 1)

P (a + 1), for a parti
ular a ∈ Z

∴ P (a + 2)And so it goes forever.....
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Mathemati
al Indu
tion How to Use It?To prove something by mathemati
al indu
tion:

Step 1: [The basis step step℄First, prove that P (a) is true for a parti
ular integer a.Step 2: [The indu
tive step℄Prove for all integers k ≥ a: if P (k) is true, then P (k + 1)is true.To show the indu
tive step 
orre
tly, we assume that k is a parti
ular,but arbitrarily 
hosen integer greater than or equal to a. � We usethe method of �generalizing from the generi
 parti
ular.�
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Examples!!! � Making Change 1 of 2S
enario: In its in�nite wisdom, the Federal Reserve has de
idedto stop making pennies (1
 
oins) and have introdu
ed a 2
 
oin(featuring a famous mathemati
ian?) People are worried that theywill no longer be able to get 
orre
t 
hange � it turns out we 
an give
orre
t 
hange ex
ept for 1
 and 3
...

Proposition: Giving Change �Let P (n) be the property �n
 
an be obtained using 2
 and 5

oins.� Then P (n) is true for all integers n ≥ 4.

Proof:Step 1 The property is true for n = 4, sin
e 4
 = 2
 + 2
.
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Examples!!! � Making Change 2 of 2

Proposition: Giving Change �Let P (n) be the property �n
 
an be obtained using 2
 and 5

oins.� Then P (n) is true for all integers n ≥ 4.

Proof:Step 1 The property is true for n = 4, sin
e 4
 = 2
 + 2
.Step 2 Suppose P (k) is true, i.e. k
 
an be obtained using 2
 and 5

oins for some integer k ≥ 4. We have 2 
ases:1: In this 
ase, we have at least one 5
 
oin among the onesthat make up k
. Repla
e it by three 2
 
oins, and the resultis 
orre
t 
hange for (k + 1)
.2: In this 
ase, we have no 5
 
oin among the ones that makeup k
. However, sin
e k ≥ 4 we must have at least two 2

oins; repla
e two 2
 
oins by a 5
 
oin, and the result is
orre
t 
hange for (k + 1)
.Thus in either 
ase, we 
an make 
orre
t 
hange for (k + 1)
. �
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Example: ∑n
k=1 k = n(n+1)

2

1 of 2

Proposition: ∀n ∈ Z, n ≥ 1, n∑

k=1

k =
n(n + 1)

2
.

Proof:Basis Step: For n = 1: 1 = 1(1+1)
2 = 2

2 = 1.Indu
tive: Suppose the formula is true for n = m, i.e.
m∑

k=1

k =
m(m + 1)

2
.

Now, for n = (m + 1) we have
m+1∑

k=1

k = (m + 1) +

m∑

k=1

k = (m + 1) +
m(m + 1)

2
.

[
ontinued...℄
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Example: ∑n
k=1 k = n(n+1)

2

2 of 2We have:
m+1∑

k=1

k =
m(m + 1)

2
+ (m + 1).

A little bit of algebra �

m+1∑

k=1

k =
m(m + 1)

2
+ (m + 1)

=
m(m + 1)

2
+

2(m + 1)

2

=
m(m + 1) + 2(m + 1)

2

=
(m + 2)(m + 1)

2
=

(m + 1)(m + 2)

2This shows that P (m) ⇒ P (m + 1).Sin
e we have proved both the basis and indu
tive steps, the 
on
ludethat the proposition is true. �
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A Tall Tale about ∑n
k=1 k = n(n+1)

2

?Dis
laimer: This is the way I heard the story...Carl Friedri
h Gauss (1777�1855), one of the most prominent math-emati
ians in history, was given the task to sum up all integers from1 to 100 by his tea
her. � Supposedly to keep this smart/annoyingstudent quiet for a while.Gauss qui
kly 
ome up with the answer: 5,050.He dedu
ed the formula we just proved by pairing numbers (or foldingthe sequen
e): 1 2 3 · · · 49 50100 99 98 · · · 52 5150 pairs, ea
h with a sum of 101 ⇒ 50 · 101 = 5, 050.Here, of 
ourse 50 = n/2, and 101 = (n + 1).
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Example: Geometri
 Sums 1 of 2

Proposition: For any real number r 6= 1, and any non-negativeinteger n,

n∑

i=0

ri =
rn+1 − 1

r − 1
.

Proof: Suppose r is a parti
ular but arbitrarily 
hosen real numbernot equal to 1.Basis: For n = 0 we have:
1 = r0 =

0∑

i=0

ri =
r0+1 − 1

r − 1
=

r − 1

r − 1
= 1.

Hen
e the formula is true for n = 0.
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Example: The Sum of a Geometri
 Sum 2 of 2Indu
tive: Suppose the formula is true for n = k, i.e. for k ≥ 0

k∑

i=0

ri =
rk+1 − 1

r − 1
.

Now

k+1∑

i=0

ri =
rk+1 − 1

r − 1
+ rk+1 =

rk+1 − 1

r − 1
+

rk+1(r − 1)

r − 1

=
r
k+1 − 1 + rk+2−r

k+1

r − 1
=

rk+2 − 1

r − 1This proves the indu
tive step P (k) ⇒ P (k + 1).

Together, the basis step and the indu
tive step show that theproposition is true. �
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Example: ∀n ∈ Z
+, 3 | (22n − 1) 1 of 2

Proposition: ∀ integers n ≥ 1, (22n − 1) is divisible by 3.

Proof: Basis step, n = 1 � The statement is true for n = 1 sin
e

22·1 − 1 = 22 − 1 = 4− 1 = 3 = 3 · 1.Indu
tive step: Suppose 22k − 1 is divisible by 3. (THE INDUCTIVE

HYPOTHESIS) � Then,

22(k+1) − 1 = 22k+2 − 1 = 22 · 22k − 1 = 4 · 22k − 1

= 3 · 22k + (22k − 1) = {by assumption, for some integer m}

= 3 · 22k + 3 ·m = 3 · (22k + m)
︸ ︷︷ ︸

an integerThis shows that (22(k+1)−1) is divisible by 3. Together the basis stepand the indu
tive step show that the proposition is true. �
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Example: ∀n ∈ Z, n ≥ 3, (2n + 1) < 2n

Proposition: ∀ integers n ≥ 3, (2n + 1) < 2n.

Proof: Basis step, the inequality is true for n = 3 sin
e

(2 · 3 + 1) = 7 < 8 = 23.Indu
tive step: Suppose (2k + 1) < 2k for some integer k ≥ 3 (THE

INDUCTIVE HYPOTHESIS). [WE MUST SHOW (2(k + 1) + 1) < 2k+1℄

2(k + 1) + 1 = (2k + 1) + 2

< 2k + 2, by the hypothesis

< 2k + 2k, since 2 < 2k, k > 1

= 2 · 2k = 2k+1This is what we needed to show. Basis & Indu
tive steps prove thatthe proposition is true. �

Sequences and Mathematical Induction: Mathematical Induction – p. 17/38

Mathemati
al Indu
tion � SummaryTo show something by mathemati
al indu
tion: �

1. Show that the statement (P (n)) is true for the basis 
ase P (a),where a is a parti
ular integer.2. Assume that P (k) is true for some integer k, show that P (k +1)is true.Together 1 and 2 show that P (n) is true for n ≥ a.

�Mathemati
s is not a spe
tator sport�(Stanley Osher, Professor of Mathemati
s, UCLA)

⇒ Homework follows!Next: Strong mathemati
al indu
tion and the well-orderingprin
iple.
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Homework #7 � Due Friday 11/3/2006, 12noon, GMCS-587 Version 1

2(Epp v3.0)Epp-4.2.1 , Epp-4.2.3 , Epp-4.2.10 , Epp-4.2.31

(Epp v2.0)Epp-4.2.1 , Epp-4.2.3 , Epp-4.2.9 , Epp-4.2.28
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Re
ap... � Mathemati
al Indu
tionWe started talking about the prin
iple of mathemati
al indu
tion.The typi
al use of the prin
iple is when we want to show that aparti
ular predi
ate P (n) is true for all integers n greater than somelowest integer a.The �rst step is to show that the predi
ate is indeed true for a, i.e.we 
he
k the basis 
ase P (a).The se
ond step (indu
tive step) involves showing that if we assumethat P (k) is true for some k ≥ a, then P (k + 1) must also be true(by known theorems, de�nitions, algebra, and laws of logi
).Together these two steps show that P (k) is true ∀k ≥ a.
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Revisited Example: ∑n
j=1 j = n(n+1)

2

1 of 3

Proposition: ∀n ∈ Z, n ≥ 1, n∑

j=1

j =
n(n + 1)

2
.

We have already proved this... But let's revisit the proof and try toadd some extra 
larity!

Proof:[First we must show the basis case, i.e that the formula is true for n = 1.℄Basis Step: For n = 1:

1∑

j=1

j = 1, and 1 · 2

2
= 1

so, the formula holds for n = 1.
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Revisited Example: ∑n
j=1 j = n(n+1)

2

2 of 3

Proposition: ∀n ∈ Z, n ≥ 1, n∑

j=1

j =
n(n + 1)

2
.

Proof Continued:[Next we must show that assuming P (k) holds, then P (k + 1) holds.℄Indu
tive: Suppose the formula is true for n = k, i.e.
k∑

j=1

j = 1 + 2 + . . . + (k− 1) + k =
k(k + 1)

2
.

Now, for n = (k + 1) we have
k+1∑

j=1

j = 1 + 2 + . . . + (k− 1) + k
︸ ︷︷ ︸

We know/assume this from n = k

+(k + 1) =
k(k + 1)

2
︸ ︷︷ ︸

known/assumed

+(k + 1).
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Revisited Example: ∑n
j=1 j = n(n+1)

2

3 of 3

At this point, we know : k+1∑

j=1

j =
k(k + 1)

2
+ (k + 1).

[Our goal is to show that

k+1∑

j=1

j =
(k + 1)(k + 2)

2
.

]

A little bit of algebra �

k+1∑

j=1

j =
k(k + 1)

2
+ (k + 1) =

k(k + 1)

2
+

2(k + 1)

2

=
k(k + 1) + 2(k + 1)

2
=

(k + 2)(k + 1)

2
=

(k + 1)(k + 2)

2
.

This shows that P (k) ⇒ P (k + 1).Sin
e we have proved both the basis P(1), and indu
tive

P(k) ⇒ P(k + 1) steps, we 
on
lude that the proposition is true forall n ≥ 1. �
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The Prin
iple of Strong Mathemati
al Indu
tion (PSMI)

The Prin
iple of Strong Mathemati
al Indu
tion:Let P (n) be a predi
ate that is de�ned for integers n, and let aand b be a �xed integers, with a ≤ b. Suppose the following twostatements are true:1. P (a), P (a + 1), . . . , P (b) are all true.2. For all integers k > b, if P (k) is true, then P (k + 1) istrue. [Inductive Step℄Then the statement

∀n ∈ Z, n ≥ a, P (n)is true.Clearly, if a = b, then the prin
iple of strong mathemati
al indu
tionredu
es to the ordinary prin
iple of mathemati
al indu
tion.
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Example: Divisibility by a Prime 1 of 2

Proposition: Any integer greater than 1 is divisible by a primenumber.Proof (by use of PSMI): [As always we have to show the basis case...

Here is it enough to show for n = 2. (Why?)℄The divisibility property holds for n = 2 sin
e 2 is a prime numberand 2|2.

The Inductive Hypothesis: Let k > 2, and suppose that for all integers iwith 2 ≤ i < k, i is divisible by a prime number.Now, k is either a prime (in whi
h 
ase it is divisible by itself), or a
omposite � if the latter is true, then k = a · b, where 2 ≤ a < kand 2 ≤ b < k. By the indu
tive hypothesis a (and b) is divisible bya prime, so it follows that k is divisible by that same prime. Hen
e,regardless of whether k is prime or 
omposite, it is divisible by a prime.

�
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Example: Divisibility by a Prime 2 of 2Is may seem like something is wrong with this proof...Did we really use PSMI??? � First, we only showed one base
ase! � Se
ond, we used an indu
tive hypothesis whi
h may seemunfounded!In this instan
e PSMI works like an a

ordion! ... (???)The proved basis 
ase n = 2 enables us to apply the theorem to

n = 3 (whi
h shows P (3) sin
e 3 is a prime); after that P (2) and

P (3) serve as proved basis 
ases, and we 
an apply to n = 4 (whi
hshows P (4) sin
e 4 = 2 · 2); from this point P (2), P (3) and P (4)serve as basis 
ases... repeat, repeat, repeat...Note that we really need all the previous P (i), 2 ≤ i < k basis 
asesto show P (k).
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Example: The Properties of a Sequen
e 1 of 4We de�ne a sequen
e a1, a2, . . . as follows:

a1 = 0, a2 = 2, ak = 3 · a⌊ k/2 ⌋ + 2, k ≥ 3We are going to prove that all the terms an, n ≥ 1 are even, but �rstwe look at the �rst 8 terms of the sequen
e:

a1 = 0

a2 = 2

a3 = 3a⌊ 3/2 ⌋ + 2 = 3a1 + 2 = 3 · 0 + 2 = 2

a4 = 3a⌊ 4/2 ⌋ + 2 = 3a2 + 2 = 3 · 2 + 2 = 8

a5 = 3a⌊ 5/2 ⌋ + 2 = 3a2 + 2 = 3 · 2 + 2 = 8

a6 = 3a⌊ 6/2 ⌋ + 2 = 3a3 + 2 = 3 · 2 + 2 = 8

a7 = 3a⌊ 7/2 ⌋ + 2 = 3a3 + 2 = 3 · 2 + 2 = 8

a8 = 3a⌊ 8/2 ⌋ + 2 = 3a4 + 2 = 3 · 8 + 2 = 26
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Example: The Properties of a Sequen
e 2 of 4

0 10 20 30 40
k --- The Index

0

50

100

150

200

250

300

a-
su

b
-k

 -
--

 T
h

e 
T

er
m

The First 40 terms in the sequence

Figure: The sequence is not all that exciting... Each plateau has twice

the number of terms of the previous one, and the levels follow the rule

Ln = 3 · Ln−1 + 2, n ≥ 3 where L1 = 0 and L2 = 2.

Sequences and Mathematical Induction: Mathematical Induction – p. 28/38



Example: The Properties of a Sequen
e 3 of 4Now that we have a �feeling� for the sequen
e, lets prove that all theterms are even...
Proof: [We want to prove that the property “P (n) = ’an is even’ ” ∀ n ≥ 1.℄Basis 
ase: The property holds for n = 1 and n = 2, sin
e �P (1)= 'a1 is even' ' is true (sin
e a1 = 0), and �P (2) = 'a2 is even' ' istrue (sin
e a2 = 2).Indu
tive step: Let k > 2 be an integer, and suppose that

ai is even ∀i: 1 ≤ i < k. [The Inductive Hypothesis℄

[We must show that ak is even℄ By the de�nition of the sequen
e

ak = 3 · a⌊ k/2 ⌋ + 2, ∀k ≥ 3
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Example: The Properties of a Sequen
e 4 of 4Proof 
ontinued: By the de�nition of the sequen
e
ak = 3 · a⌊ k/2 ⌋ + 2, ∀k ≥ 3Now, a⌊ k/2 ⌋ is even by the indu
tive hypothesis, sin
e k > 2 and

1 ≤ ⌊ k/2 ⌋ < k.By our usual argument a⌊ k/2 ⌋ = 2 ·m, for some parti
ular integer m,and

ak = 3 · a⌊ k/2 ⌋ + 2 = 3 · 2 ·m + 2 = 2 · (3 ·m + 1
︸ ︷︷ ︸

an integer

)

and it follows that ak is even.Sin
e we have proved the basis and indu
tive steps of the strongmathemati
al indu
tion, we 
on
lude that the given statement is true.

�
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The Well-Ordering Prin
iple of the Integers

The Well-Ordering Principle of the IntegersLet S be a set 
ontaining one or more integers all of whi
h aregreater than some �xed integer. Then S has a least element.

The well-ordering prin
iple, the prin
iple of mathemati
alindu
tion and the prin
iple of strong mathemati
al indu
tionare equivalent.
� It 
an be shown that if any one of them is true, then so areboth of the others.The proofs are given on slides 37 and 38, but you are not required toknow them.
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Example: Finding Least Elements 1 of 2Problem: For ea
h set, if the set has a least element, state what itis. If not, explain why the well-ordering prin
iple is not violated.(a) The set of all positive real numbers.(b) The set of all non-negative integers n su
h that n2 < n.(
) The set of all non-negative integers of the form 46 − 7k,where k is an integer.Solutions:(a) The is no least real number. If x is a positive real number,then so is x/2, and x/2 < x. The well-ordering prin
iple onlyapplies to integers.(b) The set of non-negative integers for whi
h n2 < n is empty .An empty set has no least member. The well-orderingprin
iple does not apply to empty sets.
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Example: Finding Least Elements 2 of 2Problem: For ea
h set, if the set has a least element, state what itis. If not, explain why the well-ordering prin
iple is not violated.(
) The set of all non-negative integers of the form 46 − 7k,where k is an integer.Solutions:(
) Consider the values of 46− 7k for various values of k:

k . . . −3 −2 −1 0 1 . . . 5 6 7 . . .

46− 7k . . . 67 60 53 46 39 . . . 11 4 −3 . . .The table suggests that

46− 7k < 0 for k ≥ 7, and 46− 7k ≥ 46 for k ≤ 0.From the other values in the table it is 
lear that 4 is the leastnon-negative number of the form 46−7k. It is a
hieved when

k = 6.
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Proving the Quotient-Remainder Theorem (Existen
e)The Well-Ordering Prin
iple is at the 
ore of the proof of:

Theorem: ∀n ∈ Z, and ∀d ∈ N, ∃ unique q, r ∈ Z su
h that
n = d · q + r, and 0 ≤ r < d

Proof: Let n be an integer, and d be a positive integer. Let Sbe the set of all non-negative integers of the form (n − d · k),where k is an integer. This set has at least one element: [If n is

non-negative, then n − 0 · d = n ≥ 0 and hence n ∈ S. If n is negative

(n − n · d) = n · (1 − d) ≥ 0 and hence (n − n · d) ∈ S.℄ By thewell-ordering prin
iple, S 
ontains a least element r. Then for somespe
i�
 integer k = q, (n − d · q = r) [since every member of S can be

written in this form℄ [Continued...℄
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Proving the Quotient-Remainder Theorem (Existen
e)Proof: Let n be an integer, and d be a positive integer. Let S be the set ofall non-negative integers of the form (n− d · k), where k is an integer. Thisset has at least one element: By the well-ordering prin
iple, S 
ontainsa least element r. Then for some spe
i�
 integer k = q, (n − d · q = r).Adding (d · q) to both sides gives

n = d · q + r.Further, r < d [Suppose r ≥ d, then

n− d · (q + 1) = n− d · q − d = r − d ≥ 0,

and so n − d · (q + 1) would be a non-negative integer in S that would be

smaller than r. But r is the smallest integer in S. This contradiction shows that

r < d.℄ We have shown that there exists integers r and q for whi
h,

n = d · q + r, and 0 ≤ r < d. �
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Homework #7 � Due Friday 11/3/2006, 12noon, GMCS-587 Final Version(Epp v3.0)Epp-4.2.1 , Epp-4.2.3 , Epp-4.2.10 , Epp-4.2.31Epp-4.3.5Epp-4.4.1 , Epp-4.4.2 , Epp-4.4.4 , Epp-4.4.22

(Epp v2.0)Epp-4.2.1 , Epp-4.2.3 , Epp-4.2.9 , Epp-4.2.28Epp-4.3.5Epp-4.4.1 , �, Epp-4.4.4 , Epp-4.4.11
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Indu
tion Implies Well-OrderingProof: Assume the Indu
tion Prin
iple exists for N. Let theset J ⊂ N and J 6= 6O. Suppose J has no least element. Let

S = {n ∈ N : {1, 2, ...} ∩ J = 6O}. Note that 1 6∈ J sin
e J wouldhave a least element. Thus, 1 ∈ S. Suppose that n ∈ S, then

{1, 2, ...n} ∩ J 6= 6O. Consider n + 1: n + 1 6∈ J sin
e otherwise

n + 1 would be the least element of J . So, n + 1 ∈ S. Hen
e, by theindu
tion prin
iple, S = N. Thus, J has no elements (J = 6O) and sowe have a 
ontradi
tion. �

Here N is the set of natural numbers, and 6O is the empty set. ∩denotes the interse
tion of two set, i.e. the 
ommon members of thetwo sets.
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Well-Ordering Implies Indu
tionProof: Let P(n) be a proposition de�ned for ea
h N. Suppose
P (1) is true and P (n) ⇒ P (n + 1). If P (n) does not hold forall n ∈ N, then there exists a non-empty set X ⊂ N de�ned as
{n ∈ N : P (n) is false}.

Given the Well-Ordering Prin
iple, there exists an m ∈ X that is theleast element of X. Let B be the set {n ∈ N : 1 ≤ n ≤ m}. Sin
e

P (1) is true and 1 ∈ B we 
an then apply P (n) ⇒ P (n + 1) to Bfrom 1 to m proving P (n) for ea
h element of B in
luding m. Sin
e

m ∈ B, P (m) is true but sin
e m ∈ X, P (m) is false. Sin
e this isa 
ontradi
tion, X must be empty and, thus, P (n) holds for all of N.So, if P (1) and P (n) ⇒ P (n + 1), then P (n) holds for all of N. �
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