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Last Time: Sequences

Last time we talked about sequences, and introduced quite a bit of

terminology. Some new words in our vocabulary:

sequence A list of elements (numbers) arranged in a linear
fashion: such that each member comes either before, or
after, every other member, and the order of members is

Important.
term An individual element a; in a sequence.
index The index / subscript k in the term ay. It indicates the

the term’s location in the sequence.
initial term The term in a sequence with the lowest index.
finite sequence A sequence with a finite number of terms.
infinite sequence A sequence with infinitely many terms.
final term In a finite sequence, the term with the largest index.

explicit formula An expression for the terms ay, using k only. (No de-
pendence on preceding terms.) [also: General Formula].
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Sequences: The Collatz Conjecture 1 of 2

Consider the following sequence: Given an initial term a1 € Z™, we

define the rest of the sequence as follows:

an/2  ifayiseven
An+1 =
3a, + 1 if a,, is odd

We notice that if ar, = 1, then
Ak+1 — 47 Ak+2 = 27 Ak+3 = 1

and we end up cycling through the values {1,4,2} forever.

In 1937 L. Collatz conjectured ‘Va; € Z™T, the sequence will reach
the {1,4,2}-cycle.”

The proof is left as a homework exercise... (Not!)
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Sequences: The Collatz Conjecture 2 of 2

The Collatz conjecture is another example of a mathematical question
that is easy to ask (it almost looks like a homework / test problem),

but very hard to answer.

There is still no proof (or counter-example) to the conjecture.

In 1972 H. Conway (Princeton) showed “if the sequence enters into an-

other cycle, that cycle must have at least 400 different numbers.”
In 1985 J.C. Lagarias extended the bound from 400 to 275,000.

In 1999 Tomas Oliveira e Silva showed (using a computer) that the
Collatz conjecture is true for starting values less than 2.7 - 1019.

2005 (March) Eric Roosendaal (and collaborators) have independently
checked up to 322 - 2°Y.

2006 (May) 10 28...

Web references:  (http://www-personal.ksu.edu/~kconrow/allgifs.html)
(http://www.ieeta.pt/~tos/3x+1.html)

Sequences and Mathematical Induction: Mathematical Induction — p. 4/38


http://www-personal.ksu.edu/~kconrow/allgifs.html
http://www.ieeta.pt/~tos/3x+1.html

Mathematical Induction: Introduction

Mathematical Induction is a proof technique used to validate

conjectures about statements that follow definite sequential patterns.

Brief history:

The first known use of mathematical induction: Francesco Mau-
rolico (1575); In the 17th century Pierre de Fermat (“the Fermat”)
and Blaise Pascal (you may recall Pascal’'s Triangle?) used the
technique. Augustus De Morgan (remember his laws for logic?)
gave mathematical induction its name and described the process
rigorously (1883).

The Idea (informally):

If we know how to solve a problem (prove a statement) of size £,
and we can use that knowledge to solve a problem of size k+1, and
we can solve a problem of a particular size, e.g. £k = 1, then we can

solve a problem of any size.
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Mathematical Induction Formal Statement

The Principle of Mathematical Induction:
Let P(n) be a predicate that is defined for integers n, and let a

be a fixed integer. Suppose the following two statements are true:

1. P(a) is true.

2. For all integers k > a, if P(k) is true, then P(k + 1) is

true, I.e.
Vk e Z,k >a, Plk)= P(k+1)
Then the statement

Vn > a, P(n)

IS true.

2. is referred to as the inductive hypothesis.
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Mathematical Induction Another View

Connecting to our logic “toolbox” we can think of the second suppo-

sition as a chain of implications:
--=>Pk)=Pk+1)=Pk+2)=---=Plk+n)=---

We use the first supposition (that P(a) is true for a particular a) and
Universal Modus Ponens to show:

Vk € Z, P(k) = P(k+1)

P(a), for a particular a € Z

P(a+1)
Now that we have established that P(a + 1) is true, we can use

Universal Modus Ponens again:
Vk € Z, P(k) = P(k+1)
P(a + 1), for a particular a € Z
P(a+2)

And so it goes forever.....
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Mathematical Induction How to Use It?

To prove something by mathematical induction:

Step 1: [The basis step step]

First, prove that P(a) is true for a particular integer a.

Step 2: [The inductive step]
Prove for all integers k > a: if P(k) is true, then P(k+1)

Is true.

To show the inductive step correctly, we assume that k is a particular,
but arbitrarily chosen integer greater than or equal to a. — We use

the method of “generalizing from the generic particular.”

Sequences and Mathematical Induction: Mathematical Induction — p. 8/38



Examples!!! — Making Change 1 of 2

Scenario: In its infinite wisdom, the Federal Reserve has decided
to stop making pennies (1lc coins) and have introduced a 2¢ coin
(featuring a famous mathematician?) People are worried that they
will no longer be able to get correct change — it turns out we can give

correct change except for 1¢ and 3c...

Proposition: Giving Change —
Let P(n) be the property “nc can be obtained using 2¢ and 5c

coins.” Then P(n) is true for all integers n > 4.

Proof:
Step 1 The property is true for n = 4, since 4¢c = 2¢ + 2c.
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Examples!!! — Making Change 2 of 2

Proposition: Giving Change —
Let P(n) be the property “nc can be obtained using 2¢ and 5¢

coins.” Then P(n) is true for all integers n > 4.

Proof:
Step 1 The property is true for n = 4, since 4¢ = 2¢ + 2¢.

Step 2 Suppose P(k) is true, i.e. kc can be obtained using 2¢ and 5¢
coins for some integer k£ > 4. We have 2 cases:
1: In this case, we have at least one 5¢ coin among the ones
that make up kc. Replace it by three 2¢ coins, and the result
is correct change for (kK + 1)c.

2: In this case, we have no 5¢ coin among the ones that make
up kc. However, since £ > 4 we must have at least two 2¢
coins; replace two 2¢ coins by a 5¢ coin, and the result is
correct change for (k 4 1)c.

Thus in either case, we can make correct change for (k + 1)c. I
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Example: >, k= "(”2“) 1 of 2

n(n+1)
5

mn
Proposition: Vn e Z, n>1, Z k =
k=1

Proof:
: : 1.1 1+ 2
Basis Step: Forn=1:.1=—-5—+=35=1.

Inductive: Suppose the formula is true for n = m, i.e.

= ~ m(m+1)
D h=—F—"

k=1

Now, for n = (m + 1) we have

m—+1 m
Zk:(m+1)+2k:(m+1)+m<m2+1>
k=1 k

=1

[continued.. ]
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Example: Y7 k= 2t 2 of 2

D)
We have:
m—+1
Z k= m(m2+ D + (m +1).
k=1
A little bit of algebra —
m—+1
Zk = m(m2+1) + (m+1)
k=1
. m(m+1) N 2(m +1)
N 2 2
 m(m+1)+2(m+1)
N 2
o (m+2)(m+1)  (m+1)(m+2)
- 2 - 2

This shows that P(m) = P(m + 1).

Since we have proved both the basis and inductive steps, the conclude

that the proposition is true. [J
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A Tall Tale about 37_ k="t 7

Disclaimer: This is the way | heard the story...

Carl Friedrich Gauss (1777-1855), one of the most prominent math-
ematicians in history, was given the task to sum up all integers from
1 to 100 by his teacher. — Supposedly to keep this smart/annoying

student quiet for a while.

Gauss quickly come up with the answer: 5,050.

He deduced the formula we just proved by pairing numbers (or folding

the sequence):

1 2 3 -+ 49 50
100 99 98 --- 52 b1

50 pairs, each with a sum of 101 = 50 - 101 = 5, 050.
Here, of course 50 = n/2, and 101 = (n + 1).
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Example: Geometric Sums 1 of 2

Proposition: For any real number » # 1, and any non-negative

Integer n,

T
ZTZ: r—1

1=0

Proof: Suppose r is a particular but arbitrarily chosen real number
not equal to 1.

Basis: For n = 0 we have:

; 7“0+1 1

1 =0 §Oj r-1_y
:’]" p— ’]" p— p— .
— r—1 r—1

Hence the formula is true for n = 0.
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Example: The Sum of a Geometric Sum 2 of 2

Inductive: Suppose the formula is true for n =k, i.e. for kK >0

k +1_q
1
ZT r—1

1=0
Now
il ) rk+l _q bt ptl 1 pEHl(p — 1)
: r—1 r—1 r—1
1=0
I.k—i—l —1 i Tk+2—rk+1 ,,J{:—I—Q —1
B r—1  or—1

This proves the inductive step P(k) = P(k + 1).

Together, the basis step and the inductive step show that the

proposition is true. []
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Example: Vn € Z*, 3| (2" — 1) 1 of 2

Proposition: V integers n > 1, (22" — 1) is divisible by 3.

Proof: Basis step, n — 1 — The statement is true for n = 1 since
221 1=22-1=4-1=3=3-1.

Inductive step: Suppose 22% — 1 is divisible by 3. (THE INDUCTIVE

HypoTHESIS) — Then,

22(k5—|—1)_1:22/<3—|—2_1:22‘22/{3_1:4.22]{3_1

= 3. 2% 4 (2?8 — 1) = {by assumption, for some integer m}

=3.22%13.m=3-(2*+m)

A\ 7
~

an integer

This shows that (22(*+1) —1) is divisible by 3. Together the basis step

and the inductive step show that the proposition is true. [
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Example: VneZ, n>3, 2n+1) <2

Proposition: Vintegersn >3, 2n+1) < 2™

Proof: Basis step, the inequality is true for n = 3 since
(2-34+1)=7<8=2%

Inductive step: Suppose (2k 4 1) < 2" for some integer k > 3 (THE
INDUCTIVE HYPOTHESIS). [WE MusT sHow (2(k + 1) 4 1) < 2FF1]

2k+1)+1 = (2k+1)+2
< 2k 42 by the hypothesis
< 2k 42k since2 < 28 k> 1
_ 9.9k _ 9k+1

This is what we needed to show. Basis & Inductive steps prove that

the proposition is true. [
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Mathematical Induction — Summary

To show something by mathematical induction: —

1. Show that the statement (P(n)) is true for the basis case P(a),

where a is a particular integer.

2. Assume that P(k) is true for some integer k, show that P(k+1)

IS true.

Together 1 and 2 show that P(n) is true for n > a.

“Mathematics is not a spectator sport”
(Stanley Osher, Professor of Mathematics, UCLA)

= Homework follows!

Next: Strong mathematical induction and the well-ordering

principle.
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Homework #7 — Due Friday 11/3/2006, 12noon, GMCS-587 Version %

(Epp v3.0)

Epp-4.2.1, Epp-4.2.3, Epp-4.2.10, Epp-4.2.31

(Epp v2.0)

Epp-4.2.1, Epp-4.2.3, Epp-4.2.9, Epp-4.2.28
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Recap... — Mathematical Induction

We started talking about the principle of mathematical induction.

The typical use of the principle is when we want to show that a
particular predicate P(n) is true for all integers n greater than some

lowest integer a.

The first step is to show that the predicate is indeed true for a, i.e.

we check the basis case P(a).

The second step (inductive step) involves showing that if we assume
that P(k) is true for some k > a, then P(k + 1) must also be true

(by known theorems, definitions, algebra, and laws of logic).

Together these two steps show that P(k) is true Yk > a.
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Revisited Example: ) | j = @ 1 of 3

n(n—l—l).

n
Proposition: Vn € Z,n > 1, Z]‘ = :

j=1

We have already proved this... But let’s revisit the proof and try to
add some extra clarity!

Proof:

[First we must show the basis case, i.e that the formula is true for n = 1.]

Basis Step: For n = 1:

1.2
=1 d — =1
Z] , an 2

so, the formula holds for n = 1.
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Revisited Example: ) | j = @ 2 of 3

n(n+1)
5

n
Proposition: Vn € Z, n > 1, Zj =
j=1

Proof Continued:
[Next we must show that assuming P (k) holds, then P(k + 1) holds.]

Inductive: Suppose the formula is true for n = k, i.e.

k
k(k+1
Y j=1+2+... +(k-1)+k= (; ),

j=1

Now, for n = (k + 1) we have

k+1
kik+1
Z] =142+, +(k—1)+k +(k+1) = | > ) +(k+1).
We know/assume this fromn = k kn\own,;’ssumjed
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Revisited Example: ) | j = n(ntl) 30of 3

2
k+1
. . _ k(£ 1)
At th t know: = k+1).
is point, we know j:zlj 5 + (k+1)
k+1
| - (k+1)(E+2)
[Our goal |stoshowthath— 5 :
g=1
A little bit of algebra —
k+1
. k(k+1 E(E+1) 2(k+1
Sy oo REED g gy o kD 20t
ot 2 2 2
kD) 2k+1) R4+ )E+F1) (k+1)(k+ 2)
B 2 B 2 B 2 '

This shows that P(k) = P(k + 1).

Since we have proved both the basis P(1), and inductive
P(k) = P(k + 1) steps, we conclude that the proposition is true for
all n > 1. O
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The Principle of Strong Mathematical Induction (PSMI)

The Principle of Strong Mathematical Induction:
Let P(n) be a predicate that is defined for integers n, and let a
and b be a fixed integers, with a < b. Suppose the following two

statements are true:

1. P(a), Pla+1), ..., P(b) are all true.

2. For all integers k > b, if P(k) is true, then P(k + 1) is
true. [Inductive Step]

Then the statement
Vn € Z, n>a,P(n)

IS true.

Clearly, if a = b, then the principle of strong mathematical induction

reduces to the ordinary principle of mathematical induction.
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Example: Divisibility by a Prime 1 of 2

Proposition: Any integer greater than 1 is divisible by a prime

number.

Proof (by use of PSMI): [As always we have to show the basis case...

Here is it enough to show for n = 2. (Why?)]

The divisibility property holds for n = 2 since 2 is a prime number
and 2|2.

The Inductive Hypothesis: Let & > 2, and suppose that for all integers i
with 2 < i < k, i is divisible by a prime number.

Now, k is either a prime (in which case it is divisible by itself), or a
composite — if the latter is true, then k = a - b, where 2 < a < k
and 2 < b < k. By the inductive hypothesis a (and b) is divisible by
a prime, so it follows that k is divisible by that same prime. Hence,

regardless of whether k is prime or composite, it is divisible by a prime.
[]
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Example: Divisibility by a Prime 2 of 2

Is may seem like something is wrong with this proof-...

Did we really use PSMI??? — First, we only showed one base
case! — Second, we used an inductive hypothesis which may seem
unfounded!

In this instance PSMI works like an accordion! ... (777)

The proved basis case n = 2 enables us to apply the theorem to
n = 3 (which shows P(3) since 3 is a prime); after that P(2) and
P(3) serve as proved basis cases, and we can apply to n = 4 (which
shows P(4) since 4 = 2 - 2); from this point P(2), P(3) and P(4)

serve as basis cases... repeat, repeat, repeat...

Note that we really need all the previous P(i), 2 < i < k basis cases
to show P(k).
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Example: The Properties of a Sequence 1 of 4

We define a sequence aq, asg, ... as follows:
ar =0, a9 =2, ak:3~a“ﬁ/2J—|—2,k23

We are going to prove that all the terms a,,, n > 1 are even, but first

we look at the first 8 terms of the sequence:

a1:O

a2:2

a3 =3a;39| +2=38a1+2=3-0+2=2
a4 =301 49| +2=3a2+2=3-2+2=28
a5:3at5/2J+2:3a2+2:3-2+2:8
a6:3aL6/2J+2:3a3+2:3‘2+2:8
ar =3a|7/2| +2=3a3+2=3-2+2=28
ag =3a|grp| +2=3a4+2=3-8+2=7206
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Example: The Properties of a Sequence 2 of 4

The First 40 terms in the sequence

300 T T T |

250 — —
EEEEEEEEN

)

Q

S
I

The Term

150 — —

sub-k ---

« 100 — —
EEEEEEEEEEEEEEEE

50— —

Olpnm®WEE | . | . | .
0 10 20 30 40

k --- The Index

Figure: The sequence is not all that exciting... Each plateau has twice
the number of terms of the previous one, and the levels follow the rule
L,=3-L,_1+2,n>3where L1 =0and Ly = 2.
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Example: The Properties of a Sequence 3 of 4

Now that we have a “feeling” for the sequence, lets prove that all the

terms are even...

Proof: [We want to prove that the property “P(n) =’a, iseven’”Vn > 1]

Basis case: The property holds for n = 1 and n = 2, since “P(1)
= 'ay is even' ' is true (since a; = 0), and “"P(2) = 'ay is even'’ is

true (since as = 2).

Inductive step: Let k > 2 be an integer, and suppose that
a; is even Vi: 1 < i < k. [The Inductive Hypothesis|

[We must show that ay, is even] By the definition of the sequence

akZS-CLLk/QJ—I—Q, Vk > 3
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Example: The Properties of a Sequence 4 of 4

Proof continued: By the definition of the sequence
ak:3-atk/2J + 2, VkE >3

Now, a| /2| is even by the inductive hypothesis, since £ > 2 and
1< |k/2]| <E.

By our usual argument a| ;,/9| = 2-m, for some particular integer m,
and
ak:3-atk/2J —|—2:3-2-m—|—2:2-(§-m—|—11)

an integer

and it follows that ay is even.

Since we have proved the basis and inductive steps of the strong
mathematical induction, we conclude that the given statement is true.
[]
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The Well-Ordering Principle of the Integers

The Well-Ordering Principle of the Integers
Let S be a set containing one or more integers all of which are

greater than some fixed integer. Then S has a least element.

The well-ordering principle, the principle of mathematical
induction and the principle of strong mathematical induction

are equivalent.

— It can be shown that if any one of them is true, then so are

both of the others.

The proofs are given on slides 37 and 38, but you are not required to

know them.
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Example: Finding Least Elements 1 of 2

Problem: For each set, if the set has a least element, state what it

is. If not, explain why the well-ordering principle is not violated.

(a) The set of all positive real numbers.

(b) The set of all non-negative integers n such that n? < n.

(c) The set of all non-negative integers of the form 46 — 7k,

where k is an integer.

Solutions:

(a) The is no least real number. If z is a positive real number,
then so is /2, and x/2 < x. The well-ordering principle only
applies to integers.

(b) The set of non-negative integers for which n? < n is empty.
An empty set has no least member. The well-ordering

principle does not apply to empty sets.
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Example: Finding Least Elements 2 of 2

Problem: For each set, if the set has a least element, state what it

is. If not, explain why the well-ordering principle is not violated.

(c) The set of all non-negative integers of the form 46 — 7k,

where k is an integer.

Solutions:

(c) Consider the values of 46 — 7k for various values of k:

k... =3 -2 -1 0 1 ... 5 6 I

46 -7k | ... 67 60 53 46 39 ... 11 4 -3

The table suggests that
46 — Tk <O for k>7, and 46 — 7k > 46 for k < 0.

From the other values in the table it is clear that 4 is the least

non-negative number of the form 46 — 7k. It is achieved when
k=6.
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Proving the Quotient-Remainder Theorem (Existence)

The Well-Ordering Principle is at the core of the proof of:

Theorem: Vn € Z, and Vd € N, Junique ¢, € Z such that

n=d-qg+r, and 0<r<d

Proof: Let n be an integer, and d be a positive integer. Let S
be the set of all non-negative integers of the form (n — d - k),
where k is an integer. This set has at least one element: [if n is
non-negative, thenn — 0 -d = n > 0 and hence n € S. If n is negative
(n—n-d) =n-(1—d) > 0andhence (n —n-d) € S.|] By the
well-ordering principle, S contains a least element . Then for some
specific integer k = q, (n — d - ¢ = r) [since every member of .S can be

written in this form]

[Continued...]
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Proving the Quotient-Remainder Theorem (Existence)

Proof: Let n be an integer, and d be a positive integer. Let S be the set of
all non-negative integers of the form (n —d- k), where k is an integer. This
set has at least one element: By the well-ordering principle, S contains

a least element r. Then for some specific integer k = ¢, (n —d-q = ).

Adding (d - q) to both sides gives
n=d-q+r.
Further, r < d [Suppose r > d, then
n—d-(¢g+1)=n—-d-q—d=r—d >0,

and son — d - (¢ + 1) would be a non-negative integer in S that would be
smaller than r. But r is the smallest integer in S. This contradiction shows that

r < d.] We have shown that there exists integers r and ¢ for which,

n=d-q+r, and 0<r <d. ]
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Homework #7 — Due Friday 11/3/2006, 12noon, GMCS-587 Final Version

(Epp v3.0)

Epp-4.2.1, Epp-4.2.3, Epp-4.2.10, Epp-4.2.31
Epp-4.3.5
Epp-4.4.1, Epp-4.4.2, Epp-4.4.4, Epp-4.4.22

(Epp v2.0)

Epp-4.2.1, Epp-4.2.3, Epp-4.2.9, Epp-4.2.28
Epp-4.3.5
Epp-4.4.1, —, Epp-4.4.4, Epp-4.4.11
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Induction Implies Well-Ordering

Proof: Assume the Induction Principle exists for N. Let the
set J C N and J # @. Suppose J has no least element. Let
S={neN:{1,2,..} nJ = @}. Note that 1 ¢ J since J would
have a least element. Thus, 1 € S. Suppose that n € S, then
{1,2,.n}NJ # @. Consider n +1: n+ 1 ¢ J since otherwise
n + 1 would be the least element of J. So, n+1 € S. Hence, by the
induction principle, S = N. Thus, J has no elements (J = @) and so

we have a contradiction. [
Here N is the set of natural numbers, and @ is the empty set. N

denotes the intersection of two set, i.e. the common members of the

two sets.
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Well-Ordering Implies Induction

Proof: Let P(n) be a proposition defined for each N. Suppose
P(1) is true and P(n) = P(n + 1). If P(n) does not hold for
all n € N, then there exists a non-empty set X C N defined as
{n € N: P(n) is false}.

Given the Well-Ordering Principle, there exists an m € X that is the
least element of X. Let B be the set {n € N: 1 < n < m}. Since
P(1) is true and 1 € B we can then apply P(n) = P(n+ 1) to B
from 1 to m proving P(n) for each element of B including m. Since
m € B, P(m) is true but since m € X, P(m) is false. Since this is
a contradiction, X must be empty and, thus, P(n) holds for all of N.
So, if P(1) and P(n) = P(n+ 1), then P(n) holds for all of N. [J
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