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Last Time: SequenesLast time we talked about sequenes, and introdued quite a bit ofterminology. Some new words in our voabulary:sequene A list of elements (numbers) arranged in a linearfashion; suh that eah member omes either before, orafter, every other member, and the order of members isimportant.term An individual element ak in a sequene.index The index / subsript k in the term ak. It indiates thethe term's loation in the sequene.initial term The term in a sequene with the lowest index.�nite sequene A sequene with a �nite number of terms.in�nite sequene A sequene with in�nitely many terms.�nal term In a �nite sequene, the term with the largest index.expliit formula An expression for the terms ak, using k only. (No de-pendene on preeding terms.) [also: General Formula℄.
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Sequenes: The Collatz Conjeture 1 of 2Consider the following sequene: Given an initial term a1 ∈ Z
+, wede�ne the rest of the sequene as follows:

an+1 =







an/2 if an is even

3an + 1 if an is odd

We notie that if ak = 1, then
ak+1 = 4, ak+2 = 2, ak+3 = 1and we end up yling through the values {1,4,2} forever.

In 1937 L. Collatz onjetured �∀a1 ∈ Z
+, the sequene will reahthe {1,4,2}-yle.�

The proof is left as a homework exerise... (Not!)
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Sequenes: The Collatz Conjeture 2 of 2The Collatz onjeture is another example of a mathematial questionthat is easy to ask (it almost looks like a homework / test problem),but very hard to answer.There is still no proof (or ounter-example) to the onjeture.In 1972 H. Conway (Prineton) showed �if the sequene enters into an-other yle, that yle must have at least 400 di�erent numbers.�In 1985 J.C. Lagarias extended the bound from 400 to 275,000.In 1999 Tomás Oliveira e Silva showed (using a omputer) that theCollatz onjeture is true for starting values less than 2.7 · 1016.2005 (Marh) Eri Roosendaal (and ollaborators) have independentlyheked up to 322 · 250.2006 (May) 10 · 258...Web referenes: (http://www-personal.ksu.edu/∼konrow/allgifs.html)(http://www.ieeta.pt/∼tos/3x+1.html)
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Mathematial Indution: IntrodutionMathematial Indution is a proof tehnique used to validateonjetures about statements that follow de�nite sequential patterns.Brief history:The �rst known use of mathematial indution: Franeso Mau-rolio (1575); In the 17th entury Pierre de Fermat (�the Fermat�)and Blaise Pasal (you may reall Pasal's Triangle?) used thetehnique. Augustus De Morgan (remember his laws for logi?)gave mathematial indution its name and desribed the proessrigorously (1883).The Idea (informally):If we know how to solve a problem (prove a statement) of size k,and we an use that knowledge to solve a problem of size k+1, andwe an solve a problem of a partiular size, e.g. k = 1, then we ansolve a problem of any size.
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Mathematial Indution Formal Statement

The Priniple of Mathematial Indution:Let P (n) be a prediate that is de�ned for integers n, and let abe a �xed integer. Suppose the following two statements are true:1. P (a) is true.2. For all integers k ≥ a, if P (k) is true, then P (k + 1) istrue, i.e.

∀k ∈ Z, k ≥ a, P (k) ⇒ P (k + 1)Then the statement
∀n ≥ a, P (n)is true.

2. is referred to as the indutive hypothesis.
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Mathematial Indution Another ViewConneting to our logi �toolbox� we an think of the seond suppo-sition as a hain of impliations:

· · · ⇒ P (k) ⇒ P (k + 1) ⇒ P (k + 2) ⇒ · · · ⇒ P (k + n) ⇒ · · ·

We use the �rst supposition (that is true for a partiular ) andUniversal Modus Ponens to show:
, for a partiular

Now that we have established that is true, we an useUniversal Modus Ponens again:
, for a partiular

And so it goes forever.....
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Mathematial Indution How to Use It?To prove something by mathematial indution:

Step 1: [The basis step step℄First, prove that P (a) is true for a partiular integer a.Step 2: [The indutive step℄Prove for all integers k ≥ a: if P (k) is true, then P (k + 1)is true.To show the indutive step orretly, we assume that k is a partiular,but arbitrarily hosen integer greater than or equal to a. � We usethe method of �generalizing from the generi partiular.�
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Examples!!! � Making Change 1 of 2Senario: In its in�nite wisdom, the Federal Reserve has deidedto stop making pennies (1 oins) and have introdued a 2 oin(featuring a famous mathematiian?) People are worried that theywill no longer be able to get orret hange � it turns out we an giveorret hange exept for 1 and 3...

Proposition: Giving Change �Let P (n) be the property �n an be obtained using 2 and 5oins.� Then P (n) is true for all integers n ≥ 4.

Proof:

Step 1 The property is true for , sine 4 = 2 + 2.
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Examples!!! � Making Change 1 of 2Senario: In its in�nite wisdom, the Federal Reserve has deidedto stop making pennies (1 oins) and have introdued a 2 oin(featuring a famous mathematiian?) People are worried that theywill no longer be able to get orret hange � it turns out we an giveorret hange exept for 1 and 3...

Proposition: Giving Change �Let P (n) be the property �n an be obtained using 2 and 5oins.� Then P (n) is true for all integers n ≥ 4.

Proof:Step 1 The property is true for n = 4, sine 4 = 2 + 2.

Sequences and Mathematical Induction: Mathematical Induction – p. 9/38



Examples!!! � Making Change 2 of 2

Proposition: Giving Change �Let P (n) be the property �n an be obtained using 2 and 5oins.� Then P (n) is true for all integers n ≥ 4.

Proof:Step 1 The property is true for n = 4, sine 4 = 2 + 2.

Step 2 Suppose is true, i.e.  an be obtained using 2 and 5oins for some integer . We have 2 ases:1: In this ase, we have at least one 5 oin among the onesthat make up . Replae it by three 2 oins, and the resultis orret hange for .2: In this ase, we have no 5 oin among the ones that makeup . However, sine we must have at least two 2oins; replae two 2 oins by a 5 oin, and the result isorret hange for .Thus in either ase, we an make orret hange for .
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Example: ∑n
k=1 k = n(n+1)

2

1 of 2

Proposition: ∀n ∈ Z, n ≥ 1, n∑

k=1

k =
n(n + 1)

2
.

Proof:

Basis Step: For :Indutive: Suppose the formula is true for , i.e.

Now, for we have
[ontinued...℄
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2
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Example: ∑n
k=1 k = n(n+1)

2

1 of 2

Proposition: ∀n ∈ Z, n ≥ 1, n∑

k=1

k =
n(n + 1)

2
.

Proof:Basis Step: For n = 1: 1 = 1(1+1)
2 = 2

2 = 1.Indutive: Suppose the formula is true for n = m, i.e.
m∑

k=1

k =
m(m + 1)

2
.

Now, for n = (m + 1) we have
m+1∑

k=1

k = (m + 1) +

m∑

k=1

k = (m + 1) +
m(m + 1)

2
.

[ontinued...℄
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Example: ∑n
k=1 k = n(n+1)

2

2 of 2We have:

m+1∑

k=1

k =
m(m + 1)

2
+ (m + 1).

A little bit of algebra �

m+1∑

k=1

k =
m(m + 1)

2
+ (m + 1)

=
m(m + 1)

2
+

2(m + 1)

2

=
m(m + 1) + 2(m + 1)

2

=
(m + 2)(m + 1)

2
=

(m + 1)(m + 2)

2This shows that P (m) ⇒ P (m + 1).Sine we have proved both the basis and indutive steps, the onludethat the proposition is true. �
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A Tall Tale about ∑n
k=1 k = n(n+1)

2

?Dislaimer: This is the way I heard the story...Carl Friedrih Gauss (1777�1855), one of the most prominent math-ematiians in history, was given the task to sum up all integers from1 to 100 by his teaher. � Supposedly to keep this smart/annoyingstudent quiet for a while.Gauss quikly ome up with the answer: 5,050.He dedued the formula we just proved by pairing numbers (or foldingthe sequene): 1 2 3 · · · 49 50100 99 98 · · · 52 5150 pairs, eah with a sum of 101 ⇒ 50 · 101 = 5, 050.Here, of ourse 50 = n/2, and 101 = (n + 1).
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Example: Geometri Sums 1 of 2

Proposition: For any real number r 6= 1, and any non-negativeinteger n,

n∑

i=0

ri =
rn+1 − 1

r − 1
.

Proof:

Suppose is a partiular but arbitrarily hosen real numbernot equal to 1.Basis: For we have:

Hene the formula is true for .
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Example: Geometri Sums 1 of 2

Proposition: For any real number r 6= 1, and any non-negativeinteger n,

n∑

i=0

ri =
rn+1 − 1

r − 1
.

Proof: Suppose r is a partiular but arbitrarily hosen real numbernot equal to 1.Basis: For n = 0 we have:
1 = r0 =

0∑

i=0

ri =
r0+1 − 1

r − 1
=

r − 1

r − 1
= 1.

Hene the formula is true for n = 0.
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Example: The Sum of a Geometri Sum 2 of 2Indutive: Suppose the formula is true for n = k, i.e. for k ≥ 0

k∑

i=0

ri =
rk+1 − 1

r − 1
.

Now
This proves the indutive step .

Together, the basis step and the indutive step show that theproposition is true.
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Example: ∀n ∈ Z
+, 3 | (22n − 1) 1 of 2

Proposition: ∀ integers n ≥ 1, (22n − 1) is divisible by 3.

Proof:

Basis step, � The statement is true for sine

Indutive step: Suppose is divisible by 3. () � Then,
{ }

This shows that is divisible by 3. Together the basisstep and the indutive step show that the proposition is true.
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Proposition: ∀ integers n ≥ 1, (22n − 1) is divisible by 3.

Proof: Basis step, n = 1 � The statement is true for n = 1 sine
22·1 − 1 = 22 − 1 = 4 − 1 = 3 = 3 · 1.
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Example: ∀n ∈ Z
+, 3 | (22n − 1) 1 of 2

Proposition: ∀ integers n ≥ 1, (22n − 1) is divisible by 3.

Proof: Basis step, n = 1 � The statement is true for n = 1 sine
22·1 − 1 = 22 − 1 = 4 − 1 = 3 = 3 · 1.Indutive step: Suppose 22k − 1 is divisible by 3. (THE INDUCTIVE

HYPOTHESIS) � Then,

22(k+1) − 1 = 22k+2 − 1 = 22 · 22k − 1 = 4 · 22k − 1

= 3 · 22k + (22k − 1) = {by assumption, for some integer m}

= 3 · 22k + 3 · m = 3 · (22k + m)
︸ ︷︷ ︸

an integer

This shows that is divisible by 3. Together the basis stepand the indutive step show that the proposition is true.
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Example: ∀n ∈ Z
+, 3 | (22n − 1) 1 of 2

Proposition: ∀ integers n ≥ 1, (22n − 1) is divisible by 3.
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22·1 − 1 = 22 − 1 = 4 − 1 = 3 = 3 · 1.Indutive step: Suppose 22k − 1 is divisible by 3. (THE INDUCTIVE

HYPOTHESIS) � Then,

22(k+1) − 1 = 22k+2 − 1 = 22 · 22k − 1 = 4 · 22k − 1

= 3 · 22k + (22k − 1) = {by assumption, for some integer m}

= 3 · 22k + 3 · m = 3 · (22k + m)
︸ ︷︷ ︸

an integerThis shows that (22(k+1)−1) is divisible by 3. Together the basis stepand the indutive step show that the proposition is true. �
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Example: ∀n ∈ Z, n ≥ 3, (2n + 1) < 2n

Proposition: ∀ integers n ≥ 3, (2n + 1) < 2n.

Proof:

Basis step, the inequality is true for sine

Indutive step: Suppose for some integer (). [ ℄

This is what we needed to show. Basis & Indutive steps prove thatthe proposition is true.
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Example: ∀n ∈ Z, n ≥ 3, (2n + 1) < 2n

Proposition: ∀ integers n ≥ 3, (2n + 1) < 2n.

Proof: Basis step, the inequality is true for n = 3 sine
(2 · 3 + 1) = 7 < 8 = 23.
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Proof: Basis step, the inequality is true for n = 3 sine
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Mathematial Indution � SummaryTo show something by mathematial indution: �

1. Show that the statement (P (n)) is true for the basis ase P (a),where a is a partiular integer.2. Assume that P (k) is true for some integer k, show that P (k +1)is true.Together 1 and 2 show that P (n) is true for n ≥ a.

�Mathematis is not a spetator sport�(Stanley Osher, Professor of Mathematis, UCLA)

⇒ Homework follows!Next: Strong mathematial indution and the well-orderingpriniple.
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Homework #7 � Due Friday 11/3/2006, 12noon, GMCS-587 Version 1

2(Epp v3.0)Epp-4.2.1 , Epp-4.2.3 , Epp-4.2.10 , Epp-4.2.31

(Epp v2.0)Epp-4.2.1 , Epp-4.2.3 , Epp-4.2.9 , Epp-4.2.28
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Reap... � Mathematial IndutionWe started talking about the priniple of mathematial indution.The typial use of the priniple is when we want to show that apartiular prediate P (n) is true for all integers n greater than somelowest integer a.The �rst step is to show that the prediate is indeed true for a, i.e.we hek the basis ase P (a).The seond step (indutive step) involves showing that if we assumethat P (k) is true for some k ≥ a, then P (k + 1) must also be true(by known theorems, de�nitions, algebra, and laws of logi).Together these two steps show that P (k) is true ∀k ≥ a.
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Revisited Example: ∑n
j=1 j = n(n+1)

2

1 of 3

Proposition: ∀n ∈ Z, n ≥ 1, n∑

j=1

j =
n(n + 1)

2
.

We have already proved this... But let's revisit the proof and try toadd some extra larity!

Proof:[First we must show the basis case, i.e that the formula is true for n = 1.℄

Basis Step: For :

and

so, the formula holds for .
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2
= 1
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Revisited Example: ∑n
j=1 j = n(n+1)

2

2 of 3

Proposition: ∀n ∈ Z, n ≥ 1, n∑

j=1

j =
n(n + 1)

2
.

Proof Continued:[Next we must show that assuming P (k) holds, then P (k + 1) holds.℄

Indutive: Suppose the formula is true for , i.e.

Now, for we have
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j =
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Proof Continued:[Next we must show that assuming P (k) holds, then P (k + 1) holds.℄Indutive: Suppose the formula is true for n = k, i.e.
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Proposition: ∀n ∈ Z, n ≥ 1, n∑

j=1

j =
n(n + 1)

2
.

Proof Continued:[Next we must show that assuming P (k) holds, then P (k + 1) holds.℄Indutive: Suppose the formula is true for n = k, i.e.
k∑

j=1

j = 1 + 2 + . . . + (k− 1) + k =
k(k + 1)

2
.

Now, for n = (k + 1) we have
k+1∑

j=1

j = 1 + 2 + . . . + (k − 1) + k
︸ ︷︷ ︸

We know/assume this from n = k

+(k + 1) =
k(k + 1)

2
︸ ︷︷ ︸

known/assumed

+(k + 1).
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Revisited Example: ∑n
j=1 j = n(n+1)

2

3 of 3

At this point, we know : k+1∑

j=1

j =
k(k + 1)

2
+ (k + 1).

[Our goal is to show that

k+1∑

j=1

j =
(k + 1)(k + 2)

2
.

]

A little bit of algebra �

This shows that .Sine we have proved both the basis , and indutivesteps, we onlude that the proposition is true forall .
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2
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2
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2
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This shows that P (k) ⇒ P (k + 1).Sine we have proved both the basis P(1), and indutive

P(k) ⇒ P(k + 1) steps, we onlude that the proposition is true forall n ≥ 1. �
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The Priniple of Strong Mathematial Indution (PSMI)

The Priniple of Strong Mathematial Indution:Let P (n) be a prediate that is de�ned for integers n, and let aand b be a �xed integers, with a ≤ b. Suppose the following twostatements are true:1. P (a), P (a + 1), . . . , P (b) are all true.2. For all integers k > b, if P (k) is true, then P (k + 1) istrue. [Inductive Step℄Then the statement
∀n ∈ Z, n ≥ a, P (n)is true.Clearly, if a = b, then the priniple of strong mathematial indutionredues to the ordinary priniple of mathematial indution.
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Example: Divisibility by a Prime 1 of 2

Proposition: Any integer greater than 1 is divisible by a primenumber.Proof (by use of PSMI): [As always we have to show the basis case...

Here is it enough to show for n = 2. (Why?)℄

The divisibility property holds for sine 2 is a prime numberand . Let , and suppose that for all integerswith , is divisible by a prime number.Now, is either a prime (in whih ase it is divisible by itself), or aomposite � if the latter is true, then , whereand . By the indutive hypothesis (and ) is divisible bya prime, so it follows that is divisible by that same prime. Hene,regardless of whether is prime or omposite, it is divisible by a prime.
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Example: Divisibility by a Prime 1 of 2

Proposition: Any integer greater than 1 is divisible by a primenumber.Proof (by use of PSMI): [As always we have to show the basis case...
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�
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Example: Divisibility by a Prime 2 of 2Is may seem like something is wrong with this proof...Did we really use PSMI??? � First, we only showed one basease! � Seond, we used an indutive hypothesis whih may seemunfounded!In this instane PSMI works like an aordion! ... (???)

The proved basis ase enables us to apply the theorem to(whih shows sine 3 is a prime); after that and serveas proved basis ases, and we an apply to (whih showssine ); from this point , and serve as basisases...Note that we really need all the previous basis asesto show .
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n = 3 (whih shows P (3) sine 3 is a prime); after that P (2) and

P (3) serve as proved basis ases, and we an apply to n = 4 (whihshows P (4) sine 4 = 2 · 2); from this point P (2), P (3) and P (4)serve as basis ases... repeat, repeat, repeat...Note that we really need all the previous P (i), 2 ≤ i < k basis asesto show P (k).
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Example: The Properties of a Sequene 1 of 4We de�ne a sequene a1, a2, . . . as follows:

a1 = 0, a2 = 2, ak = 3 · a⌊ k/2 ⌋ + 2, k ≥ 3We are going to prove that all the terms an, n ≥ 1 are even, but �rstwe look at the �rst 8 terms of the sequene:
a1 = 0

a2 = 2

a3 = 3a⌊ 3/2 ⌋ + 2 = 3a1 + 2 = 3 · 0 + 2 = 2

a4 = 3a⌊ 4/2 ⌋ + 2 = 3a2 + 2 = 3 · 2 + 2 = 8

a5 = 3a⌊ 5/2 ⌋ + 2 = 3a2 + 2 = 3 · 2 + 2 = 8

a6 = 3a⌊ 6/2 ⌋ + 2 = 3a3 + 2 = 3 · 2 + 2 = 8

a7 = 3a⌊ 7/2 ⌋ + 2 = 3a3 + 2 = 3 · 2 + 2 = 8

a8 = 3a⌊ 8/2 ⌋ + 2 = 3a4 + 2 = 3 · 8 + 2 = 26
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Example: The Properties of a Sequene 2 of 4
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The First 40 terms in the sequence

Figure: The sequence is not all that exciting... Each plateau has twice

the number of terms of the previous one, and the levels follow the rule

Ln = 3 · Ln−1 + 2, n ≥ 3 where L1 = 0 and L2 = 2.
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Example: The Properties of a Sequene 3 of 4Now that we have a �feeling� for the sequene, lets prove that all theterms are even...
Proof: [We want to prove that the property “P (n) = ’an is even’ ” ∀ n ≥ 1.℄

Basis ase: The property holds for and , sine � =' is even' ' is true (sine ), and � = ' is even' ' is true(sine ).Indutive step: Let be an integer, and suppose thatis even : . [ ℄

[ ℄ By the de�nition of the sequene
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Proof: [We want to prove that the property “P (n) = ’an is even’ ” ∀ n ≥ 1.℄Basis ase: The property holds for n = 1 and n = 2, sine �P (1)= 'a1 is even' ' is true (sine a1 = 0), and �P (2) = 'a2 is even' ' istrue (sine a2 = 2).Indutive step: Let k > 2 be an integer, and suppose that

ai is even ∀i: 1 ≤ i < k. [The Inductive Hypothesis℄

[We must show that ak is even℄ By the de�nition of the sequene

ak = 3 · a⌊ k/2 ⌋ + 2, ∀k ≥ 3
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Example: The Properties of a Sequene 4 of 4Proof ontinued: By the de�nition of the sequene
ak = 3 · a⌊ k/2 ⌋ + 2, ∀k ≥ 3Now, a⌊ k/2 ⌋ is even by the indutive hypothesis, sine k > 2 and

1 ≤ ⌊ k/2 ⌋ < k.

By our usual argument , for some partiular integer ,and
and it follows that is even.Sine we have proved the basis and indutive steps of the strongmathematial indution, we onlude that the given statement is true.
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The Well-Ordering Priniple of the Integers
The Well-Ordering Principle of the IntegersLet S be a set ontaining one or more integers all of whih aregreater than some �xed integer. Then S has a least element.

The well-ordering priniple, the priniple of mathematialindution and the priniple of strong mathematial indutionare equivalent.
� It an be shown that if any one of them is true, then so areboth of the others.The proofs are given on slides 37 and 38, but you are not required toknow them.
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Example: Finding Least Elements 1 of 2Problem: For eah set, if the set has a least element, state what itis. If not, explain why the well-ordering priniple is not violated.(a) The set of all positive real numbers.(b) The set of all non-negative integers n suh that n2 < n.() The set of all non-negative integers of the form 46 − 7k,where k is an integer.Solutions:

(a) The is no least real number. If is a positive real number,then so is , and . The well-ordering priniple onlyapplies to integers.(b) The set of non-negative integers for whih is empty .An empty set has no least member. The well-orderingpriniple does not apply to empty sets.
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Example: Finding Least Elements 2 of 2Problem: For eah set, if the set has a least element, state what itis. If not, explain why the well-ordering priniple is not violated.() The set of all non-negative integers of the form 46 − 7k,where k is an integer.Solutions:() Consider the values of 46 − 7k for various values of k:

k . . . −3 −2 −1 0 1 . . . 5 6 7 . . .

46 − 7k . . . 67 60 53 46 39 . . . 11 4 −3 . . .The table suggests that
46 − 7k < 0 for k ≥ 7, and 46 − 7k ≥ 46 for k ≤ 0.From the other values in the table it is lear that 4 is the leastnon-negative number of the form 46−7k. It is ahieved when

k = 6.
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Proving the Quotient-Remainder Theorem (Existene)The Well-Ordering Priniple is at the ore of the proof of:

Theorem: ∀n ∈ Z, and ∀d ∈ N, ∃ unique q, r ∈ Z suh that
n = d · q + r, and 0 ≤ r < d

Proof: Let n be an integer, and d be a positive integer.

Letbe the set of all non-negative integers of the form ,where is an integer. This set has at least one element: [
℄ By thewell-ordering priniple, ontains a least element . Then for somespei� integer , [℄ [ ℄
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Proving the Quotient-Remainder Theorem (Existene)The Well-Ordering Priniple is at the ore of the proof of:

Theorem: ∀n ∈ Z, and ∀d ∈ N, ∃ unique q, r ∈ Z suh that
n = d · q + r, and 0 ≤ r < d

Proof: Let n be an integer, and d be a positive integer. Let Sbe the set of all non-negative integers of the form (n − d · k),where k is an integer. This set has at least one element: [If n is

non-negative, then n − 0 · d = n ≥ 0 and hence n ∈ S. If n is negative

(n − n · d) = n · (1 − d) ≥ 0 and hence (n − n · d) ∈ S.℄ By thewell-ordering priniple, S ontains a least element r. Then for somespei� integer k = q, (n − d · q = r) [since every member of S can be

written in this form℄ [Continued...℄
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Proving the Quotient-Remainder Theorem (Existene)Proof: Let n be an integer, and d be a positive integer. Let S be the set ofall non-negative integers of the form (n− d · k), where k is an integer. Thisset has at least one element: By the well-ordering priniple, S ontainsa least element r. Then for some spei� integer k = q, (n − d · q = r).

Adding to both sides gives

Further, [
℄ We have shown that there exists integers and for whih,and
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Further, [
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Proving the Quotient-Remainder Theorem (Existene)Proof: Let n be an integer, and d be a positive integer. Let S be the set ofall non-negative integers of the form (n− d · k), where k is an integer. Thisset has at least one element: By the well-ordering priniple, S ontainsa least element r. Then for some spei� integer k = q, (n − d · q = r).Adding (d · q) to both sides gives

n = d · q + r.Further, r < d [Suppose r ≥ d, then

n − d · (q + 1) = n − d · q − d = r − d ≥ 0,

and so n − d · (q + 1) would be a non-negative integer in S that would be

smaller than r. But r is the smallest integer in S. This contradiction shows that

r < d.℄

We have shown that there exists integers and for whih,and
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Proving the Quotient-Remainder Theorem (Existene)Proof: Let n be an integer, and d be a positive integer. Let S be the set ofall non-negative integers of the form (n− d · k), where k is an integer. Thisset has at least one element: By the well-ordering priniple, S ontainsa least element r. Then for some spei� integer k = q, (n − d · q = r).Adding (d · q) to both sides gives

n = d · q + r.Further, r < d [Suppose r ≥ d, then

n − d · (q + 1) = n − d · q − d = r − d ≥ 0,

and so n − d · (q + 1) would be a non-negative integer in S that would be

smaller than r. But r is the smallest integer in S. This contradiction shows that

r < d.℄ We have shown that there exists integers r and q for whih,

n = d · q + r, and 0 ≤ r < d. �
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Indution Implies Well-OrderingProof: Assume the Indution Priniple exists for N. Let theset J ⊂ N and J 6= 6O. Suppose J has no least element. Let
S = {n ∈ N : {1, 2, ...} ∩ J = 6O}. Note that 1 6∈ J sine J wouldhave a least element. Thus, 1 ∈ S. Suppose that n ∈ S, then
{1, 2, ...n} ∩ J 6= 6O. Consider n + 1: n + 1 6∈ J sine otherwise
n + 1 would be the least element of J . So, n + 1 ∈ S. Hene, by theindution priniple, S = N. Thus, J has no elements (J = 6O) and sowe have a ontradition. �

Here N is the set of natural numbers, and 6O is the empty set. ∩denotes the intersetion of two set, i.e. the ommon members of thetwo sets.
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Well-Ordering Implies IndutionProof: Let P(n) be a proposition de�ned for eah N. Suppose
P (1) is true and P (n) ⇒ P (n + 1). If P (n) does not hold forall n ∈ N, then there exists a non-empty set X ⊂ N de�ned as
{n ∈ N : P (n) is false}.

Given the Well-Ordering Priniple, there exists an m ∈ X that is theleast element of X. Let B be the set {n ∈ N : 1 ≤ n ≤ m}. Sine

P (1) is true and 1 ∈ B we an then apply P (n) ⇒ P (n + 1) to Bfrom 1 to m proving P (n) for eah element of B inluding m. Sine

m ∈ B, P (m) is true but sine m ∈ X, P (m) is false. Sine this isa ontradition, X must be empty and, thus, P (n) holds for all of N.So, if P (1) and P (n) ⇒ P (n + 1), then P (n) holds for all of N. �
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