Math 245: Discrete Mathematics Properties of Sets

Set Theory / Counting and Probability We continue our study of sets...
Properties of Sets, Proofs & Disproofs / Introduction In particular we look at element based methods for proving relations
Lecture Notes #10 between sets.

Also, we will see some examples of algebraic techniques (methods
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Some Subset Relations How Do We Prove Such Relations?
Theorem: — Element Argument: The basic method for

[1] Inclusion of Intersection:  For all sets A and B, proving that one set is a subset of another

() ANBC A, and (b)) ANBCB To prove that a set (A) is a subset of another set (B):

(1) Let z be a particular, but arbitrarily chosen element of A.

[2] inclusion in Union:  For all sets A and B (2) Show that x must necessarily be an element of B.

(a) ACAUB, and (b)) BCAUB
As always when we are trying to prove something, we state the as-
sumptions, then use the definitions to express what the assumptions

[3] Transitive Property of Subsets:  For all sets A, B, and C,
mean.

fACB and BC(C, then ACC.
In particular, for set theoretical proofs, we use the procedural ver-

sions of the set definitions [next slide] to express the meaning of

the assumptions.
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Procedural Versions of Set Definitions

Procedural Versions of Set Definitions

Let X and Y be subsets of a universal set U and suppose z € U
and y € U.

[1] zeXUY zecXorzeY.
2] reXNY ezrzeXandzel.
Bl reX-Y&zreXandagY.
[4] zeX‘saxgX.

[6] (z,y)e X xY & rzeXandyeY.

Proofsof AC AUB and ANBC A

Statement: A C AU B.

Proof: Suppose A and B are sets. Let x € A. Now the statement
(r € A)V (z € B) is certainly true, hence by the definition of the
union AU B, we must have z € (AU B). O

Statement: AN B C A.

Proof: Suppose A and B are sets, and z € (AN B). By the
definition of the intersection (x € A) A (z € B). In particular z € A.
|

Here we have used

Generalization Specialization
(Disjunctive Addition) (Conjunctive Simplification)

p PAQq
With these tools handy, we can prove the statements on slide 3. PV o
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Set ldentities 1 of 3 Set ldentities 2 of 3
Let A, B, and C be subsets of a universal set U. The following 4. Identity laws: (U acts as an identity for N, and @ acts as a “zero”

twelve identities are true:

1. Commutative laws: For all sets A and B,

ANB=BNA, and AUB=BUA.

2. Associate laws: For all sets A, B and C,

(ANB)NC=AnNn(BNC), and (AUB)UC =AU (BUCQC).

3. Distributive laws: For all sets A, B and C,

AU(BNC) = (AUB)N(AUQ), and AN(BUC) = (ANB)U(ANC).
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for U): For all sets A,

Aug=A, and ANU = A.

5. Complement laws: For all sets A,

AUA=U, and ANA°=¢g

6. Double complement law: For all sets A,

(A%)° = A.

7. |dempotent laws: For all sets A,

ANA=A, and AUA=A.
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Set ldentities 30of 3

8. Universal bounds laws:  For all sets A,
AuU=U, and ANG=¢
9. De Morgan’s laws: For all sets A and B,
(AUB)*=A4A°NB° and (ANB)°= A°UB°".
10. Absorption laws: For all sets A and B
AU(ANB)=A, and AN(AUB)=A.
11. complements of U and @:
U°=¢@, and @°=U
12. set difference law: For all sets A and B,

A—-B=AnNB".
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Proving the Set Identities

The proofs of the set identities are quite straight-forward. Use the
procedural definitions (slide 5) and the following rule:

Basic Method for Proving that Sets are Equal

Let X and Y be subsets of a universal set U. To prove that
X=Y:

[1] Prove that X C Y.

[2] Prove that Y C X.

Note: After using the definitions, and introduction of predicates such
as P(z) = (z € A), and noting that (rt € AUB) = ((z € A) V (z €
B)) all the proofs follow directly from the laws of logic.
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Proof: AU(BNC)=(AUB)N(AUC) 1 of 2

Proof: Suppose A and B are sets.

[AUBNC)C (AUB)N(AUC)] — Suppose x € AU(BNC).

By definition of union z € A or z € (BN C).

Casex € A: Since v € A, + € AU B by definition of union
and also x € A U C by definition of union. Hence
xz € (AUB)N(AUC) by definition of intersection.

Casez € (BNC): Since z € (BNC), € B and z € C
by definition of intersection. Since z € B,
x € AU B by definition of union; also since
x € C, x € AUC by definition of union
Hence z € (AU B) N (AU C) by definition of

intersection.

In both cases the containment AU(BNC)C (AUB)N(AUCQ) is true.

[continued]
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Proof: AU(BNC)=(AUB)N(AUC) 2 of 2

Proof: Suppose A and B are sets.

[([AUB)N(AUC)C AU(BNC)]—Suppose z € (AUB)N(AU
(). By definition of intersection x € (AU B) and z € (AU C).
Case z € A: We can immediately conclude that z € AU (BN C)

by definition of union.

Case x ¢ A: Since x ¢ A, we must have x € B and z € C by
definition of union. By the definition of intersec-
tion x € (BN C), and by the definition of union
xre AU(BNCQO).

In both cases the containment (AU B)N(AUC) C AU (BNC) is true.

Since both subset relations have been proved, it follows by definition
of set equality that AU (BNC)=(AUB)N(AUC). O
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Proof: (AU B)°= A°N B Alternative Approach

If we feel more comfortable arguing a proof from the laws of logic, be

can convert to an equivalent problem...

Proof: Suppose A and B are subsets of a universal set U. Define the
predicates P(x) and Q(z):

Pz)="zc A", Qz)="zeB".

Our two sets are

(AU B)*
(A°N B°)

{zeUl| ~(P(x)
{zr e Ul(~ P(x))

Q(x))}
(~ Q(2))}

V
A

Since
~ (P(z)vVQ(z)) = (~ P(z))A(~ Q(x)) [De Morgan’slaws of logic]

the sets must be equal. O
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The Empty Set — Proof Technique

Element Method for Proving a Set Equals the Empty Set

To prove that a set S equals to the empty set @, prove that S has
no elements. — To achieve this, suppose S has an element and

derive a contradiction.

Proposition: Given any two sets A and B, (A—B) and B are disjoint.

Proof: [by contradiction] Suppose the proposition is false. Then there
exists two sets A and B such that (A — B)NB # @ [(A — B)
and B not disjoint] By the definition of intersection there is an element
z € (A— B) and z € B. By the definition of set difference z € A
and x ¢ B. Hence we have shown that z € B and = ¢ B, which is a
contradiction. [J

[The supposition that there exists sets A and B such that (A — B) and B are

not disjoint is false, and hence the proposition is true.]
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Showing the Falsity of an Alleged Set Property

False statement: For all sets A, B and C

(A-B)UB-C)=A-C

Y. o9, W

The sets A, B, and C'. A-C (A-B)uU(B-0C)

Counterexample:
A={a,b}, B=1{bc}, C={a,d}

A—C=1{b, (A-B)UB-C)={a}ulbec}=1{abc)
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How to Approach Set-Theory Problems

The Problem: “Prove or disprove some statement about sets!”

The Optimist: Start trying to prove the statement! Think about
what you need to show and, of course, how to show it.

The Pessimist: Think about conditions that must be fulfilled to

construct a counterexample.

If the statement is true, the optimist succeeds, and the pessimist ends
up with incompatible conditions (possibly a form of contradiction, or
no elements satisfying the conditions)... The pessimist must switch

gears.

If the statement is false, the pessimist succeeds in finding a coun-
terexample, and the optimist ends up with a step in the proof which

is clearly not true... and s/he must switch gears.
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The Number of Elements of a Power Set 1of4

Theorem: Vn € Z, n > 0, if a set S has n elements, then P(S5)
has 2" elements.

The proof is based on mathematical induction [back to haunt us again!]

and uses the following observations... Suppose S is a set and z € S,

1. The subsets of S can be split into two categories: those that contain

z, and those who do not contain z.

2. The subsets of S that do not contain z are the same as the subsets of
S —{z}.

3. The subsets of S that do not contain z can be matched up one-to-one
with the subsets that contain z by matching each subset S; C S
which does not contain z with the subset S; U {z} that contains z.
Thus there are as many subsets of S that contain 2 as there are
subsets that do not contain z. .
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The Number of Elements of a Power Set 20of 4

Consider the example S = {1,2,3}, 2 =3

P(S) = {2, {1}, {2}, {3}, {1, 2}, {1,3},{2,3}, {1,2,3}}

Subsets of S Subsets of S
that do not contain 3 that contain 3
@ o {3}

{1} < {L3}
{2} < {23}
{1,2} - {1,2,3}
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The Number of Elements of a Power Set 3of 4

Proof: Let P(z) be the property “Any set S with n elements has 2"
subsets.” (The power set P(S) has 2™ elements.)

True for n = 0: The only set with 0 elements is the empty set. The
only subset of the empty set is itself. Thus a set with 0 elements has
1 subset. The property P(0) is true.

P(k) = P(k+1): Let £ > 0 and suppose that any set with & ele-
ments has 2F subsets. [The Inductive Hypothesis] [We must show that any
set with k& + 1 elements has 2571 subsets.] Let S be a set with k + 1
elements, and z € S. Any subset of S either contains z or it does not.
Any subset A of S which does not contain z is a subset of S — {z},
further such a set can be matched up with A U {z} that contains 2.
Consequently there are as many subsets of S than contain z as do not,
and thus twice as many subsets of S as there are subsets of S — {z}.

[continued...]
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The Number of Elements of a Power Set 4 of 4

The set S — {z} has k elements, thus by the inductive hypothesis
the number of subsets of S — {z} is 2*.
Now it follows that

#subsets(S) = 2 - #subsets(S — {z}) = 2-2F = 2FF1 [

[Since we have proved both the basis step P(0) and the inductive step
P(k) = P(k + 1), we conclude that the theorem is true.|

Theorem: Number of Elements of the Power Set —
VYn € Z, n > 0, if a set S has n elements, then P(S) has 2"

elements.
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Power Sets — A Theorem

Theorem: V sets A and B, if A C B, then P(A) C P(B).

Proof: Suppose A and B are sets such that A C B. [We must
show P(A) C P(B)]

Let X € P(A). Since X € P(A), X C A by the definition of the
power set. Further we know that A C B, hence

XCACB

and X C B by the transitive property for subset inclusion. By the
definition of the power set X € P(B).

Thus P(A) C P(B). O
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Deriving New Set Properties — Algebraic Method

It is possible to derive new set properties from the ones we have estab-
lished. The set identities we derived apply to all sets (they are universal

statements), so we have plenty of room to play...

Example #1 — Relabeling We know that for all sets A, B, and C the
distributive laws state

AN(BUC)=(ANB)U(ANCQC)
If we rename A — Ay, B — As, and C' — Ajz, we get the relation
A1 N (A2 U Az) = (A1 NA2) U (A1 N As)

Which shows that the rule holds for any collection 3 three sets.

For any sets V, W, X, Y, and Z, canlet A, = (VNW), Ao = (X -Y),
and Az = (ZNW°). We now get

(VAW)N(X-Y)U(ZNW®)) = (VAW)N(X —Y)U((VAW)N(ZNIVE))
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Algebraic Derivations of Set Properties

Example #2 Let A, B, and C be given. Then

(AUB)-C = (AUB)NC*
= C°N(AUB) commutative law

alternate representation

= (C°NA)U(C°NB) distributive law
= (ANCYU(BNC®  commutative law
= (A-C)u(B-0) alternate representation

This shows that for all sets A, B and C

(AUB)-C=(A—-C)U(B-C)
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Algebraic Derivations of Set Properties

Example #3 Let Ay, Ay, A3 and A4 be given. Then

((AJUA2)UA3)U Ay = (A3 U(A2U A3))U Ay associative law
= AU ((A2UA3)UAy)  associative law
= A1U(A2U (A3 U Ayg))  associative law

This shows that for all sets A, B and C

(AJUA2)UA3)UA, = A1 U(AsU(A3UAY))
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The Empty Set — In an Algebraic Proof

Suppose A and B are sets, then A— (AN B)=A— B.

Proof:

A—(ANB) = An(AnB)°

Alternate representation

= AN(A°UB°) De Morgan’s laws

= (ANA9U(ANB®  Distributive law

= @U((ANB° Intersection with complement
= (ANnBYUQ Commutative law

= ANBC¢ Union with empty set

= A-B Alternate representation
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Boolean Algebras 1of 4

Earlier we indicated the strong connection between set theory and logic —
the concept of a Boolean Algebra formalizes this connection.

A Boolean Algebra is a set S together with two operations, usually
denoted by + and - such that Va,b € S both (a+b) € Sand (a-b) € S

and the following axioms hold:

[Commutative Laws] Va,be S: a+b=b+a,a-b=>-a.

[Associative Laws] Va,b,c € S: (a +b) +c¢c = a+ (b + ¢,
(@a-b)-c=a-(b-c).

[Distributive Laws] Va,b,c € S: a+ (b-¢) = (a+b) - (a + ¢,
a-(b+c)=(a-b)+(a-c).

[Identies] F0€ S, 1€ S:Vae S: a+0=aq,a-1=a.

[Complement / Negation] Va € S,3a€ S: a+a=1anda-a=0
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Boolean Algebras 20of 4

So far, we have seen two Boolean algebras: statement forms in a

finite number of variables (Logic), and Set Theory:

Boolean Algebra + 1 0
Statement forms / Logic v ANt ¢ ~
Set Theory u n U ¢g ¢

Notes:
For Logic, t is the tautology, c the contradiction.

For Set theory, € is the complement.

Set Theory / Counting and Probability: Properties of Sets, Proofs & Disproofs / Introduction — p. 27/55

Boolean Algebras 3o0f4

Theorem: Properties of Boolean Algebras — (Part 1/2)
Let B be any Boolean Algebra.

1. Uniqueness of the Complement: Va and Vx in B, if

a+x=1and a -2 =0, then z =a.

2. Uniqueness of 0 and 1: If 3z € B such that a +z = a
Ya € B, then z = 0, and if dy € B such that a -y = a
VYa € B, then y = 1.

3. Double Complement: Ya € B, (a) = a.

4. ldempotent law: Ya € B,

@a+a=a, and ((b) a-a=a.
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Boolean Algebras 4 of 4

Theorem: Properties of Boolean Algebras — (Part 2/2)
Let B be any Boolean Algebra.
5. Universal Bound: Ya € B,
@a+1=1, and () a-0=0.
6. De Morgan’s Laws: Va,b € B,

@a+b=a-b, and (b)a-b=a+b.
7. Absorption laws: Va,b € B,
@ (a+b)-a=a, and () (a-b)+a=a.
8. Complements of 0 and 1:

@0=1, and (b) 1=0.
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Homework #9 — Due Friday 11/17/2006, 12noon, GMCS-587 Version 1}

Epp v3.0

Epp-5.2.1, Epp-5.2.5, Epp-5.2.17, Epp-5.2.37
Epp-5.3.20, Epp-5.3.39

Epp v2.0

Epp-5.2.1, Epp-5.2.5, Epp-5.2.24, Epp-5.2.26
Epp-5.3.45, —
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A Quick Recap...

So far (in the realm of set theory) we have discussed the properties

of the union, intersection, difference, and complements of sets.

We have combined these operations and discussed how to show that

a set is a subset of some other set — by
(1) using element based methods,
(2) defining predicates and applying our knowledge from logic,

(3) algebraic manipulation of known set identities.

We will talk more about set theory later on in the class — when we

talk about relations on sets.
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Counting and Probability

Counting is the key to many probabilistic problems, and to quite a

few games... We start our discussion by tossing coins:

Assume we have two balanced (no cheating) coins, we repeatedly

toss them and take note of how many heads we obtain:

The Book’s Experiment Peter’s Experiment
Event Frequency Relative Frequency | Event Frequency Relative Frequency
2 heads 11 22% 2 heads 24,953 25.0%
1 head 27 54% 1 head 50,301 50.3%
0 heads 12 24% 0 heads 24,746 24.7%

Note: No, Peter did not sit in his office tossing coins for two days —
he let the computer do it for him (in less than a second)...
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Tossing Coins, continued

It seems like the probability of getting 1 head is twice that of getting
2 heads (or 0 heads)...

If we have two coins and mark them “A” and “B”, we have the

following four possible outcomes:

Each time we perform the experiment (toss the coins), we get one

of these outcomes (with equal probability). We should expect to
get twice as many "1 head” outcomes as “2 heads” (and “0 heads”)

outcomes...
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Formalizing the Language 1of3

In order to be able to discuss more complicated scenarios, we in-
troduce the concepts random process, sample space, event, and
probability.

To say that a process is random means that when it takes place,
one outcome from some set of outcomes is sure to occur, but it is

impossible to a priori predict with certainty what the outcome will be.

In our coin-tossing example, each coin has an outcome in the set
{heads, tails }, and the pair of coins has an outcome in the set (formed

by a Cartesian product)

{heads, tails } x {heads,tails } =
{ (heads,heads), (headstails), (tails,heads), (tails,ta ils) }
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Formalizing the Language 20of 3

Definition: Sample Space —
A sample space is the set of all possible outcomes of a random

process or experiment.

Definition: Event —
An event is a subset of a sample space.

In the case an experiment has finitely many outcomes and all out-
comes are equally likely to occur, the probability of an event (set of
outcomes) is just the ratio if the number of outcomes in the event to
the total number of outcomes.
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Formalizing the Language 30f3

Equally Likely Probability Formula

If S is a finite sample space in which all outcomes are equally likely
and E is an event in S, then the probability of E, denoted P(E)

IS
the number of outcomes in F/

P(E)

" the total number of outcomes in S

Notation: For any finite set S, n(S) denotes the number of
elements in S.

With this notation, the equally likely probability formula becomes
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Example: A Deck of Cards 1of 3

A deck of cards contains 52 cards divided into 4 suits:

Red suits Black suits

Diamonds Hearts Clubs Spades
¢ Q L o

25,30 | 20,30 | 2&%, 3& | 24, 34
45,50 | 490,50 | 4, 5 | 48, 5b
6, 75 60, 70 G, 7é 6b, 7h
8, 9$ 80, 90 &, I 8, 98
10 109 10&% 104
JO, Q0 | IO, Q0 | Tk, Q& | T, Qb
KO, AO | KO, AQ | K&, A& | K&, A

Figure: A deck of cards, J — Jack, Q — Queen, K —
King, these are known as “face cards;” and A

— Ace.
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Example: A Deck of Cards 20of 3

Imagine a shuffled deck of cards (the cards are in random order), with
the cards turned over so that their values are hidden. Suppose you

pick one card at random.
Questions:

[a] What is the sample space of outcomes?
[b] What is the event that the chosen card is a black face card?

[c] What is the probability that the chosen card is a black face card?
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Example: A Deck of Cards 30of 3

[a] The sample space is

28, 3$0,49,50, 60,76, 84,90,100, J&, Q0, K&, AG,
20,30, 49, 59, 69, 79, 80, 90, 109, JV, QV, KO, A,
2%, 3%, 4. 5. G, 7, 8%, O, 10&. J&. Qb K&, A,
200, 30, 40, 50,60, 70, 30,98, 108, JO, Qh Kb, A

[b] The event “black face-card” is

E={/% Q&% K& /& QM K&}

[c] The probability of a black face card is given by

_nE) _6 _ 3
P(E)_m_m_%wllﬁ%.
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Example: Rolling a Pair of Dice 1of3

A die is one of a pair of dice. It is a cube with six sides, each

containing a marking of one thru six dots, called pips.

Suppose a white and a gray die are tossed together, and the number
of dots that occur face up on each is recorded — the following are

the possible outcomes (the sample space):

] R (R R K B
HE RIS
HH BH EH EHIHHEH

EHEN HHR A
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Example: Rolling a Pair of Dice 2 of 3

We can introduce a more compact notation by describing each
possibility with a pair of numbers, e.g.

|- S R S| B

"6-5" “3-4" “1-1" “2-4" "5-1" “6-6"
Questions:

[a] Use the compact notation to write the sample space S of

possible outcomes.

[b] Use the set notation to write the event E that the face numbers

sum to six.

[c] What is the probability that the face numbers have a sum of six?
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Example: Rolling a Pair of Dice 3of 3

[a] Use the compact notation to write the sample space S of possible

outcomes.
1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6,
S =1 3-1,3-2, 33, 3-4, 3-5, 3-6, 4-1, 4-2, 4-3, 4-4, 4-5, 4-6,
5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6

[b]  Use the set notation to write the event E that the face numbers

sum to six.
E = { 1-5, 2-4, 3-3, 4-2, 5-1 }

[c] What is the probability that the face numbers have a sum of
six?

_ _ 5 1399
P(E) = 5] = 36 ~ 13:9%
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Example: Counting Element of a List

Question: If m and n are integers (m < n), how many integers are
there from m through n (including m and n)?
We write down the list:

m=(m+0), m+1, m+2, ..., (m+(n—m))=n

and count
, 2, 3, ..., (n—-m)+1

Theorem: If m and n are integers and m < n, then there are

(n —m + 1) integers from m to n inclusive.
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Example: Counting the Elements of a Sublist

Questions:

[a] How many 3-digit integers are divisible by 57

[b] What is the probability that a given 3-digit integer is divisible
by 57

Solutions:

[a] The smallest 3-digit integer divisible by 5 is 100 = 5 - 20.
The largest 3-digit integer divisible by 5 is 995 = 5 - 199.
Clearly, there are as many 3-digit integers divisible by 5 as
there are integers in the range from m = 20 to n = 199, ie.
199 — 20+ 1 = 180.

[b] There are 999 — 100 + 1 = 900 3-digit integers. By [a] 180 of
these are divisible by 5; the probability that a randomly chosen 3-
digit integer is divisible by 5 is given is 180/900 = 1/5 = 20%.
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Convergence of the World Series?

In many situations a tree structure is a useful tool for accounting
for all possibilities when events happen in order. Consider the World
Series in baseball... To teams A and B play until one team has won

4 games... There are many ways this can happen:

Figure: Playing the world series. Here an arrow to the right corresponds to a win for
team A, and an arrow up/right corresponds to a win for team B. Team A wins the
world series if we reach one of the terminal boxes to on the right (blue hexagons), and

team B wins if we reach one of the terminal boxes on top (yellow hexagons).
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Possibility Trees

The previous figure shows all the possible ways
the world series can play out, but there are
multiple ways to reach some (most) states; e.g.
the scenario “A wins, B wins” and “B wins, A
wins" end up in the same state (one win for

each team).

In a possibility tree, these two paths are differen-
tiated; the possibility tree for the first 5 games
looks like this:

Figure (to the right:) The possibility tree for the first 5 games
of the world series. Note that 2 (out of 16) paths terminate af-

ter 4 games. An additional 8 paths terminate after 5 games...
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Questions about the World Series 1of 3

[a] How many ways can the world series be played? — We must
add the two remaining games to the possibility tree to answer

this question.

[b] Assuming all outcomes are equally likely, what is the probability
that the world series will terminate in no more than five games?
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Questions about the World Series 2 of 3

Solutions:

[a] Let 0 denote a win for team A and 1 a win for team B, then we
can write the sample space as a string of games. Let S4 be the
outcomes where team A wins, and Sg be the outcomes where
team B wins (S =S4 USp)

0000, 00010, 00100, 01000, 10000, 000110, 001010, 001100, 010010,
010100, 011000, 100010, 100100, 101000, 110000, 0001110, 0010110,
S4=1{ 0011010,0011100,0100110,0101010,0101100,0110010, 0110100,
0111000, 1000110, 1001010, 1001100, 1010010, 1010100, 1011000,
1100010, 1100100, 1101000, 1110000

1111,11101,11011,10111,01111,111001, 110101, 110011, 101101,
101011,100111,011101,011011,010111,001111, 1110001, 1101001,
Sp =< 1100101,1100011,1011001, 1010101, 1010011, 1001101, 1001011,
1000111, 0111001, 0110101, 0110011,0101101, 0101011, 0100111,
0011101,0011011,0010111, 0001111

Hence, the world series can be played in 70 different ways.
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Questions about the World Series 3 of 3

[b] With the same notation E4 is the event that team A wins in
no more than 5 games, and Eg is the event that team B wins
in no more than 5 games (£ = E4 U ER):

Eyq = { 0000, 00010, 00100, 01000, 10000 }

Ep = { 1111,11101,11011,10111,01111 }

and we have

pipy =B 10 _

1
— =~ 14.
(S) 70 7 3%
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Independent Events and the Multiplication Rule

If we have a sequence of events which are independent (note that
this does not apply to the world series, since depending on the
outcome of previous games, games #5, #6, and #7 may not be
played) the multiplication rule applies:

Theorem: Multiplication Rule —
If an operation consists of k steps and step #i can be performed in
n;waysi = 1,2, ...k, then the entire operation can be performed

in My -ng-...-ng ways.

If all 7 games of the world series were played no matter what the
outcome of the previously played games:

]{727, n1:n2:n3:n4:n5:n6:n7:2

27 =128 possibilities.
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Example: Selecting an Alphanumeric Password

You are to select an 8-digit alphanumeric { a—z, A-Z, 0-9 } password.

This can be viewed as an 8-step operation where each symbol is

selected independently from the 62 possible digits.

There are 62% = 218,340,105, 584, 896 possible passwords.
Swedish has 3 additional vowels {&, &, 6}, so each alphanumeric
digit in a Swedish password has 68 possibilities, hence there are

68% = 457,163,239,653, 376 Swedish passwords.

It is (vaguely) interesting to note that by adding 6 more possibilities
for the digits, we doubled the password space!
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Example: Selecting a Password Without Repetition

The department—of—good—ideasT'vI has announced that no passwords

are allowed to contain the same character twice.

If we are building an 8-digit password from the the digits { a-z, A-Z,
0-9 } we have 62 possibilities for the first digit, then 61 for the second,
60 for the third, etc... All in all there are

62-61-60-59-58-57-56-55=136,325,893,334,400

possible 8-digit passwords without repetition. The probability the a
random 8-digit password does not repeat any character is:
136, 325,893, 334,400

P (no repetition ) = 218 340 105 584896 62.4%
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Example: The Number of Elements in a Cartesian Product

Suppose Ay, As, ..., Aj are sets with ny, ns, ..., n; elements
respectively.

Now consider the set A = A; x Ag X ... x Ay [The Cartesian Product
of the sets]; each element in A is an ordered k-tuple of the form

(al,ag,...,ak) where a; €A, i=1,2,... .k

We can view the construction of the k-tuple as a k-step process of

independent operations:

for i=1,..., k
Choose the ith element of the k-tuple.
end

In step #i there are n; ways to make the choice, so by the multipli-
cation rule there are

ny - ng - ... ng ways to perform the entire operation
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The Multiplication Rule is NOT Always Applicable

We are to select a president, treasurer, and a secretary for an
organization — there are four eligible candidates {Ann, Bob, Cyd, Dan };

further these restrictions apply:

Ann cannot be president Secretary
Cyd
Cyd or Dan must be secretary ban
. - age Dan
To the right we see the possibility tree
associated with selecting the president, Cyd
treasurer, and secretary (in that order).
Dan
We notice that the number of choices in
Dan
each step depends on the previous choices
— therefore the multiplication rule does not
Cyd
apply!
Cyd
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Homework #9 — Due Friday 11/17/2006, 12noon, GMCS-587 Final Version

Epp v3.0

Epp-5.2.1, Epp-5.2.5, Epp-5.2.17, Epp-5.2.37
Epp-5.3.20, Epp-5.3.39

Epp-6.1.3, 6.1.10, 6.1.31

Epp-6.2.1, Epp-6.2.12

Epp v2.0

Epp-5.2.1, Epp-5.2.5, Epp-5.2.24, Epp-5.2.26
Epp-5.3.45, —

Epp-6.1.3a, —, —

Epp-6.2.1, —
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