
Math 245: Disrete MathematisSet Theory / Counting and ProbabilityProperties of Sets, Proofs & Disproofs / IntrodutionLeture Notes #10

Peter BlomgrenDepartment of Mathematis and StatistisSan Diego State UniversitySan Diego, CA 92182-7720
blomgren@terminus.SDSU.EDU

http://terminus.SDSU.EDU

$Id: lecture.tex,v 1.8 2006/11/02 19:59:22 blomgren Exp $

Set Theory / Counting and Probability: Properties of Sets, Proofs & Disproofs / Introduction – p. 1/55

http://terminus.SDSU.EDU


Properties of SetsWe ontinue our study of sets...In partiular we look at element based methods for proving relationsbetween sets.Also, we will see some examples of algebrai tehniques (methodsthat use already known properties of sets to transform expressions)that involve set relations.Our basi building bloks are the union, intersetion, di�ereneand omplement of sets.Note that these operations take preedene (are exeuted before) overset inlusion, i.e.
A ∩ B ⊆ C ⇔ (A ∩ B) ⊆ C
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Some Subset Relations

Theorem: �[1℄ Inclusion of Intersection: For all sets A and B,
(a) A ∩ B ⊆ A, and (b) A ∩ B ⊆ B

[2℄ Inclusion in Union: For all sets A and B,
(a) A ⊆ A ∪ B, and (b) B ⊆ A ∪ B

[3℄ Transitive Property of Subsets: For all sets A, B, and C,if A ⊆ B and B ⊆ C, then A ⊆ C.
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How Do We Prove Suh Relations?

Element Argument: The basic method for
proving that one set is a subset of anotherTo prove that a set (A) is a subset of another set (B):(1) Let x be a partiular, but arbitrarily hosen element of A.(2) Show that x must neessarily be an element of B.

As always when we are trying to prove something, we state the as-sumptions, then use the de�nitions to express what the assumptionsmean.In partiular, for set theoretial proofs, we use the proedural ver-sions of the set de�nitions [next slide℄ to express the meaning ofthe assumptions.
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Proedural Versions of Set De�nitions

Procedural Versions of Set DefinitionsLet X and Y be subsets of a universal set U and suppose x ∈ Uand y ∈ U .[1℄ x ∈ X ∪ Y ⇔ x ∈ X or x ∈ Y .[2℄ x ∈ X ∩ Y ⇔ x ∈ X and x ∈ Y .[3℄ x ∈ X − Y ⇔ x ∈ X and x 6∈ Y .[4℄ x ∈ Xc ⇔ x 6∈ X.[5℄ (x, y) ∈ X × Y ⇔ x ∈ X and y ∈ Y .

With these tools handy, we an prove the statements on slide 3.
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Proofs of A ⊆ A ∪ B and A ∩ B ⊆ AStatement: A ⊆ A ∪ B.Proof:

Suppose and are sets. Let . Now the statementis ertainly true, hene by the de�nition of theunion , we must have .

Statement: A ∩ B ⊆ A.Proof:

Suppose and are sets, and . By the de�nitionof the intersetion . In partiular .

Here we have used

Generalization
(Disjunctive Addition)

p

∴ p ∨ q

Specialization
(Conjunctive Simplification)

p ∧ q

∴ p

Set Theory / Counting and Probability: Properties of Sets, Proofs & Disproofs / Introduction – p. 6/55
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Proofs of A ⊆ A ∪ B and A ∩ B ⊆ AStatement: A ⊆ A ∪ B.Proof: Suppose A and B are sets. Let x ∈ A. Now the statement
(x ∈ A) ∨ (x ∈ B) is ertainly true, hene by the de�nition of theunion A ∪ B, we must have x ∈ (A ∪ B). �Statement: A ∩ B ⊆ A.Proof: Suppose A and B are sets, and x ∈ (A ∩ B). By thede�nition of the intersetion (x ∈ A) ∧ (x ∈ B). In partiular x ∈ A.

�Here we have used
Generalization

(Disjunctive Addition)

p

∴ p ∨ q

Specialization
(Conjunctive Simplification)

p ∧ q

∴ p
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Set Identities 1 of 3Let A, B, and C be subsets of a universal set U . The followingtwelve identities are true:

1. Commutative laws: For all sets A and B,
A ∩ B = B ∩ A, and A ∪ B = B ∪ A.

2. Associate laws: For all sets A, B and C,
(A ∩B) ∩C = A ∩ (B ∩C), and (A ∪B) ∪C = A ∪ (B ∪ C).

3. Distributive laws: For all sets A, B and C,

A∪(B∩C) = (A∪B)∩(A∪C), and A∩(B∪C) = (A∩B)∪(A∩C).
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Set Identities 2 of 34. Identity laws: (U ats as an identity for ∩, and 6O ats as a �zero�for ∪): For all sets A,

A ∪ 6O = A, and A ∩ U = A.

5. Complement laws: For all sets A,
A ∪ Ac = U, and A ∩ Ac = 6O

6. Double complement law: For all sets A,
(Ac)c = A.

7. Idempotent laws: For all sets A,
A ∩ A = A, and A ∪ A = A.
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Set Identities 3 of 38. Universal bounds laws: For all sets A,

A ∪ U = U, and A ∩ 6O = 6O9. De Morgan’s laws: For all sets A and B,
(A ∪ B)c = Ac ∩ Bc, and (A ∩ B)c = Ac ∪ Bc.10. Absorption laws: For all sets A and B

A ∪ (A ∩ B) = A, and A ∩ (A ∪ B) = A.11. Complements of U and 6O:

U c = 6O, and 6Oc = U12. Set difference law: For all sets A and B,

A − B = A ∩ Bc.
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Proving the Set IdentitiesThe proofs of the set identities are quite straight-forward. Use theproedural de�nitions (slide 5) and the following rule:
Basic Method for Proving that Sets are EqualLet X and Y be subsets of a universal set U . To prove that

X = Y :[1℄ Prove that X ⊆ Y .[2℄ Prove that Y ⊆ X.

Note: After using the de�nitions, and introdution of prediates suhas P (x) = (x ∈ A), and noting that (x ∈ A ∪B) ≡ ((x ∈ A) ∨ (x ∈

B)) all the proofs follow diretly from the laws of logi.
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 1 of 2Proof: Suppose A and B are sets.[A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪C)℄ � Suppose x ∈ A ∪ (B ∩ C).By de�nition of union x ∈ A or x ∈ (B ∩ C).

Case : Sine , by de�nition of unionand also by de�nition of union. Heneby de�nition of intersetion.Case : Sine , andby de�nition of intersetion. Sine ,by de�nition of union; also sine, by de�nition of unionHene by de�nition ofintersetion.In both ases the ontainment is true.[ ℄
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 1 of 2Proof: Suppose A and B are sets.[A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪C)℄ � Suppose x ∈ A ∪ (B ∩ C).By de�nition of union x ∈ A or x ∈ (B ∩ C).Case x ∈ A: Sine x ∈ A, x ∈ A ∪ B by de�nition of unionand also x ∈ A ∪ C by de�nition of union. Hene

x ∈ (A ∪ B) ∩ (A ∪ C) by de�nition of intersetion.

Case : Sine , andby de�nition of intersetion. Sine ,by de�nition of union; also sine, by de�nition of unionHene by de�nition ofintersetion.In both ases the ontainment is true.[ ℄
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 1 of 2Proof: Suppose A and B are sets.[A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪C)℄ � Suppose x ∈ A ∪ (B ∩ C).By de�nition of union x ∈ A or x ∈ (B ∩ C).Case x ∈ A: Sine x ∈ A, x ∈ A ∪ B by de�nition of unionand also x ∈ A ∪ C by de�nition of union. Hene

x ∈ (A ∪ B) ∩ (A ∪ C) by de�nition of intersetion.Case x ∈ (B ∩ C): Sine x ∈ (B ∩ C), x ∈ B and x ∈ Cby de�nition of intersetion. Sine x ∈ B,

x ∈ A ∪ B by de�nition of union; also sine

x ∈ C, x ∈ A ∪ C by de�nition of unionHene x ∈ (A ∪ B) ∩ (A ∪ C) by de�nition ofintersetion.In both ases the ontainment A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C) is true.[continued℄
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 2 of 2Proof: Suppose A and B are sets.[(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩C)℄ � Suppose x ∈ (A∪B)∩(A∪

C). By de�nition of intersetion x ∈ (A ∪ B) and x ∈ (A ∪ C).

Case : We an immediately onlude thatby de�nition of union.Case : Sine , we must have and byde�nition of union. By the de�nition of interse-tion , and by the de�nition of union.In both ases the ontainment is true.Sine both subset relations have been proved, it follows by de�nitionof set equality that .
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C). By de�nition of intersetion x ∈ (A ∪ B) and x ∈ (A ∪ C).Case x ∈ A: We an immediately onlude that x ∈ A ∪ (B ∩ C)by de�nition of union.

Case : Sine , we must have and byde�nition of union. By the de�nition of interse-tion , and by the de�nition of union.In both ases the ontainment is true.Sine both subset relations have been proved, it follows by de�nitionof set equality that .
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 2 of 2Proof: Suppose A and B are sets.[(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩C)℄ � Suppose x ∈ (A∪B)∩(A∪

C). By de�nition of intersetion x ∈ (A ∪ B) and x ∈ (A ∪ C).Case x ∈ A: We an immediately onlude that x ∈ A ∪ (B ∩ C)by de�nition of union.Case x 6∈ A: Sine x 6∈ A, we must have x ∈ B and x ∈ C byde�nition of union. By the de�nition of interse-tion x ∈ (B ∩ C), and by the de�nition of union

x ∈ A ∪ (B ∩ C).In both ases the ontainment (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C) is true.Sine both subset relations have been proved, it follows by de�nitionof set equality that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). �
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Proof: (A ∪ B)c = Ac ∩ Bc Alternative ApproahIf we feel more omfortable arguing a proof from the laws of logi, bean onvert to an equivalent problem...

Proof: Suppose A and B are subsets of a universal set U . De�ne theprediates P (x) and Q(x):

P (x) = �x ∈ A� , Q(x) = �x ∈ B� .Our two sets are

(A ∪ B)c = {x ∈ U | ∼ (P (x) ∨ Q(x))}

(Ac ∩ Bc) = {x ∈ U | (∼ P (x)) ∧ (∼ Q(x))}Sine

∼ (P (x)∨Q(x)) ≡ (∼ P (x))∧ (∼ Q(x)) [De Morgan’s laws of logic℄the sets must be equal. �
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The Empty Set � Proof Tehnique

Element Method for Proving a Set Equals the Empty SetTo prove that a set S equals to the empty set 6O, prove that S hasno elements. � To ahieve this, suppose S has an element andderive a ontradition.Proposition: Given any two sets A and B, (A−B) and B are disjoint.Proof: [by contradiction℄

Suppose the proposition is false. Then thereexists two sets and suh that [℄ By the de�nition of intersetion there is an elementand . By the de�nition of set di�ereneand . Hene we have shown that and , whih is aontradition.[ ℄
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and B not disjoint℄ By the de�nition of intersetion there is an element

x ∈ (A − B) and x ∈ B.

By the de�nition of set di�ereneand . Hene we have shown that and , whih is aontradition.[ ℄
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and B not disjoint℄ By the de�nition of intersetion there is an element

x ∈ (A − B) and x ∈ B. By the de�nition of set di�erene x ∈ Aand x 6∈ B.

Hene we have shown that and , whih is aontradition.[ ℄
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The Empty Set � Proof Tehnique

Element Method for Proving a Set Equals the Empty SetTo prove that a set S equals to the empty set 6O, prove that S hasno elements. � To ahieve this, suppose S has an element andderive a ontradition.Proposition: Given any two sets A and B, (A−B) and B are disjoint.Proof: [by contradiction℄ Suppose the proposition is false. Then thereexists two sets A and B suh that (A − B) ∩ B 6= 6O [(A − B)

and B not disjoint℄ By the de�nition of intersetion there is an element

x ∈ (A − B) and x ∈ B. By the de�nition of set di�erene x ∈ Aand x 6∈ B. Hene we have shown that x ∈ B and x 6∈ B, whih is aontradition. �[The supposition that there exists sets A and B such that (A−B) and B are

not disjoint is false, and hence the proposition is true.℄
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Showing the Falsity of an Alleged Set PropertyFalse statement: For all sets A, B and C

(A − B) ∪ (B − C) = A − C

A B

C

A B

C

A B

C

A

The sets A, B, and C . A − C (A − B) ∪ (B − C)Counterexample:
A = {a, b}, B = {b, c}, C = {a, d}

A − C = {b}, (A − B) ∪ (B − C) = {a} ∪ {b, c} = {a, b, c}
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How to Approah Set-Theory Problems

The Problem: �Prove or disprove some statement about sets!�The Optimist: Start trying to prove the statement! Think aboutwhat you need to show and, of ourse, how to show it.The Pessimist: Think about onditions that must be ful�lled toonstrut a ounterexample.If the statement is true, the optimist sueeds, and the pessimist endsup with inompatible onditions (possibly a form of ontradition, orno elements satisfying the onditions)... The pessimist must swithgears.If the statement is false, the pessimist sueeds in �nding a oun-terexample, and the optimist ends up with a step in the proof whihis learly not true... and s/he must swith gears.

Set Theory / Counting and Probability: Properties of Sets, Proofs & Disproofs / Introduction – p. 16/55



The Number of Elements of a Power Set 1 of 4

Theorem: ∀n ∈ Z, n ≥ 0, if a set S has n elements, then P(S)has 2n elements.The proof is based on mathematial indution [back to haunt us again!℄and uses the following observations... Suppose S is a set and z ∈ S.1. The subsets of S an be split into two ategories: those that ontain

z, and those who do not ontain z.2. The subsets of S that do not ontain z are the same as the subsets of

S − {z}.3. The subsets of S that do not ontain z an be mathed up one-to-onewith the subsets that ontain z by mathing eah subset Si ⊆ Swhih does not ontain z with the subset Si ∪ {z} that ontains z.Thus there are as many subsets of S that ontain z as there aresubsets that do not ontain z. .
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The Number of Elements of a Power Set 2 of 4Consider the example S = {1, 2, 3}, z = 3

P(S) = {6O, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Subsets of S Subsets of S

that do not contain 3 that contain 3

6O ↔ {3}

{1} ↔ {1, 3}

{2} ↔ {2, 3}

{1, 2} ↔ {1, 2, 3}
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The Number of Elements of a Power Set 3 of 4Proof: Let P (x) be the property �Any set S with n elements has 2nsubsets.� (The power set P(S) has 2n elements.)
True for n = 0:

The only set with 0 elements is the empty set. Theonly subset of the empty set is itself. Thus a set with 0 elements has1 subset. The property is true.: Let and suppose that any set with ele-ments has subsets. [ ℄ [℄ Let be a set withelements, and . Any subset of either ontains or it does not.Any subset of whih does not ontain is a subset of ,further suh a set an be mathed up with that ontains .Consequently there are as many subsets of than ontain as do not,and thus twie as many subsets of as there are subsets of .[ ℄
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The Number of Elements of a Power Set 3 of 4Proof: Let P (x) be the property �Any set S with n elements has 2nsubsets.� (The power set P(S) has 2n elements.)
True for n = 0: The only set with 0 elements is the empty set. Theonly subset of the empty set is itself. Thus a set with 0 elements has1 subset. The property P(0) is true.
P(k) ⇒ P(k + 1): Let k ≥ 0 and suppose that any set with k ele-ments has 2k subsets. [The Inductive Hypothesis℄ [We must show that any

set with k + 1 elements has 2k+1 subsets.℄ Let S be a set with k + 1elements, and z ∈ S. Any subset of S either ontains z or it does not.Any subset A of S whih does not ontain z is a subset of S − {z},further suh a set an be mathed up with A ∪ {z} that ontains z.Consequently there are as many subsets of S than ontain z as do not,and thus twie as many subsets of S as there are subsets of S − {z}.[continued...℄
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The Number of Elements of a Power Set 4 of 4The set S − {z} has k elements, thus by the indutive hypothesisthe number of subsets of S − {z} is 2k.

Now it follows that

#subsets(S) = 2 · #subsets(S − {z}) = 2 · 2k = 2k+1. �[Since we have proved both the basis step P (0) and the inductive step

P (k) ⇒ P (k + 1), we conclude that the theorem is true.℄

Theorem: Number of Elements of the Power Set �

∀n ∈ Z, n ≥ 0, if a set S has n elements, then P(S) has 2nelements.
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof:

Suppose and are sets suh that . [We mustshow ℄

Let . Sine , by the de�nition of thepower set. Further we know that , hene

and by the transitive property for subset inlusion. By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets suh that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let . Sine , by the de�nition of thepower set. Further we know that , hene

and by the transitive property for subset inlusion. By thede�nition of the power set .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets suh that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let X ∈ P(A).

Sine , by the de�nition of thepower set. Further we know that , hene

and by the transitive property for subset inlusion. By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets suh that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let X ∈ P(A). Sine X ∈ P(A), X ⊆ A by the de�nition of thepower set.

Further we know that , hene

and by the transitive property for subset inlusion. By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets suh that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let X ∈ P(A). Sine X ∈ P(A), X ⊆ A by the de�nition of thepower set. Further we know that A ⊆ B, hene
X ⊆ A ⊆ Band X ⊆ B by the transitive property for subset inlusion.

By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets suh that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let X ∈ P(A). Sine X ∈ P(A), X ⊆ A by the de�nition of thepower set. Further we know that A ⊆ B, hene
X ⊆ A ⊆ Band X ⊆ B by the transitive property for subset inlusion. By thede�nition of the power set X ∈ P(B).

Thus P(A) ⊆ P(B). �
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Deriving New Set Properties � Algebrai MethodIt is possible to derive new set properties from the ones we have estab-lished. The set identities we derived apply to all sets (they are universalstatements), so we have plenty of room to play...Example #1 � Relabeling We know that for all sets A, B, and C thedistributive laws state

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)If we rename A → A1, B → A2, and C → A3, we get the relation

A1 ∩ (A2 ∪ A3) = (A1 ∩ A2) ∪ (A1 ∩ A3)Whih shows that the rule holds for any olletion 3 three sets.For any sets V , W , X , Y , and Z, an let A1 = (V ∩ W ), A2 = (X − Y ),and A3 = (Z ∩ W c). We now get
(V ∩W )∩((X−Y )∪(Z∩W c)) = ((V ∩W )∩(X−Y ))∪((V ∩W )∩(Z∩W c))
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Algebrai Derivations of Set PropertiesExample #2 Let A, B, and C be given. Then

(A ∪ B) − C = (A ∪ B) ∩ Cc alternate representation

= Cc ∩ (A ∪ B) commutative law

= (Cc ∩ A) ∪ (Cc ∩ B) distributive law

= (A ∩ Cc) ∪ (B ∩ Cc) commutative law

= (A − C) ∪ (B − C) alternate representationThis shows that for all sets A, B and C

(A ∪ B) − C = (A −C) ∪ (B − C)
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Algebrai Derivations of Set PropertiesExample #3 Let A1, A2, A3 and A4 be given. Then
((A1 ∪ A2) ∪ A3) ∪ A4 = (A1 ∪ (A2 ∪ A3)) ∪ A4 associative law

= A1 ∪ ((A2 ∪ A3) ∪ A4) associative law

= A1 ∪ (A2 ∪ (A3 ∪ A4)) associative lawThis shows that for all sets A, B and C

((A1 ∪ A2) ∪ A3) ∪A4 = A1 ∪ (A2 ∪ (A3 ∪A4))
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The Empty Set � In an Algebrai ProofSuppose A and B are sets, then A − (A ∩ B) = A − B.Proof:

A − (A ∩ B) = A ∩ (A ∩ B)c Alternate representation

= A ∩ (Ac ∪ Bc) De Morgan’s laws

= (A ∩ Ac) ∪ (A ∩ Bc) Distributive law

= 6O ∪ (A ∩ Bc) Intersection with complement

= (A ∩ Bc) ∪ 6O Commutative law

= A ∩ Bc Union with empty set

= A − B Alternate representation
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Boolean Algebras 1 of 4Earlier we indiated the strong onnetion between set theory and logi �the onept of a Boolean Algebra formalizes this onnetion.A Boolean Algebra is a set S together with two operations, usuallydenoted by + and · suh that ∀a, b ∈ S both (a + b) ∈ S and (a · b) ∈ Sand the following axioms hold:[Commutative Laws℄ ∀a, b ∈ S: a + b = b + a, a · b = b · a.[Associative Laws℄ ∀a, b, c ∈ S: (a + b) + c = a + (b + c),

(a · b) · c = a · (b · c).[Distributive Laws℄ ∀a, b, c ∈ S: a + (b · c) = (a + b) · (a + c),

a · (b + c) = (a · b) + (a · c).[Identities℄ ∃0 ∈ S, 1 ∈ S: ∀a ∈ S: a + 0 = a, a · 1 = a.[Complement / Negation℄ ∀a ∈ S, ∃a ∈ S: a + a = 1 and a · a = 0
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Boolean Algebras 2 of 4So far, we have seen two Boolean algebras: statement forms in a�nite number of variables (Logi), and Set Theory:
Boolean Algebra + · 1 0 0

Statement forms / Logic ∨ ∧ t c ∼

Set Theory ∪ ∩ U 6O Sc

Notes:

For Logic, t is the tautology, c the contradiction.

For Set theory, Sc is the complement.
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Boolean Algebras 3 of 4

Theorem: Properties of Boolean Algebras � (Part 1/2)Let B be any Boolean Algebra.1. Uniqueness of the Complement: ∀a and ∀x in B, if
a + x = 1, and a · x = 0, then x = a.2. Uniqueness of 0 and 1: If ∃x ∈ B suh that a + x = a

∀a ∈ B, then x = 0, and if ∃y ∈ B suh that a · y = a

∀a ∈ B, then y = 1.3. Double Complement: ∀a ∈ B, (a) = a.4. Idempotent law: ∀a ∈ B,
(a) a + a = a, and (b) a · a = a.
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Boolean Algebras 4 of 4

Theorem: Properties of Boolean Algebras � (Part 2/2)Let B be any Boolean Algebra.5. Universal Bound: ∀a ∈ B,

(a) a + 1 = 1, and (b) a · 0 = 0.6. De Morgan's Laws: ∀a, b ∈ B,
(a) a + b = a · b, and (b) a · b = a + b.7. Absorption laws: ∀a, b ∈ B,

(a) (a + b) · a = a, and (b) (a · b) + a = a.8. Complements of 0 and 1:
(a) 0 = 1, and (b) 1 = 0.
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Homework #9 � Due Friday 11/17/2006, 12noon, GMCS-587 Version 1

2Epp v3.0Epp-5.2.1, Epp-5.2.5, Epp-5.2.17, Epp-5.2.37Epp-5.3.20, Epp-5.3.39

Epp v2.0Epp-5.2.1, Epp-5.2.5, Epp-5.2.24, Epp-5.2.26Epp-5.3.45, �
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A Quik Reap...So far (in the realm of set theory) we have disussed the propertiesof the union, intersetion, di�erene, and omplements of sets.

We have ombined these operations and disussed how to show thata set is a subset of some other set � by(1) using element based methods,(2) de�ning prediates and applying our knowledge from logi,(3) algebrai manipulation of known set identities.

We will talk more about set theory later on in the lass � when wetalk about relations on sets.
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Counting and ProbabilityCounting is the key to many probabilisti problems, and to quite afew games... We start our disussion by tossing oins:

Assume we have two balaned (no heating) oins, we repeatedlytoss them and take note of how many heads we obtain:
The Book’s Experiment Peter’s Experiment

Event Frequency Relative Frequency Event Frequency Relative Frequency

2 heads 11 22% 2 heads 24,953 25.0%

1 head 27 54% 1 head 50,301 50.3%

0 heads 12 24% 0 heads 24,746 24.7%

Note: No, Peter did not sit in his o�e tossing oins for two days �he let the omputer do it for him (in less than a seond)...
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Tossing Coins, ontinuedIt seems like the probability of getting 1 head is twie that of getting2 heads (or 0 heads)...If we have two oins and mark them �A� and �B�, we have thefollowing four possible outomes:

A B A B A B A B

2 heads. 1 head. 1 head. 0 heads.

Eah time we perform the experiment (toss the oins), we get oneof these outomes (with equal probability). We should expet toget twie as many �1 head� outomes as �2 heads� (and �0 heads�)outomes...
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Formalizing the Language 1 of 3In order to be able to disuss more ompliated senarios, we in-trodue the onepts random proess, sample spae, event, andprobability.To say that a proess is random means that when it takes plae,one outome from some set of outomes is sure to our, but it isimpossible to a priori predit with ertainty what the outome will be.In our oin-tossing example, eah oin has an outome in the set{heads, tails }, and the pair of oins has an outome in the set (formedby a Cartesian produt){heads, tails } × {heads, tails } ={ (heads,heads), (heads,tails), (tails,heads), (tails,ta ils) }
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Formalizing the Language 2 of 3

De�nition: Sample Spae �A sample spae is the set of all possible outomes of a randomproess or experiment.

De�nition: Event �An event is a subset of a sample spae.

In the ase an experiment has �nitely many outomes and all out-omes are equally likely to our, the probability of an event (set ofoutomes) is just the ratio if the number of outomes in the event tothe total number of outomes.
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Formalizing the Language 3 of 3
Equally Likely Probability FormulaIf S is a �nite sample spae in whih all outomes are equally likelyand E is an event in S, then the probability of E, denoted P(E)is

P (E) =
the number of outcomes in E

the total number of outcomes in S

Notation: For any �nite set S, n(S) denotes the number ofelements in S.
With this notation, the equally likely probability formula beomes

P (E) =
n(E)

n(S)
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Example: A Dek of Cards 1 of 3A dek of ards ontains 52 ards divided into 4 suits:
Red suits Black suits

Diamonds Hearts Clubs Spades

♦ ♥ ♣ ♠

2♦, 3♦ 2♥, 3♥ 2♣, 3♣ 2♠, 3♠
4♦, 5♦ 4♥, 5♥ 4♣, 5♣ 4♠, 5♠
6♦, 7♦ 6♥, 7♥ 6♣, 7♣ 6♠, 7♠
8♦, 9♦ 8♥, 9♥ 8♣, 9♣ 8♠, 9♠

10♦ 10♥ 10♣ 10♠
J♦, Q♦ J♥, Q♥ J♣, Q♣ J♠, Q♠
K♦, A♦ K♥, A♥ K♣, A♣ K♠, A♠

Figure: A deck of cards, J — Jack, Q — Queen, K —

King, these are known as “face cards;” and A

— Ace.
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Example: A Dek of Cards 2 of 3Imagine a shu�ed dek of ards (the ards are in random order), withthe ards turned over so that their values are hidden. Suppose youpik one ard at random.

Questions:
[a℄ What is the sample spae of outomes?[b℄ What is the event that the hosen ard is a blak fae ard?[℄ What is the probability that the hosen ard is a blak fae ard?
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Example: A Dek of Cards 3 of 3[a℄ The sample spae is

S =



















2♦, 3♦, 4♦, 5♦, 6♦, 7♦, 8♦, 9♦, 10♦, J♦, Q♦, K♦, A♦,

2♥, 3♥, 4♥, 5♥, 6♥, 7♥, 8♥, 9♥, 10♥, J♥, Q♥, K♥, A♥,

2♣, 3♣, 4♣, 5♣, 6♣, 7♣, 8♣, 9♣, 10♣, J♣, Q♣, K♣, A♣,

2♠, 3♠, 4♠, 5♠, 6♠, 7♠, 8♠, 9♠, 10♠, J♠, Q♠, K♠, A♠



















[b℄ The event �blak fae-ard� is
E = {J♣, Q♣,K♣, J♠, Q♠,K♠}

[℄ The probability of a blak fae ard is given by

P (E) =
n(E)

n(S)
=

6

52
=

3

26
≈ 11.5%.
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Example: Rolling a Pair of Die 1 of 3A die is one of a pair of die. It is a ube with six sides, eahontaining a marking of one thru six dots, alled pips.

Suppose a white and a gray die are tossed together, and the numberof dots that our fae up on eah is reorded � the following arethe possible outomes (the sample spae):
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Example: Rolling a Pair of Die 2 of 3We an introdue a more ompat notation by desribing eahpossibility with a pair of numbers, e.g.

�6-5� �3-4� �1-1� �2-4� �5-1� �6-6�

Questions:
[a℄ Use the ompat notation to write the sample spae S ofpossible outomes.[b℄ Use the set notation to write the event E that the fae numberssum to six.[℄ What is the probability that the fae numbers have a sum of six?
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Example: Rolling a Pair of Die 3 of 3[a℄ Use the ompat notation to write the sample spae S of possibleoutomes.

S =



















1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6,3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 4-1, 4-2, 4-3, 4-4, 4-5, 4-6,5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6
















[b℄ Use the set notation to write the event E that the fae numberssum to six.

E =
{ 1-5, 2-4, 3-3, 4-2, 5-1 }

[℄ What is the probability that the fae numbers have a sum ofsix?

P(E) =
n(E)

n(S)
=

5

36
≈ 13.9%
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Example: Counting Element of a ListQuestion: If m and n are integers (m ≤ n), how many integers arethere from m through n (inluding m and n)?

We write down the list:

m = (m + 0), m + 1, m + 2, . . . , (m + (n − m)) = nand ount

1, 2, 3, . . . , (n − m) + 1

Theorem: If m and n are integers and m ≤ n, then there are

(n − m + 1) integers from m to n inlusive.
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Example: Counting the Elements of a SublistQuestions:[a℄ How many 3-digit integers are divisible by 5?[b℄ What is the probability that a given 3-digit integer is divisibleby 5?Solutions:[a℄ The smallest 3-digit integer divisible by 5 is 100 = 5 · 20.The largest 3-digit integer divisible by 5 is 995 = 5 · 199.Clearly, there are as many 3-digit integers divisible by 5 asthere are integers in the range from m = 20 to n = 199, i.e.

199 − 20 + 1 = 180.[b℄ There are 999 − 100 + 1 = 900 3-digit integers. By [a℄ 180 ofthese are divisible by 5; the probability that a randomly hosen 3-digit integer is divisible by 5 is given is 180/900 = 1/5 = 20%.
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Convergene of the World Series?In many situations a tree struture is a useful tool for aountingfor all possibilities when events happen in order . Consider the WorldSeries in baseball... To teams A and B play until one team has won4 games... There are many ways this an happen:

Figure: Playing the world series. Here an arrow to the right corresponds to a win for

team A, and an arrow up/right corresponds to a win for team B. Team A wins the

world series if we reach one of the terminal boxes to on the right (blue hexagons), and

team B wins if we reach one of the terminal boxes on top (yellow hexagons).
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Possibility Trees

The previous �gure shows all the possible waysthe world series an play out, but there aremultiple ways to reah some (most) states; e.g.the senario �A wins, B wins� and �B wins, Awins� end up in the same state (one win foreah team).
In a possibility tree, these two paths are di�eren-tiated; the possibility tree for the �rst 5 gameslooks like this:

Figure (to the right:) The possibility tree for the first 5 games

of the world series. Note that 2 (out of 16) paths terminate af-

ter 4 games. An additional 8 paths terminate after 5 games...
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Questions about the World Series 1 of 3[a℄ How many ways an the world series be played? � We mustadd the two remaining games to the possibility tree to answerthis question.[b℄ Assuming all outomes are equally likely, what is the probabilitythat the world series will terminate in no more than �ve games?
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Questions about the World Series 2 of 3Solutions:[a℄ Let 0 denote a win for team A and 1 a win for team B, then wean write the sample spae as a string of games. Let SA be theoutomes where team A wins, and SB be the outomes whereteam B wins (S = SA ∪ SB)
SA =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0000, 00010, 00100, 01000, 10000, 000110, 001010, 001100, 010010,

010100, 011000, 100010, 100100, 101000, 110000, 0001110, 0010110,

0011010, 0011100, 0100110, 0101010, 0101100, 0110010, 0110100,

0111000, 1000110, 1001010, 1001100, 1010010, 1010100, 1011000,

1100010, 1100100, 1101000, 1110000

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

SB =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1111, 11101, 11011, 10111, 01111, 111001, 110101, 110011, 101101,

101011, 100111, 011101, 011011, 010111, 001111, 1110001, 1101001,

1100101, 1100011, 1011001, 1010101, 1010011, 1001101, 1001011,

1000111, 0111001, 0110101, 0110011, 0101101, 0101011, 0100111,

0011101, 0011011, 0010111, 0001111

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;Hene, the world series an be played in 70 di�erent ways.
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Questions about the World Series 3 of 3[b℄ With the same notation EA is the event that team A wins inno more than 5 games, and EB is the event that team B winsin no more than 5 games (E = EA ∪ EB):
EA =

{

0000, 00010, 00100, 01000, 10000
}

EB =
{

1111, 11101, 11011, 10111, 01111
}

and we have

P (E) =
n(E)

n(S)
=

10

70
=

1

7
≈ 14.3%

Set Theory / Counting and Probability: Properties of Sets, Proofs & Disproofs / Introduction – p. 49/55



Independent Events and the Multipliation RuleIf we have a sequene of events whih are independent (note thatthis does not apply to the world series, sine depending on theoutome of previous games, games #5, #6, and #7 may not beplayed) the multipliation rule applies:

Theorem: Multipliation Rule �If an operation onsists of k steps and step #i an be performed in

ni ways i = 1, 2, . . . , k, then the entire operation an be performedin n1 · n2 · . . . · nk ways.If all 7 games of the world series were played no matter what theoutome of the previously played games:
k = 7, n1 = n2 = n3 = n4 = n5 = n6 = n7 = 2

2
7 = 128 possibilities.
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Example: Seleting an Alphanumeri PasswordYou are to selet an 8-digit alphanumeri { a–z, A–Z, 0–9 } password.

This an be viewed as an 8-step operation where eah symbol isseleted independently from the 62 possible digits.

There are 62
8 = 218,340,105,584,896 possible passwords.

Swedish has 3 additional vowels {å, ä, ö}, so eah alphanumeridigit in a Swedish password has 68 possibilities, hene there are

68
8 = 457,163,239,653,376 Swedish passwords.

It is (vaguely) interesting to note that by adding 6 more possibilitiesfor the digits, we doubled the password spae!
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Example: Seleting a Password Without RepetitionThe department-of-good-ideasTM has announed that no passwordsare allowed to ontain the same harater twie.

If we are building an 8-digit password from the the digits { a–z, A–Z,

0–9 } we have 62 possibilities for the �rst digit, then 61 for the seond,60 for the third, et... All in all there are
62 · 61 · 60 · 59 · 58 · 57 · 56 · 55 = 136,325,893,334,400possible 8-digit passwords without repetition. The probability the arandom 8-digit password does not repeat any harater is:

P(no repetition ) =
136,325,893,334,400

218,340,105,584,896
≈ 62.4%
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Example: The Number of Elements in a Cartesian ProdutSuppose A1, A2, . . ., Ak are sets with n1, n2, . . ., nk elementsrespetively.Now onsider the set A = A1 × A2 × . . . × Ak [The Cartesian Product

of the sets℄; eah element in A is an ordered k-tuple of the form
(a1, a2, . . . , ak) where ai ∈ Ai, i = 1, 2, . . . , k.We an view the onstrution of the k-tuple as a k-step proess ofindependent operations:for i=1,. . ., kChoose the ith element of the k-tuple.endIn step #i there are ni ways to make the hoie, so by the multipli-ation rule there are

n1 · n2 · . . . · nk ways to perform the entire operation
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The Multipliation Rule is NOT Always AppliableWe are to selet a president, treasurer , and a seretary for anorganization � there are four eligible andidates {Ann, Bob, Cyd, Dan };further these restritions apply:

Ann cannot be president

Cyd or Dan must be secretary

To the right we see the possibility treeassoiated with seleting the president,treasurer, and seretary (in that order).We notie that the number of hoies ineah step depends on the previous hoies� therefore the multipliation rule does notapply! Dan

Bob

Cyd

Ann

Cyd

Dan

Ann

Bob

Ann

Bob

Cyd

Dan

Dan

Cyd

Dan

Dan

Cyd

Cyd

President
Treasurer

Secretary
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