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Properties of SetsWe 
ontinue our study of sets...In parti
ular we look at element based methods for proving relationsbetween sets.Also, we will see some examples of algebrai
 te
hniques (methodsthat use already known properties of sets to transform expressions)that involve set relations.Our basi
 building blo
ks are the union, interse
tion, di�eren
eand 
omplement of sets.Note that these operations take pre
eden
e (are exe
uted before) overset in
lusion, i.e.
A ∩ B ⊆ C ⇔ (A ∩ B) ⊆ C
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Some Subset Relations

Theorem: �[1℄ Inclusion of Intersection: For all sets A and B,
(a) A ∩ B ⊆ A, and (b) A ∩ B ⊆ B

[2℄ Inclusion in Union: For all sets A and B,
(a) A ⊆ A ∪ B, and (b) B ⊆ A ∪ B

[3℄ Transitive Property of Subsets: For all sets A, B, and C,if A ⊆ B and B ⊆ C, then A ⊆ C.
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How Do We Prove Su
h Relations?

Element Argument: The basic method for
proving that one set is a subset of anotherTo prove that a set (A) is a subset of another set (B):(1) Let x be a parti
ular, but arbitrarily 
hosen element of A.(2) Show that x must ne
essarily be an element of B.

As always when we are trying to prove something, we state the as-sumptions, then use the de�nitions to express what the assumptionsmean.In parti
ular, for set theoreti
al proofs, we use the pro
edural ver-sions of the set de�nitions [next slide℄ to express the meaning ofthe assumptions.
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Pro
edural Versions of Set De�nitions

Procedural Versions of Set DefinitionsLet X and Y be subsets of a universal set U and suppose x ∈ Uand y ∈ U .[1℄ x ∈ X ∪ Y ⇔ x ∈ X or x ∈ Y .[2℄ x ∈ X ∩ Y ⇔ x ∈ X and x ∈ Y .[3℄ x ∈ X − Y ⇔ x ∈ X and x 6∈ Y .[4℄ x ∈ Xc ⇔ x 6∈ X.[5℄ (x, y) ∈ X × Y ⇔ x ∈ X and y ∈ Y .

With these tools handy, we 
an prove the statements on slide 3.
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Proofs of A ⊆ A ∪ B and A ∩ B ⊆ AStatement: A ⊆ A ∪ B.Proof:

Suppose and are sets. Let . Now the statementis 
ertainly true, hen
e by the de�nition of theunion , we must have .

Statement: A ∩ B ⊆ A.Proof:

Suppose and are sets, and . By the de�nitionof the interse
tion . In parti
ular .

Here we have used

Generalization
(Disjunctive Addition)

p

∴ p ∨ q

Specialization
(Conjunctive Simplification)

p ∧ q

∴ p

Set Theory / Counting and Probability: Properties of Sets, Proofs & Disproofs / Introduction – p. 6/55
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Proofs of A ⊆ A ∪ B and A ∩ B ⊆ AStatement: A ⊆ A ∪ B.Proof: Suppose A and B are sets. Let x ∈ A. Now the statement
(x ∈ A) ∨ (x ∈ B) is 
ertainly true, hen
e by the de�nition of theunion A ∪ B, we must have x ∈ (A ∪ B). �Statement: A ∩ B ⊆ A.Proof: Suppose A and B are sets, and x ∈ (A ∩ B). By thede�nition of the interse
tion (x ∈ A) ∧ (x ∈ B). In parti
ular x ∈ A.

�Here we have used
Generalization
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∴ p ∨ q
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(Conjunctive Simplification)

p ∧ q
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Set Identities 1 of 3Let A, B, and C be subsets of a universal set U . The followingtwelve identities are true:

1. Commutative laws: For all sets A and B,
A ∩ B = B ∩ A, and A ∪ B = B ∪ A.

2. Associate laws: For all sets A, B and C,
(A ∩B) ∩C = A ∩ (B ∩C), and (A ∪B) ∪C = A ∪ (B ∪ C).

3. Distributive laws: For all sets A, B and C,

A∪(B∩C) = (A∪B)∩(A∪C), and A∩(B∪C) = (A∩B)∪(A∩C).
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Set Identities 2 of 34. Identity laws: (U a
ts as an identity for ∩, and 6O a
ts as a �zero�for ∪): For all sets A,

A ∪ 6O = A, and A ∩ U = A.

5. Complement laws: For all sets A,
A ∪ Ac = U, and A ∩ Ac = 6O

6. Double complement law: For all sets A,
(Ac)c = A.

7. Idempotent laws: For all sets A,
A ∩ A = A, and A ∪ A = A.
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Set Identities 3 of 38. Universal bounds laws: For all sets A,

A ∪ U = U, and A ∩ 6O = 6O9. De Morgan’s laws: For all sets A and B,
(A ∪ B)c = Ac ∩ Bc, and (A ∩ B)c = Ac ∪ Bc.10. Absorption laws: For all sets A and B

A ∪ (A ∩ B) = A, and A ∩ (A ∪ B) = A.11. Complements of U and 6O:

U c = 6O, and 6Oc = U12. Set difference law: For all sets A and B,

A − B = A ∩ Bc.
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Proving the Set IdentitiesThe proofs of the set identities are quite straight-forward. Use thepro
edural de�nitions (slide 5) and the following rule:
Basic Method for Proving that Sets are EqualLet X and Y be subsets of a universal set U . To prove that

X = Y :[1℄ Prove that X ⊆ Y .[2℄ Prove that Y ⊆ X.

Note: After using the de�nitions, and introdu
tion of predi
ates su
has P (x) = (x ∈ A), and noting that (x ∈ A ∪B) ≡ ((x ∈ A) ∨ (x ∈

B)) all the proofs follow dire
tly from the laws of logi
.
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 1 of 2Proof: Suppose A and B are sets.[A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪C)℄ � Suppose x ∈ A ∪ (B ∩ C).By de�nition of union x ∈ A or x ∈ (B ∩ C).

Case : Sin
e , by de�nition of unionand also by de�nition of union. Hen
eby de�nition of interse
tion.Case : Sin
e , andby de�nition of interse
tion. Sin
e ,by de�nition of union; also sin
e, by de�nition of unionHen
e by de�nition ofinterse
tion.In both 
ases the 
ontainment is true.[ ℄
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 1 of 2Proof: Suppose A and B are sets.[A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪C)℄ � Suppose x ∈ A ∪ (B ∩ C).By de�nition of union x ∈ A or x ∈ (B ∩ C).Case x ∈ A: Sin
e x ∈ A, x ∈ A ∪ B by de�nition of unionand also x ∈ A ∪ C by de�nition of union. Hen
e

x ∈ (A ∪ B) ∩ (A ∪ C) by de�nition of interse
tion.Case x ∈ (B ∩ C): Sin
e x ∈ (B ∩ C), x ∈ B and x ∈ Cby de�nition of interse
tion. Sin
e x ∈ B,

x ∈ A ∪ B by de�nition of union; also sin
e

x ∈ C, x ∈ A ∪ C by de�nition of unionHen
e x ∈ (A ∪ B) ∩ (A ∪ C) by de�nition ofinterse
tion.In both 
ases the 
ontainment A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C) is true.[continued℄
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 2 of 2Proof: Suppose A and B are sets.[(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩C)℄ � Suppose x ∈ (A∪B)∩(A∪

C). By de�nition of interse
tion x ∈ (A ∪ B) and x ∈ (A ∪ C).

Case : We 
an immediately 
on
lude thatby de�nition of union.Case : Sin
e , we must have and byde�nition of union. By the de�nition of interse
-tion , and by the de�nition of union.In both 
ases the 
ontainment is true.Sin
e both subset relations have been proved, it follows by de�nitionof set equality that .
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Proof: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 2 of 2Proof: Suppose A and B are sets.[(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩C)℄ � Suppose x ∈ (A∪B)∩(A∪

C). By de�nition of interse
tion x ∈ (A ∪ B) and x ∈ (A ∪ C).Case x ∈ A: We 
an immediately 
on
lude that x ∈ A ∪ (B ∩ C)by de�nition of union.Case x 6∈ A: Sin
e x 6∈ A, we must have x ∈ B and x ∈ C byde�nition of union. By the de�nition of interse
-tion x ∈ (B ∩ C), and by the de�nition of union

x ∈ A ∪ (B ∩ C).In both 
ases the 
ontainment (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C) is true.Sin
e both subset relations have been proved, it follows by de�nitionof set equality that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). �
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Proof: (A ∪ B)c = Ac ∩ Bc Alternative Approa
hIf we feel more 
omfortable arguing a proof from the laws of logi
, be
an 
onvert to an equivalent problem...

Proof: Suppose A and B are subsets of a universal set U . De�ne thepredi
ates P (x) and Q(x):

P (x) = �x ∈ A� , Q(x) = �x ∈ B� .Our two sets are

(A ∪ B)c = {x ∈ U | ∼ (P (x) ∨ Q(x))}

(Ac ∩ Bc) = {x ∈ U | (∼ P (x)) ∧ (∼ Q(x))}Sin
e

∼ (P (x)∨Q(x)) ≡ (∼ P (x))∧ (∼ Q(x)) [De Morgan’s laws of logic℄the sets must be equal. �
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The Empty Set � Proof Te
hnique

Element Method for Proving a Set Equals the Empty SetTo prove that a set S equals to the empty set 6O, prove that S hasno elements. � To a
hieve this, suppose S has an element andderive a 
ontradi
tion.Proposition: Given any two sets A and B, (A−B) and B are disjoint.Proof: [by contradiction℄

Suppose the proposition is false. Then thereexists two sets and su
h that [℄ By the de�nition of interse
tion there is an elementand . By the de�nition of set di�eren
eand . Hen
e we have shown that and , whi
h is a
ontradi
tion.[ ℄
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The Empty Set � Proof Te
hnique

Element Method for Proving a Set Equals the Empty SetTo prove that a set S equals to the empty set 6O, prove that S hasno elements. � To a
hieve this, suppose S has an element andderive a 
ontradi
tion.Proposition: Given any two sets A and B, (A−B) and B are disjoint.Proof: [by contradiction℄ Suppose the proposition is false. Then thereexists two sets A and B su
h that (A − B) ∩ B 6= 6O [(A − B)

and B not disjoint℄ By the de�nition of interse
tion there is an element

x ∈ (A − B) and x ∈ B. By the de�nition of set di�eren
e x ∈ Aand x 6∈ B. Hen
e we have shown that x ∈ B and x 6∈ B, whi
h is a
ontradi
tion. �[The supposition that there exists sets A and B such that (A−B) and B are

not disjoint is false, and hence the proposition is true.℄
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Showing the Falsity of an Alleged Set PropertyFalse statement: For all sets A, B and C

(A − B) ∪ (B − C) = A − C

A B

C

A B

C

A B

C

A

The sets A, B, and C . A − C (A − B) ∪ (B − C)Counterexample:
A = {a, b}, B = {b, c}, C = {a, d}

A − C = {b}, (A − B) ∪ (B − C) = {a} ∪ {b, c} = {a, b, c}
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How to Approa
h Set-Theory Problems

The Problem: �Prove or disprove some statement about sets!�The Optimist: Start trying to prove the statement! Think aboutwhat you need to show and, of 
ourse, how to show it.The Pessimist: Think about 
onditions that must be ful�lled to
onstru
t a 
ounterexample.If the statement is true, the optimist su

eeds, and the pessimist endsup with in
ompatible 
onditions (possibly a form of 
ontradi
tion, orno elements satisfying the 
onditions)... The pessimist must swit
hgears.If the statement is false, the pessimist su

eeds in �nding a 
oun-terexample, and the optimist ends up with a step in the proof whi
his 
learly not true... and s/he must swit
h gears.
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The Number of Elements of a Power Set 1 of 4

Theorem: ∀n ∈ Z, n ≥ 0, if a set S has n elements, then P(S)has 2n elements.The proof is based on mathemati
al indu
tion [back to haunt us again!℄and uses the following observations... Suppose S is a set and z ∈ S.1. The subsets of S 
an be split into two 
ategories: those that 
ontain

z, and those who do not 
ontain z.2. The subsets of S that do not 
ontain z are the same as the subsets of

S − {z}.3. The subsets of S that do not 
ontain z 
an be mat
hed up one-to-onewith the subsets that 
ontain z by mat
hing ea
h subset Si ⊆ Swhi
h does not 
ontain z with the subset Si ∪ {z} that 
ontains z.Thus there are as many subsets of S that 
ontain z as there aresubsets that do not 
ontain z. .
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The Number of Elements of a Power Set 2 of 4Consider the example S = {1, 2, 3}, z = 3

P(S) = {6O, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Subsets of S Subsets of S

that do not contain 3 that contain 3

6O ↔ {3}

{1} ↔ {1, 3}

{2} ↔ {2, 3}

{1, 2} ↔ {1, 2, 3}
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The Number of Elements of a Power Set 3 of 4Proof: Let P (x) be the property �Any set S with n elements has 2nsubsets.� (The power set P(S) has 2n elements.)
True for n = 0:

The only set with 0 elements is the empty set. Theonly subset of the empty set is itself. Thus a set with 0 elements has1 subset. The property is true.: Let and suppose that any set with ele-ments has subsets. [ ℄ [℄ Let be a set withelements, and . Any subset of either 
ontains or it does not.Any subset of whi
h does not 
ontain is a subset of ,further su
h a set 
an be mat
hed up with that 
ontains .Consequently there are as many subsets of than 
ontain as do not,and thus twi
e as many subsets of as there are subsets of .[ ℄
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The Number of Elements of a Power Set 3 of 4Proof: Let P (x) be the property �Any set S with n elements has 2nsubsets.� (The power set P(S) has 2n elements.)
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set with k + 1 elements has 2k+1 subsets.℄ Let S be a set with k + 1elements, and z ∈ S. Any subset of S either 
ontains z or it does not.Any subset A of S whi
h does not 
ontain z is a subset of S − {z},further su
h a set 
an be mat
hed up with A ∪ {z} that 
ontains z.Consequently there are as many subsets of S than 
ontain z as do not,and thus twi
e as many subsets of S as there are subsets of S − {z}.[continued...℄
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The Number of Elements of a Power Set 4 of 4The set S − {z} has k elements, thus by the indu
tive hypothesisthe number of subsets of S − {z} is 2k.

Now it follows that

#subsets(S) = 2 · #subsets(S − {z}) = 2 · 2k = 2k+1. �[Since we have proved both the basis step P (0) and the inductive step

P (k) ⇒ P (k + 1), we conclude that the theorem is true.℄

Theorem: Number of Elements of the Power Set �

∀n ∈ Z, n ≥ 0, if a set S has n elements, then P(S) has 2nelements.
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof:

Suppose and are sets su
h that . [We mustshow ℄

Let . Sin
e , by the de�nition of thepower set. Further we know that , hen
e

and by the transitive property for subset in
lusion. By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets su
h that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let . Sin
e , by the de�nition of thepower set. Further we know that , hen
e

and by the transitive property for subset in
lusion. By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets su
h that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let X ∈ P(A).

Sin
e , by the de�nition of thepower set. Further we know that , hen
e

and by the transitive property for subset in
lusion. By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets su
h that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let X ∈ P(A). Sin
e X ∈ P(A), X ⊆ A by the de�nition of thepower set.

Further we know that , hen
e

and by the transitive property for subset in
lusion. By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets su
h that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let X ∈ P(A). Sin
e X ∈ P(A), X ⊆ A by the de�nition of thepower set. Further we know that A ⊆ B, hen
e
X ⊆ A ⊆ Band X ⊆ B by the transitive property for subset in
lusion.

By thede�nition of the power set .

Thus .
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Power Sets � A Theorem

Theorem: ∀ sets A and B, if A ⊆ B, then P(A) ⊆ P(B).

Proof: Suppose A and B are sets su
h that A ⊆ B. [We mustshow P(A) ⊆ P(B)℄

Let X ∈ P(A). Sin
e X ∈ P(A), X ⊆ A by the de�nition of thepower set. Further we know that A ⊆ B, hen
e
X ⊆ A ⊆ Band X ⊆ B by the transitive property for subset in
lusion. By thede�nition of the power set X ∈ P(B).

Thus P(A) ⊆ P(B). �
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Deriving New Set Properties � Algebrai
 MethodIt is possible to derive new set properties from the ones we have estab-lished. The set identities we derived apply to all sets (they are universalstatements), so we have plenty of room to play...Example #1 � Relabeling We know that for all sets A, B, and C thedistributive laws state

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)If we rename A → A1, B → A2, and C → A3, we get the relation

A1 ∩ (A2 ∪ A3) = (A1 ∩ A2) ∪ (A1 ∩ A3)Whi
h shows that the rule holds for any 
olle
tion 3 three sets.For any sets V , W , X , Y , and Z, 
an let A1 = (V ∩ W ), A2 = (X − Y ),and A3 = (Z ∩ W c). We now get
(V ∩W )∩((X−Y )∪(Z∩W c)) = ((V ∩W )∩(X−Y ))∪((V ∩W )∩(Z∩W c))
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Algebrai
 Derivations of Set PropertiesExample #2 Let A, B, and C be given. Then

(A ∪ B) − C = (A ∪ B) ∩ Cc alternate representation

= Cc ∩ (A ∪ B) commutative law

= (Cc ∩ A) ∪ (Cc ∩ B) distributive law

= (A ∩ Cc) ∪ (B ∩ Cc) commutative law

= (A − C) ∪ (B − C) alternate representationThis shows that for all sets A, B and C

(A ∪ B) − C = (A −C) ∪ (B − C)
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Algebrai
 Derivations of Set PropertiesExample #3 Let A1, A2, A3 and A4 be given. Then
((A1 ∪ A2) ∪ A3) ∪ A4 = (A1 ∪ (A2 ∪ A3)) ∪ A4 associative law

= A1 ∪ ((A2 ∪ A3) ∪ A4) associative law

= A1 ∪ (A2 ∪ (A3 ∪ A4)) associative lawThis shows that for all sets A, B and C

((A1 ∪ A2) ∪ A3) ∪A4 = A1 ∪ (A2 ∪ (A3 ∪A4))
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The Empty Set � In an Algebrai
 ProofSuppose A and B are sets, then A − (A ∩ B) = A − B.Proof:

A − (A ∩ B) = A ∩ (A ∩ B)c Alternate representation

= A ∩ (Ac ∪ Bc) De Morgan’s laws

= (A ∩ Ac) ∪ (A ∩ Bc) Distributive law

= 6O ∪ (A ∩ Bc) Intersection with complement

= (A ∩ Bc) ∪ 6O Commutative law

= A ∩ Bc Union with empty set

= A − B Alternate representation
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Boolean Algebras 1 of 4Earlier we indi
ated the strong 
onne
tion between set theory and logi
 �the 
on
ept of a Boolean Algebra formalizes this 
onne
tion.A Boolean Algebra is a set S together with two operations, usuallydenoted by + and · su
h that ∀a, b ∈ S both (a + b) ∈ S and (a · b) ∈ Sand the following axioms hold:[Commutative Laws℄ ∀a, b ∈ S: a + b = b + a, a · b = b · a.[Associative Laws℄ ∀a, b, c ∈ S: (a + b) + c = a + (b + c),

(a · b) · c = a · (b · c).[Distributive Laws℄ ∀a, b, c ∈ S: a + (b · c) = (a + b) · (a + c),

a · (b + c) = (a · b) + (a · c).[Identities℄ ∃0 ∈ S, 1 ∈ S: ∀a ∈ S: a + 0 = a, a · 1 = a.[Complement / Negation℄ ∀a ∈ S, ∃a ∈ S: a + a = 1 and a · a = 0
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Boolean Algebras 2 of 4So far, we have seen two Boolean algebras: statement forms in a�nite number of variables (Logi
), and Set Theory:
Boolean Algebra + · 1 0 0

Statement forms / Logic ∨ ∧ t c ∼

Set Theory ∪ ∩ U 6O Sc

Notes:

For Logic, t is the tautology, c the contradiction.

For Set theory, Sc is the complement.
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Boolean Algebras 3 of 4

Theorem: Properties of Boolean Algebras � (Part 1/2)Let B be any Boolean Algebra.1. Uniqueness of the Complement: ∀a and ∀x in B, if
a + x = 1, and a · x = 0, then x = a.2. Uniqueness of 0 and 1: If ∃x ∈ B su
h that a + x = a

∀a ∈ B, then x = 0, and if ∃y ∈ B su
h that a · y = a

∀a ∈ B, then y = 1.3. Double Complement: ∀a ∈ B, (a) = a.4. Idempotent law: ∀a ∈ B,
(a) a + a = a, and (b) a · a = a.
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Boolean Algebras 4 of 4

Theorem: Properties of Boolean Algebras � (Part 2/2)Let B be any Boolean Algebra.5. Universal Bound: ∀a ∈ B,

(a) a + 1 = 1, and (b) a · 0 = 0.6. De Morgan's Laws: ∀a, b ∈ B,
(a) a + b = a · b, and (b) a · b = a + b.7. Absorption laws: ∀a, b ∈ B,

(a) (a + b) · a = a, and (b) (a · b) + a = a.8. Complements of 0 and 1:
(a) 0 = 1, and (b) 1 = 0.
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Homework #9 � Due Friday 11/17/2006, 12noon, GMCS-587 Version 1

2Epp v3.0Epp-5.2.1, Epp-5.2.5, Epp-5.2.17, Epp-5.2.37Epp-5.3.20, Epp-5.3.39

Epp v2.0Epp-5.2.1, Epp-5.2.5, Epp-5.2.24, Epp-5.2.26Epp-5.3.45, �
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A Qui
k Re
ap...So far (in the realm of set theory) we have dis
ussed the propertiesof the union, interse
tion, di�eren
e, and 
omplements of sets.

We have 
ombined these operations and dis
ussed how to show thata set is a subset of some other set � by(1) using element based methods,(2) de�ning predi
ates and applying our knowledge from logi
,(3) algebrai
 manipulation of known set identities.

We will talk more about set theory later on in the 
lass � when wetalk about relations on sets.
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Counting and ProbabilityCounting is the key to many probabilisti
 problems, and to quite afew games... We start our dis
ussion by tossing 
oins:

Assume we have two balan
ed (no 
heating) 
oins, we repeatedlytoss them and take note of how many heads we obtain:
The Book’s Experiment Peter’s Experiment

Event Frequency Relative Frequency Event Frequency Relative Frequency

2 heads 11 22% 2 heads 24,953 25.0%

1 head 27 54% 1 head 50,301 50.3%

0 heads 12 24% 0 heads 24,746 24.7%

Note: No, Peter did not sit in his o�
e tossing 
oins for two days �he let the 
omputer do it for him (in less than a se
ond)...
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Tossing Coins, 
ontinuedIt seems like the probability of getting 1 head is twi
e that of getting2 heads (or 0 heads)...If we have two 
oins and mark them �A� and �B�, we have thefollowing four possible out
omes:

A B A B A B A B

2 heads. 1 head. 1 head. 0 heads.

Ea
h time we perform the experiment (toss the 
oins), we get oneof these out
omes (with equal probability). We should expe
t toget twi
e as many �1 head� out
omes as �2 heads� (and �0 heads�)out
omes...
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Formalizing the Language 1 of 3In order to be able to dis
uss more 
ompli
ated s
enarios, we in-trodu
e the 
on
epts random pro
ess, sample spa
e, event, andprobability.To say that a pro
ess is random means that when it takes pla
e,one out
ome from some set of out
omes is sure to o

ur, but it isimpossible to a priori predi
t with 
ertainty what the out
ome will be.In our 
oin-tossing example, ea
h 
oin has an out
ome in the set{heads, tails }, and the pair of 
oins has an out
ome in the set (formedby a Cartesian produ
t){heads, tails } × {heads, tails } ={ (heads,heads), (heads,tails), (tails,heads), (tails,ta ils) }
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Formalizing the Language 2 of 3

De�nition: Sample Spa
e �A sample spa
e is the set of all possible out
omes of a randompro
ess or experiment.

De�nition: Event �An event is a subset of a sample spa
e.

In the 
ase an experiment has �nitely many out
omes and all out-
omes are equally likely to o

ur, the probability of an event (set ofout
omes) is just the ratio if the number of out
omes in the event tothe total number of out
omes.
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Formalizing the Language 3 of 3
Equally Likely Probability FormulaIf S is a �nite sample spa
e in whi
h all out
omes are equally likelyand E is an event in S, then the probability of E, denoted P(E)is

P (E) =
the number of outcomes in E

the total number of outcomes in S

Notation: For any �nite set S, n(S) denotes the number ofelements in S.
With this notation, the equally likely probability formula be
omes

P (E) =
n(E)

n(S)
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Example: A De
k of Cards 1 of 3A de
k of 
ards 
ontains 52 
ards divided into 4 suits:
Red suits Black suits

Diamonds Hearts Clubs Spades

♦ ♥ ♣ ♠

2♦, 3♦ 2♥, 3♥ 2♣, 3♣ 2♠, 3♠
4♦, 5♦ 4♥, 5♥ 4♣, 5♣ 4♠, 5♠
6♦, 7♦ 6♥, 7♥ 6♣, 7♣ 6♠, 7♠
8♦, 9♦ 8♥, 9♥ 8♣, 9♣ 8♠, 9♠

10♦ 10♥ 10♣ 10♠
J♦, Q♦ J♥, Q♥ J♣, Q♣ J♠, Q♠
K♦, A♦ K♥, A♥ K♣, A♣ K♠, A♠

Figure: A deck of cards, J — Jack, Q — Queen, K —

King, these are known as “face cards;” and A

— Ace.
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Example: A De
k of Cards 2 of 3Imagine a shu�ed de
k of 
ards (the 
ards are in random order), withthe 
ards turned over so that their values are hidden. Suppose youpi
k one 
ard at random.

Questions:
[a℄ What is the sample spa
e of out
omes?[b℄ What is the event that the 
hosen 
ard is a bla
k fa
e 
ard?[
℄ What is the probability that the 
hosen 
ard is a bla
k fa
e 
ard?
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Example: A De
k of Cards 3 of 3[a℄ The sample spa
e is

S =



















2♦, 3♦, 4♦, 5♦, 6♦, 7♦, 8♦, 9♦, 10♦, J♦, Q♦, K♦, A♦,

2♥, 3♥, 4♥, 5♥, 6♥, 7♥, 8♥, 9♥, 10♥, J♥, Q♥, K♥, A♥,

2♣, 3♣, 4♣, 5♣, 6♣, 7♣, 8♣, 9♣, 10♣, J♣, Q♣, K♣, A♣,

2♠, 3♠, 4♠, 5♠, 6♠, 7♠, 8♠, 9♠, 10♠, J♠, Q♠, K♠, A♠



















[b℄ The event �bla
k fa
e-
ard� is
E = {J♣, Q♣,K♣, J♠, Q♠,K♠}

[
℄ The probability of a bla
k fa
e 
ard is given by

P (E) =
n(E)

n(S)
=

6

52
=

3

26
≈ 11.5%.
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Example: Rolling a Pair of Di
e 1 of 3A die is one of a pair of di
e. It is a 
ube with six sides, ea
h
ontaining a marking of one thru six dots, 
alled pips.

Suppose a white and a gray die are tossed together, and the numberof dots that o

ur fa
e up on ea
h is re
orded � the following arethe possible out
omes (the sample spa
e):
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Example: Rolling a Pair of Di
e 2 of 3We 
an introdu
e a more 
ompa
t notation by des
ribing ea
hpossibility with a pair of numbers, e.g.

�6-5� �3-4� �1-1� �2-4� �5-1� �6-6�

Questions:
[a℄ Use the 
ompa
t notation to write the sample spa
e S ofpossible out
omes.[b℄ Use the set notation to write the event E that the fa
e numberssum to six.[
℄ What is the probability that the fa
e numbers have a sum of six?
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Example: Rolling a Pair of Di
e 3 of 3[a℄ Use the 
ompa
t notation to write the sample spa
e S of possibleout
omes.

S =



















1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6,3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 4-1, 4-2, 4-3, 4-4, 4-5, 4-6,5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6
















[b℄ Use the set notation to write the event E that the fa
e numberssum to six.

E =
{ 1-5, 2-4, 3-3, 4-2, 5-1 }

[
℄ What is the probability that the fa
e numbers have a sum ofsix?

P(E) =
n(E)

n(S)
=

5

36
≈ 13.9%
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Example: Counting Element of a ListQuestion: If m and n are integers (m ≤ n), how many integers arethere from m through n (in
luding m and n)?

We write down the list:

m = (m + 0), m + 1, m + 2, . . . , (m + (n − m)) = nand 
ount

1, 2, 3, . . . , (n − m) + 1

Theorem: If m and n are integers and m ≤ n, then there are

(n − m + 1) integers from m to n in
lusive.
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Example: Counting the Elements of a SublistQuestions:[a℄ How many 3-digit integers are divisible by 5?[b℄ What is the probability that a given 3-digit integer is divisibleby 5?Solutions:[a℄ The smallest 3-digit integer divisible by 5 is 100 = 5 · 20.The largest 3-digit integer divisible by 5 is 995 = 5 · 199.Clearly, there are as many 3-digit integers divisible by 5 asthere are integers in the range from m = 20 to n = 199, i.e.

199 − 20 + 1 = 180.[b℄ There are 999 − 100 + 1 = 900 3-digit integers. By [a℄ 180 ofthese are divisible by 5; the probability that a randomly 
hosen 3-digit integer is divisible by 5 is given is 180/900 = 1/5 = 20%.
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Convergen
e of the World Series?In many situations a tree stru
ture is a useful tool for a

ountingfor all possibilities when events happen in order . Consider the WorldSeries in baseball... To teams A and B play until one team has won4 games... There are many ways this 
an happen:

Figure: Playing the world series. Here an arrow to the right corresponds to a win for

team A, and an arrow up/right corresponds to a win for team B. Team A wins the

world series if we reach one of the terminal boxes to on the right (blue hexagons), and

team B wins if we reach one of the terminal boxes on top (yellow hexagons).
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Possibility Trees

The previous �gure shows all the possible waysthe world series 
an play out, but there aremultiple ways to rea
h some (most) states; e.g.the s
enario �A wins, B wins� and �B wins, Awins� end up in the same state (one win forea
h team).
In a possibility tree, these two paths are di�eren-tiated; the possibility tree for the �rst 5 gameslooks like this:

Figure (to the right:) The possibility tree for the first 5 games

of the world series. Note that 2 (out of 16) paths terminate af-

ter 4 games. An additional 8 paths terminate after 5 games...
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Questions about the World Series 1 of 3[a℄ How many ways 
an the world series be played? � We mustadd the two remaining games to the possibility tree to answerthis question.[b℄ Assuming all out
omes are equally likely, what is the probabilitythat the world series will terminate in no more than �ve games?
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Questions about the World Series 2 of 3Solutions:[a℄ Let 0 denote a win for team A and 1 a win for team B, then we
an write the sample spa
e as a string of games. Let SA be theout
omes where team A wins, and SB be the out
omes whereteam B wins (S = SA ∪ SB)
SA =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0000, 00010, 00100, 01000, 10000, 000110, 001010, 001100, 010010,

010100, 011000, 100010, 100100, 101000, 110000, 0001110, 0010110,

0011010, 0011100, 0100110, 0101010, 0101100, 0110010, 0110100,

0111000, 1000110, 1001010, 1001100, 1010010, 1010100, 1011000,

1100010, 1100100, 1101000, 1110000

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

SB =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1111, 11101, 11011, 10111, 01111, 111001, 110101, 110011, 101101,

101011, 100111, 011101, 011011, 010111, 001111, 1110001, 1101001,

1100101, 1100011, 1011001, 1010101, 1010011, 1001101, 1001011,

1000111, 0111001, 0110101, 0110011, 0101101, 0101011, 0100111,

0011101, 0011011, 0010111, 0001111

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;Hen
e, the world series 
an be played in 70 di�erent ways.
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Questions about the World Series 3 of 3[b℄ With the same notation EA is the event that team A wins inno more than 5 games, and EB is the event that team B winsin no more than 5 games (E = EA ∪ EB):
EA =

{

0000, 00010, 00100, 01000, 10000
}

EB =
{

1111, 11101, 11011, 10111, 01111
}

and we have

P (E) =
n(E)

n(S)
=

10

70
=

1

7
≈ 14.3%
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Independent Events and the Multipli
ation RuleIf we have a sequen
e of events whi
h are independent (note thatthis does not apply to the world series, sin
e depending on theout
ome of previous games, games #5, #6, and #7 may not beplayed) the multipli
ation rule applies:

Theorem: Multipli
ation Rule �If an operation 
onsists of k steps and step #i 
an be performed in

ni ways i = 1, 2, . . . , k, then the entire operation 
an be performedin n1 · n2 · . . . · nk ways.If all 7 games of the world series were played no matter what theout
ome of the previously played games:
k = 7, n1 = n2 = n3 = n4 = n5 = n6 = n7 = 2

2
7 = 128 possibilities.
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Example: Sele
ting an Alphanumeri
 PasswordYou are to sele
t an 8-digit alphanumeri
 { a–z, A–Z, 0–9 } password.

This 
an be viewed as an 8-step operation where ea
h symbol issele
ted independently from the 62 possible digits.

There are 62
8 = 218,340,105,584,896 possible passwords.

Swedish has 3 additional vowels {å, ä, ö}, so ea
h alphanumeri
digit in a Swedish password has 68 possibilities, hen
e there are

68
8 = 457,163,239,653,376 Swedish passwords.

It is (vaguely) interesting to note that by adding 6 more possibilitiesfor the digits, we doubled the password spa
e!
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Example: Sele
ting a Password Without RepetitionThe department-of-good-ideasTM has announ
ed that no passwordsare allowed to 
ontain the same 
hara
ter twi
e.

If we are building an 8-digit password from the the digits { a–z, A–Z,

0–9 } we have 62 possibilities for the �rst digit, then 61 for the se
ond,60 for the third, et
... All in all there are
62 · 61 · 60 · 59 · 58 · 57 · 56 · 55 = 136,325,893,334,400possible 8-digit passwords without repetition. The probability the arandom 8-digit password does not repeat any 
hara
ter is:

P(no repetition ) =
136,325,893,334,400

218,340,105,584,896
≈ 62.4%
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Example: The Number of Elements in a Cartesian Produ
tSuppose A1, A2, . . ., Ak are sets with n1, n2, . . ., nk elementsrespe
tively.Now 
onsider the set A = A1 × A2 × . . . × Ak [The Cartesian Product

of the sets℄; ea
h element in A is an ordered k-tuple of the form
(a1, a2, . . . , ak) where ai ∈ Ai, i = 1, 2, . . . , k.We 
an view the 
onstru
tion of the k-tuple as a k-step pro
ess ofindependent operations:for i=1,. . ., kChoose the ith element of the k-tuple.endIn step #i there are ni ways to make the 
hoi
e, so by the multipli-
ation rule there are

n1 · n2 · . . . · nk ways to perform the entire operation
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The Multipli
ation Rule is NOT Always Appli
ableWe are to sele
t a president, treasurer , and a se
retary for anorganization � there are four eligible 
andidates {Ann, Bob, Cyd, Dan };further these restri
tions apply:

Ann cannot be president

Cyd or Dan must be secretary

To the right we see the possibility treeasso
iated with sele
ting the president,treasurer, and se
retary (in that order).We noti
e that the number of 
hoi
es inea
h step depends on the previous 
hoi
es� therefore the multipli
ation rule does notapply! Dan

Bob

Cyd

Ann

Cyd

Dan

Ann

Bob

Ann

Bob

Cyd

Dan

Dan

Cyd

Dan

Dan

Cyd

Cyd

President
Treasurer

Secretary
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