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Quick Recap

Last lecture we started talking about Counting and Probability .

We introduced the concepts: random process, sample space (S)
(all the possible outcomes of a random process), event (F) (a subset
of the sample space), and probability (the relative size of the event
vs. the sample space):

P(E) = n(E) # element is the event
~ n(S)  #elements in the sample space

this formula is valid if and only if all outcomes are equally likely.

We counted elements in a list, looked at the probability of outcomes
when tossing coins, introduced the concept of a possibility tree
(which shows all possible combinations of sequential events), and in-

troduced the multiplication rule for independent events.
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Recap: Key Concepts — Possibility Tree

The previous figure shows all the possible ways
the world series can play out, but there are
multiple ways to reach some (most) states; e.g.
the scenario “A wins, B wins" and "B wins, A
wins’ end up in the same state (one win for

each team).

In a possibility tree, these two paths are differen-
tiated; the possibility tree for the first 5 games
looks like this:

Figure (to the right:) The possibility tree for the first 5 games
of the world series. Note that 2 (out of 16) paths terminate af-

ter 4 games. An additional 8 paths terminate after 5 games...
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Recap: Key Concepts — Independence / Multiplication Rule

If we have a sequence of events which are independent (note that
this does not apply to the world series, since depending on the
outcome of previous games, games #5, #6, and #7 may not be

played) the multiplication rule applies:

Theorem: Multiplication Rule —
If an operation consists of k steps and step #i can be performed in
n;ways ¢ = 1,2, ...k, then the entire operation can be performed

in My -ng- ... ng ways.

If all 7 games of the world series were played no matter what the

outcome of the previously played games:
k=7 ni=ng=ng=n4=n5="ng=mny =2

27 =128 possibilities.
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Permutations Set + Order

A permutation of a set of objects is an ordering of the objects. For

example, the set {a,b,c} has six permutations:
abc, acb, bac, bca, cab, cba

Question: How many permutations does a set with n elements
have???

The first element can be selected in n ways, the second in (n — 1)

ways, the third in (n — 2) ways, ...

#Permutatons (n) = n-(n—1)-...-1 = n!

Theorem: For any integer n > 1, the number of permutations

of a set with n elements is n! (n-factorial).
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Example: Permuting at the Dinner Table

We are to seat six dinner guests around a table:

Figure: Two seating arrangements are considered

the same if they are just a rotation of each other.

Question: How many seating arrangements are there, taking
rotational symmetry into consideration?

Solution: We can take one guest and put him/her in a fixed position;
— then the other five can be seated in 5! = 120 different

ways relative to the first guest.
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Example: Permuting at the Dinner Table, Take #2

We are to seat six dinner guests around a table:

Figure: Two seating arrangements are considered the same if they

are a rotation of each other and/or a reflection of each other.

Question: How many seating arrangements are there, taking rota-

tional and reflective symmetry into consideration?

Solution: Since each seating arrangement has a mirror image, we
now effectively have % - 5! = 60 different seating arrange-

ments.
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Permutations of Selected Elements

Given the set S = {a,b,c} there are six ways to select two letters

from S and write them in order:
ab ac ba bc ca cb

Each such ordering of 2 elements of S is called a 2-permutation of
S.

Definition: r-permutation —
An r-permutation of a set of n elements is an ordered selection
of r elements taken from the set. The number of r-permutations

of a set of n elements is denoted P(n,r).

| wonder if we could create a game using a set with 52 elements, and

consider the 5-permutations... ©

Counting and Probability: Permutations, Addition Rule, Inclusion/Exclusion — p. 8/23




P(n,r) — Counting the r-permutations

Theorem: If n and r are integers and 1 < r < n, then the
number of r-permutations of a set of n elements is given by the
formula

n!

P(ur) =n(n-1)n—2)-m—(r-1)= "

Proof: There are (n —0) ways to make the first choice, (n — 1) ways
to make the second choice, ..., (n — (r — 1)) ways to make the rth

choice, therefore the number of combinations are

n-n—1)-...-n=(r—=1))=n-(n—-1)-...-(n—r+1)
Now we notice

n! 7n-(n—l)-...~(n—r+1)~(n—r)!7n.n_ R
G (n—r)! =n-(n—1)-...-(n—r+1).0
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Evaluating P(n,r)

Problem: How many 4-permutations are there of a set of 15

elements?

Solution #1: We can just plug in and evaluate

P(15.4) = 1P _ 18! 1,307,674,368,000
VT M54 T 11T 39,916,800

= 32,760

However, this can become problematic if n is large (my, quite ancient,
calculator can only compute up to 69! (1.711... x 10%)...

Solution #2: Think about what the denominator does, i.e. canceling
the “tail” of the factorial in the numerator:
151 15!
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Example: Proving P(n,2)+ P(n,1) = n?

Proposition: For all integers n > 2,

P(n,2) + P(n,1) = n?

Proof: Let n be an integer > 2, and use the theorem on slide 9, i.e.

P(n,2) = (nﬁi!Q)!:n(n—l)
P(n,1) = (nill)!:n

and therefore
P(n,2) + P(n,1) =n(n —1) +n=n? —n+n = n?

Vn >2. O
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The Addition Rule — Counting Elements of Disjoint Sets

Theorem: If {A1,A2,..., AL} is a partition of A, then

n(A) =n(A1) + n(A2) + ...+ n(4,)

The formal proof (exercise Epp-6.3.33) uses mathematical induction.
Intuitively it is clear: each element in A is a member of exactly one of
the sets A;, so the element count on both the left- and right-hand-side

must be the same.
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Example: Counting 4-6 Digit PINs

Problem: In order to use the Big Bank's ATMs the user must have
a 4-6 digit PIN (each digit is an integer 0-9). How many
such PINs are there?

Solution:
4-digit PINs 10* = 10,000
5-digit PINs 105 = 100, 000
6-digit PINs | 10% = 1,000, 000
4-6-digit PINs 1,110, 000
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The Difference Rule

Theorem: If A is a set with finitely many elements, and B a
subset of A, B C A, then

n(A — B) = n(A) — n(B)

A (n elements)

[ B (k elements) /
[ A-B (n—k elements)

Figure: The Difference Rule — lllustration.
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Example: Counting 4-6 Digit PINs (with/without repetition)

Problem: In order to use the Big Bank's ATMs the user must have
a 4-6 digit PIN (each digit is an integer 0-9). How
many such PINs are there? — How many PINs have no
repeating digits; How many PINs have repeating digits?)

Solution:

PINs Any Digits No Repetition | With Repetition
4-digit 10* = 10,000 |  P(10,4) = 5,040 4,960
5-digit 10° = 100,000 | P(10,5) = 30,240 69, 760
6-digit 10% = 1,000,000 | P(10,6) = 151,200 848, 800

4-6-digit 1,110,000 186,480 923, 520

Thus requiring non-repeating passwords limits the password space

quite severely.
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Example: Random PINs

Problem: When you get your ATM card from the Big Bank, you are
assigned a random 4-6-digit PIN. What is the probability
that the PIN will have repeated digits? What is the
probability that it will not?

Solution:
n(repeated ) 923,520

Plrepeated ) = - = 0.832 = 83.2
(repeated ) = — N~ = 1,110,000 %
n(no repeated ) 186, 480
P ted ) = - =0.168 = 16.8
(no repeated ) n(any) 1,110,000 %

We notice
P(repeated ) + P(no repeated ) = 1

This true in general for complementary events...
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Probability of the Complement of an Event

Formula for the Probability of the Complement of an Event

If S is a finite sample space and E is an event in S, then

P(E®) =1 - P(E)

Since S = EU E€, and EN E° = @ we have

n(S) =n(E)+n(E°) < n(E)=n(S)—n(E)

and ()
n(E

n(S) n(S) n(S) n(S)
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The Inclusion/Exclusion Rule

Theorem: If A and B are any finite sets, then

n(AUB) =n(A) +n(B) —n(ANB)

Figure: If we count the elements in A and add the elements in B, then the elements
in the intersection (A N B) are counted twice. The statement in the theorem

subtracts one instance of the elements in the intersection, making the count correct.
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Inclusion/Exclusion for Three Sets

Given the Inclusion/Exclusion rule for two sets, we can find rules for
more sets: Let A, B, and C be any sets

n(AUBUC)=n(A)+n(BUC)—n(AN(BUC))

n(A) +n(B) +n(C) —n(BNC) —n(AN(BUCQC))

n(A)+n(B) +n(C) —n(BNC)—n((ANB)U(ANC))

n(A) +n(B) +n(C) —n(BNC)
—(m(ANB)+n(ANC)—n((ANB)N(ANC)))

=n(A)+n(B)+n(C)—nBNC)
—n(ANB)—n(ANC)+n(ANBNC)

See exercise Epp-6.3.36 for the general inclusion/exclusion rule for

n sets.
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Example: Knowledge of Computer Languages 1 of 3

Problem: 50 students replied to a survey of what computer program-

ming languages they knew:

A = {Students that know Java }, n(A) =30
B = {Students thatknow Fortran },  n(B) =18
C = {Students thatknow C }, n(C) = 26

Further the survey reveals
n(ANB) =9, n(ANC) =16, n(BNC)=8, n(AUBUC) =47

Using the difference rule we find that the number of students that do
not know any of the 3 languages:

n(U) —n(AUBUC)=50—-47=3

Here U, our “universe,” is the set of all students who replied to the
study.
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Example: Knowledge of Computer Languages 2 of 3

n(A) =30, n(B) =18, n(C) =26, n(AUBUC) =47,

n(ANB)=9, n(ANC) =16, n(BNC) =38

Using our derived inclusion/exclusion formula for three set we find

that the number of student that know all three languages are

n(AUBUC) = n(A)+n(B)+n(C)—n(BnNC)
—n(ANB)—n(ANC)+n(ANBNC)
47 = 30+18426—-9—-16—-8+n(ANBNC)

This gives us n(AN BN C) =6.

We now have a complete picture...
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Example: Knowledge of Computer Languages 3 of 3

n(A) =30, n(B) =18, n(C) =26, n(AUBUC) =47,

n(ANB) =9, n(ANC) =16, n(BNC) =8, n(ANBNC) =6

B (Fortran)
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Homework #10 — Due Wed. 11/22/2006, 12noon, GMCS-587  Final Version

(Epp-v3.0)

Epp-6.3.4, Epp-6.3.6, Epp-6.3.11, Epp-6.3.18, Epp-6.3.25,
Epp-6.3.26, Epp-6.3.28

Write down the inclusion/exclusion principle for 4 sets (hint: Epp-
6.3.36)
(Epp-v2.0)

Epp-6.3.4, Epp-6.3.6, Epp-6.3.11, Epp-6.3.18, —, Epp-6.3.23,
Epp-6.3.25

Write down the inclusion/exclusion principle for 4 sets (hint: Epp-
6.3.33)
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