Math 245: Discrete Mathematics

Counting and Probability

Permutations, Addition Rule, Inclusion/Exclusion

Lecture Notes #11

Peter Blomgren

Department of Mathematics and Statistics

San Diego State University

San Diego, CA 92182-7720

blomgren@terminus.SDSU.EDU

http://terminus.SDSU.EDU

\$Id: lecture.tex,v 1.2 2006/11/13 21:31:57 blomgren Exp \$

Quick Recap

Last lecture we started talking about *Counting and Probability*.

We introduced the concepts: random process, sample space (S) (all the possible outcomes of a random process), event (E) (a subset of the sample space), and probability (the relative size of the event vs. the sample space):

$$P(E) = \frac{n(E)}{n(S)} = \frac{\text{\# element is the event}}{\text{\# elements in the sample space}}$$

this formula is valid if and only if all outcomes are equally likely.

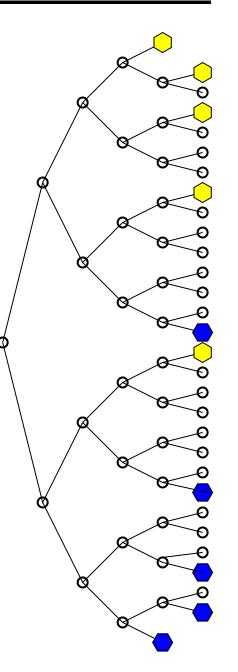
We counted elements in a list, looked at the probability of outcomes when tossing coins, introduced the concept of a *possibility tree* (which shows all possible combinations of sequential events), and introduced the *multiplication rule* for independent events.

Recap: Key Concepts — Possibility Tree

The previous figure shows all the possible ways the world series can play out, **but** there are multiple ways to reach some (most) states; *e.g.* the scenario "A wins, B wins" and "B wins, A wins" end up in the same **state** (one win for each team).

In a possibility tree, these two paths are differentiated; the possibility tree for the first 5 games looks like this:

Figure (to the right:) The possibility tree for the first 5 games of the world series. Note that 2 (out of 16) paths terminate after 4 games. An additional 8 paths terminate after 5 games...



Recap: Key Concepts — Independence / Multiplication Rule

If we have a sequence of events which are *independent* (note that this does not apply to the world series, since depending on the outcome of previous games, games #5, #6, and #7 may not be played) the multiplication rule applies:

Theorem: Multiplication Rule —

If an operation consists of k steps and step #i can be performed in n_i ways $i=1,2,\ldots,k$, then the entire operation can be performed in $n_1 \cdot n_2 \cdot \ldots \cdot n_k$ ways.

If all 7 games of the world series were played no matter what the outcome of the previously played games:

$$k=7, \quad n_1=n_2=n_3=n_4=n_5=n_6=n_7=2$$
 ${\bf 2^7}={\bf 128}$ possibilities.

A **permutation** of a set of objects is an **ordering** of the objects. For example, the set $\{a,b,c\}$ has six permutations:

Question: How many permutations does a set with n elements have???

The first element can be selected in n ways, the second in (n-1) ways, the third in (n-2) ways, ...

$$\# \mathsf{Permutations}(n) = n \cdot (n-1) \cdot \ldots \cdot 1 = n!$$

Theorem: For any integer $n \ge 1$, the number of permutations of a set with n elements is n! (n-factorial).

Example: Permuting at the Dinner Table

We are to seat six dinner guests around a table:

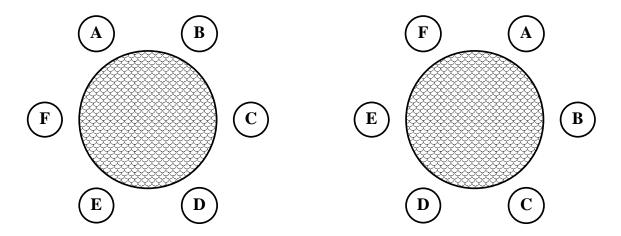


Figure: Two seating arrangements are considered the same if they are just a rotation of each other.

Question: How many seating arrangements are there, taking rotational symmetry into consideration?

Solution: We can take one guest and put him/her in a fixed position; — then the other five can be seated in 5! = 120 different ways relative to the first guest.

Example: Permuting at the Dinner Table, Take #2

We are to seat six dinner guests around a table:

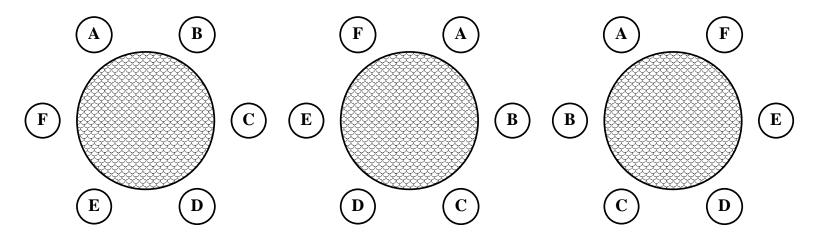


Figure: Two seating arrangements are considered the same if they are a rotation of each other and/or a reflection of each other.

Question: How many seating arrangements are there, taking *rota-tional and reflective symmetry* into consideration?

Solution: Since each seating arrangement has a mirror image, we now effectively have $\frac{1}{2} \cdot 5! = 60$ different seating arrangements.

Permutations of Selected Elements

Given the set $S = \{a, b, c\}$ there are six ways to select two letters from S and write them in order:

$$ab$$
 ac ba bc ca cb

Each such ordering of 2 elements of S is called a **2-permutation** of S.

Definition: r-permutation —

An *r*-permutation of a set of n elements is an ordered selection of r elements taken from the set. The number of r-permutations of a set of n elements is denoted $\mathbf{P}(\mathbf{n}, \mathbf{r})$.

I wonder if we could create a game using a set with 52 elements, and consider the 5-permutations...

P(n,r) — Counting the r-permutations

Theorem: If n and r are integers and $1 \le r \le n$, then the number of r-permutations of a set of n elements is given by the formula

$$\mathbf{P}(\mathbf{n},\mathbf{r}) = \mathbf{n}(\mathbf{n} - \mathbf{1})(\mathbf{n} - \mathbf{2}) \cdots (\mathbf{n} - (\mathbf{r} - \mathbf{1})) = \frac{\mathbf{n}!}{(\mathbf{n} - \mathbf{r})!}$$

Proof: There are (n-0) ways to make the first choice, (n-1) ways to make the second choice, ..., (n-(r-1)) ways to make the rth choice, therefore the number of combinations are

$$n \cdot (n-1) \cdot \ldots \cdot (n-(r-1)) = n \cdot (n-1) \cdot \ldots \cdot (n-r+1)$$

Now we notice

$$\frac{n!}{(n-r)!} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-r+1) \cdot (n-r)!}{(n-r)!} = n \cdot (n-1) \cdot \dots \cdot (n-r+1). \square$$

Evaluating P(n,r)

Problem: How many 4-permutations are there of a set of 15 elements?

Solution #1: We can just plug in and evaluate

$$P(15,4) = \frac{15!}{(15-4)!} = \frac{15!}{11!} = \frac{1,307,674,368,000}{39,916,800} = 32,760$$

However, this can become problematic if n is large (my, quite ancient, calculator can only compute up to 69! $(1.711... \times 10^{98})...$

Solution #2: Think about what the denominator does, *i.e.* canceling the "tail" of the factorial in the numerator:

$$P(15,4) = \frac{15!}{(15-4)!} = \frac{15!}{11!} = 15 \cdot 14 \cdot 13 \cdot 12 = 32,760$$

Proposition: For all integers $n \geq 2$,

$$P(n,2) + P(n,1) = n^2$$

Proof: Let n be an integer ≥ 2 , and use the theorem on slide 9, *i.e.*

$$P(n,2) = \frac{n!}{(n-2)!} = n(n-1)$$

$$P(n,1) = \frac{n!}{(n-1)!} = n$$

and therefore

$$P(n,2) + P(n,1) = n(n-1) + n = n^2 - n + n = n^2$$

$$\forall n \geq 2. \quad \Box$$

The Addition Rule — Counting Elements of Disjoint Sets

Theorem: If $\{A_1, A_2, \dots, A_n\}$ is a partition of A, then

$$n(A) = n(A_1) + n(A_2) + \ldots + n(A_n)$$

The formal proof (exercise Epp-6.3.33) uses mathematical induction. Intuitively it is clear: each element in A is a member of exactly one of the sets A_i , so the element count on both the left- and right-hand-side must be the same.

Example: Counting 4-6 Digit PINs

Problem:

In order to use the Big Bank's ATMs the user must have a 4–6 digit PIN (each digit is an integer 0–9). How many such PINs are there?

Solution:

4-digit PINs	$10^4 = 10,000$
5-digit PINs	$10^5 = 100,000$
6-digit PINs	$10^6 = 1,000,000$
4–6-digit PINs	1,110,000

The Difference Rule

Theorem: If A is a set with finitely many elements, and B a subset of A, $B \subset A$, then

$$n(A - B) = n(A) - n(B)$$

A (n elements)

B (k elements)

A-B (n-k elements)

Figure: The Difference Rule — Illustration.

Example: Counting 4-6 Digit PINs (with/without repetition)

Problem: In order to use the Big Bank's ATMs the user must have a 4–6 digit PIN (each digit is an integer 0–9). How many such PINs are there? — How many PINs have no repeating digits; How many PINs have repeating digits?)

Solution:

PINs	Any Digits	No Repetition	With Repetition
4-digit	$10^4 = 10,000$	P(10,4) = 5,040	4,960
5-digit	$10^5 = 100,000$	P(10,5) = 30,240	69,760
6-digit	$10^6 = 1,000,000$	P(10,6) = 151,200	848,800
4–6-digit	1,110,000	186, 480	923,520

Thus requiring non-repeating passwords limits the password space quite severely.

Example: Random PINs

Problem: When you get your ATM card from the Big Bank, you are assigned a random 4–6-digit PIN. What is the probability that the PIN will have repeated digits? What is the probability that it will not?

Solution:

$$P(\text{repeated}) = \frac{n(\text{repeated})}{n(\text{any})} = \frac{923,520}{1,110,000} = 0.832 = 83.2\%$$

$$P(\text{no repeated}) = \frac{n(\text{no repeated})}{n(\text{any})} = \frac{186,480}{1,110,000} = 0.168 = 16.8\%$$

We notice

$$P(\mathsf{repeated}) + P(\mathsf{no}\;\mathsf{repeated}) = 1$$

This true in general for complementary events...

Probability of the Complement of an Event

Formula for the Probability of the Complement of an Event

If S is a finite sample space and E is an event in S, then

$$\mathbf{P}(\mathbf{E^c}) = 1 - \mathbf{P}(\mathbf{E})$$

Since $S = E \cup E^c$, and $E \cap E^c = \emptyset$ we have

$$n(S) = n(E) + n(E^c) \Leftrightarrow n(E^c) = n(S) - n(E)$$

and

$$P(E) = \frac{n(E)}{n(S)}$$

$$P(E^c) = \frac{n(E^c)}{n(S)} = \frac{n(S) - n(E)}{n(S)} = \frac{n(S)}{n(S)} - \frac{n(E)}{n(S)} = 1 - P(E)$$

The Inclusion/Exclusion Rule

Theorem: If A and B are any finite sets, then

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

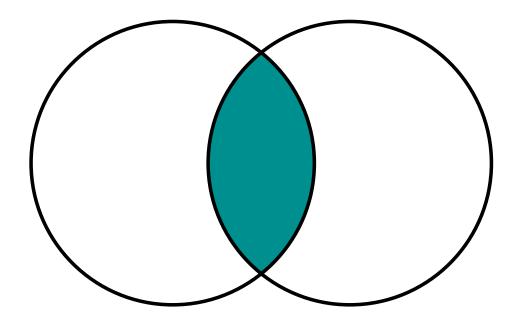


Figure: If we count the elements in A and add the elements in B, then the elements in the intersection $(A \cap B)$ are counted twice. The statement in the theorem subtracts one instance of the elements in the intersection, making the count correct.

Given the Inclusion/Exclusion rule for two sets, we can find rules for more sets: Let $A,\ B,\$ and C be any sets

$$\mathbf{n}(\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}) = n(A) + n(B \cup C) - n(A \cap (B \cup C))$$
$$= n(A) + n(B) + n(C) - n(B \cap C) - n(A \cap (B \cup C))$$

Given the Inclusion/Exclusion rule for two sets, we can find rules for more sets: Let $A,\ B,\$ and C be any sets

$$\mathbf{n}(\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}) = n(A) + n(B \cup C) - n(A \cap (B \cup C))$$

$$= n(A) + n(B) + n(C) - n(B \cap C) - n(A \cap (B \cup C))$$

$$= n(A) + n(B) + n(C) - n(B \cap C) - n((A \cap B) \cup (A \cap C))$$

Given the Inclusion/Exclusion rule for two sets, we can find rules for more sets: Let $A,\ B,\$ and C be any sets

$$\mathbf{n}(\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}) = n(A) + n(B \cup C) - n(A \cap (B \cup C))$$

$$= n(A) + n(B) + n(C) - n(B \cap C) - n(A \cap (B \cup C))$$

$$= n(A) + n(B) + n(C) - n(B \cap C) - n((A \cap B) \cup (A \cap C))$$

$$= n(A) + n(B) + n(C) - n(B \cap C)$$

$$- (n(A \cap B) + n(A \cap C) - n((A \cap B) \cap (A \cap C)))$$

Given the Inclusion/Exclusion rule for two sets, we can find rules for more sets: Let $A,\ B,\$ and C be any sets

$$\mathbf{n}(\mathbf{A} \cup \mathbf{B} \cup \mathbf{C}) = n(A) + n(B \cup C) - n(A \cap (B \cup C))$$

$$= n(A) + n(B) + n(C) - n(B \cap C) - n(A \cap (B \cup C))$$

$$= n(A) + n(B) + n(C) - n(B \cap C) - n((A \cap B) \cup (A \cap C))$$

$$= n(A) + n(B) + n(C) - n(B \cap C)$$

$$- (n(A \cap B) + n(A \cap C) - n((A \cap B) \cap (A \cap C)))$$

$$= \mathbf{n}(\mathbf{A}) + \mathbf{n}(\mathbf{B}) + \mathbf{n}(\mathbf{C}) - \mathbf{n}(\mathbf{B} \cap \mathbf{C})$$

$$- \mathbf{n}(\mathbf{A} \cap \mathbf{B}) - \mathbf{n}(\mathbf{A} \cap \mathbf{C}) + \mathbf{n}(\mathbf{A} \cap \mathbf{B} \cap \mathbf{C})$$

Example: Knowledge of Computer Languages 1 of 3

Problem: 50 students replied to a survey of what computer programming languages they knew:

$$A = \{ ext{Students that know Java} \}, \qquad n(A) = 30$$
 $B = \{ ext{Students that know Fortran} \}, \qquad n(B) = 18$ $C = \{ ext{Students that know C} \}, \qquad n(C) = 26$

Further the survey reveals

$$n(A \cap B) = 9$$
, $n(A \cap C) = 16$, $n(B \cap C) = 8$, $n(A \cup B \cup C) = 47$

Using the difference rule we find that the number of students that do not know any of the 3 languages:

$$n(U) - n(A \cup B \cup C) = 50 - 47 = 3$$

Here U, our "universe," is the set of all students who replied to the study.

Example: Knowledge of Computer Languages 2 of 3

$$n(A) = 30, \ n(B) = 18, \ n(C) = 26, \ n(A \cup B \cup C) = 47,$$

 $n(A \cap B) = 9, \ n(A \cap C) = 16, \ n(B \cap C) = 8$

Using our derived inclusion/exclusion formula for three set we find that the number of student that know all three languages are

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(B \cap C)$$
$$-n(A \cap B) - n(A \cap C) + n(A \cap B \cap C)$$
$$47 = 30 + 18 + 26 - 9 - 16 - 8 + n(A \cap B \cap C)$$

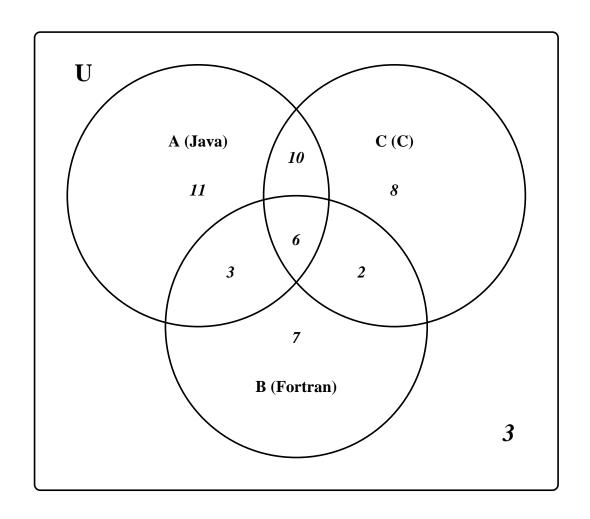
This gives us $n(A \cap B \cap C) = 6$.

We now have a complete picture...

Example: Knowledge of Computer Languages 3 of 3

$$n(A) = 30, \ n(B) = 18, \ n(C) = 26, \ n(A \cup B \cup C) = 47,$$

$$n(A \cap B) = 9, \ n(A \cap C) = 16, \ n(B \cap C) = 8, \ n(A \cap B \cap C) = 6$$



(Epp-v3.0)

Epp-6.3.4, Epp-6.3.6, Epp-6.3.11, Epp-6.3.18, Epp-6.3.25, Epp-6.3.26, Epp-6.3.28

Write down the inclusion/exclusion principle for 4 sets (hint: *Epp-6.3.36*)

(Epp-v2.0)

Epp-6.3.4, Epp-6.3.6, Epp-6.3.11, Epp-6.3.18, —, Epp-6.3.23, Epp-6.3.25

Write down the inclusion/exclusion principle for 4 sets (hint: *Epp-6.3.33*)