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Counting Combinations — Introduction

Consider  drawing a  poker hand  (five cards, e.g.
{1090,J9,Q0V, KO, Ad}) from a deck of cards. How many
possibilities are there?

Last time we introduced the concept of an r-permutation

Definition: An r-permutation of a set of n elements is an or-
dered selection of r elements taken from the set. The number of
r-permutations of a set of n elements is denoted P(n,r).

But a poker hand is not an ordered selection — it does not matter

in what order you draw the cards!

Next, we introduce r-combinations — an unordered selection of r

elements from a set of n elements...
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Counting Subsets — r-combinations

Definition: r-combination —

Let n and r be non-negative integers with » < n. An 7r-
combination of a set of n elements is a subset of r of the n ele-
ments. The symbol (:L) read “n choose r,” denotes the number
of subsets of size r (r-combinations) that can be chosen from a

set of n elements.

Selection Type Ordered Unordered
Name r-permutation r-combination
n
Symbol P(n,r) @)
# of Possibilites || —%~ 277
(n—r)!

Table: Summary of ordered (permutations) and unordered (com-
binations) selection of r elements from a set containing n elements.
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Example

Example #1: A 3-combination of S, where n(S) = 4. Let § =
{Math, Physics, Chemistry, Biology ~} — next semester
you must take 3 of these subjects, what are your op-
tions?

{Physics, Chemistry, Biology } {Math, Chemistry, Biology }
{Math, Physics, Biology } {Math, Physics, Chemistry }

Example #2: A 2-combination of S, where n(S) = 4. Let S =
{0,1,2,3}, how many subsets are there?

{0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}

We notice that the number of combinations is given by

4 4! 4 4! 24
= — = 4 = = — =
<3> 317 (2) ST TR
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() vs. P(n,r) 1 of 2

I

We can think of ordered selection as a 2-step process:
1. Select r (unordered ) elements from the set of n elements.

2. Assign an ordering to the r elements.

If there are n; ways to perform step 1 and ny ways to perform step 2,
then by the multiplication rule there are ny - ny ways to perform the

two-step process.

We know we can perform the two-step process (generating an r-
combination) in ny -nge = P(n,r) ways, where n; = (Z) and no = 1!

by the following theorem (from last lecture)

Theorem:  For any integer r > 1, the number of permutations

of a set with r elements is 7! (r-factorial).
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(%) vs. P(n,r) 2 of 2

Ir

We now have the following relationship
P !
P(n,r) = o e ") = (n,r): "
r r 7! (n—mr)l-rl

We summarize in a theorem:

Theorem:  The number of subsets of size r (or r-combinations)

that can be chosen from a set of n elements, (:f) is given by the

where n and r are non-negative integers with r < n.

formula
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Summary: Combinations, Set Combinations, and 7-Permutations

Type Ordering Ordered Selection Unordered Selection
Name Permutation r-permutation r-combination
Symbol (count) — P(n,r) (f)

# of Possibilities n! (n”f'r), #'),r,

Table: Summary of permutations of n elements, ordered selection
and unordered selection of r elements from a set containing n

elements.
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Examples: Corporate Layoffs

Problem: You are a middle-manager of MegaCorp Inc., there are 12
employees in your department. You have been charged
with the task of selecting 5 of them for termination —

how many ways can this be done?

Solution: The number of ways this can be done is the number of
subsets of size 5 of a set of 12 elements (a 5-combination). The

number is given by

12\ 12! 12
5) (12-5)!-51 7.5

We cancel common factors before evaluating...
12 12-11-10-9-8 11-10-9-8

751 5.4-3.2 5-2
12

=11-9-8="792.
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Examples: Basketball Teams

Problem: We are to form a 5-person team out of 12 players. Two of them
are a “"dynamic duo” and must either both be on the team, or

off. — How many ways can this be done?

Solution: The problem splits into two cases

1. The duo is on the team, and we have

10 10!
(3) BE R

ways to select the remaining 3 players from a pool of 10.

2. The duo is off the team, and we have

10 10!
= —9252
(5) =5 =2

ways to select the 5 players from a pool of 10.

Clearly, the cases are disjoint, so the addition rule applies and we have
120 + 252 = 372 combinations.
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Teams with Members of Two Types 1 of 2

Suppose a group consists of five men and seven women.

Problems:
(a) How many 3M+2W teams are there?
(b) How many 5-person team contain at least 1M?
(c) How many 5-person team contain at most 1M?

Solutions:

Part (a) is straight-forward. We can think of this selection as a 2-step

process. First select 3 out of 5 men, then 2 out of 7 women:

5\ (7 507!
. = . =10-21 = 210.
<3> (2) 3.2l 5o 0 0
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Teams with Members of Two Types 2 of 2

For part (b) we use the difference rule

{> 1-man 5-person teams } = {All 5-person teams }—{All-Women 5-person teams }

12 7 12! 7!
<5> <5> 75l Bl 77

For part (c) we use the addition rule

We get

{0-man 5-person teams } U {1-man 5-person teams }

() () () () = -arem e
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We get

Poker Hands {80, 8%, A, AV, J b} 1of3

Problems:

(a) How many 5-card poker hands contain two pairs?

(b) What is the probability that a 5-card hand dealt at random
contains two pairs?

Solutions:
(a) We can view this as a 4-step process

1. Choose the denomination for the pairs
2. Choose two cards from the smaller denomination
3. Choose two cards from the larger denomination

4. Choose one card from the remaining cards
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Poker Hands {80, 8%, AD, AV, J b} 2 of 3

Since there are 13 denominations {2,3,4,5,6,7,8,9,10,J,Q, K, A}
there are (123) ways to perform step 1.

There are 4 cards of each denomination {&, >,V &}, so therefore

each of steps 2 and 3 can be performed in (;1) ways.

There are 44 allowable cards remaining (if we pick any of the 4 cards
which have the same denomination we end up with a “full house,”

eg. {8V,8%, A\, AV AM}), hence step 4 can be performed in
(1) ways.

The steps are independent, hence the multiplication rule applies

B

so, 123,552 poker hands contain two pairs.
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Poker Hands {80, 8%, AD, AV, J b} 30of3
Part (b):

There are a total of (%7) 5-card hands from an ordinary deck of cards.
If all hands are equally likely, the probability of obtaining a hand with

two pairs is

n(two-pair hands ) 123,552 198

= = =0.0475
n(all hands ) 2,598,960 4165

P(two pairs ) =

i.e. just shy of 5%.

To think about: How many poker hands beat (all) hands with two
pairs?
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Permutations of a Set with Repeated Elements

Problem: How many distinguishable orderings are there of the letters
in the word “MISSISSIPPI"?

Solution: Copies of the same letter cannot be distinguished from one an-

other... We can view the ordering as a 4-step process
1. Choose a subset of four positions for the S's
2. Choose a subset of four positions for the I's
3. Choose a subset of two positions for the P's
4

. Choose a subset of one position for the M.

11
4

) ways, for a grand total of

There are 11 positions, so step 1 can be performed in (

3 1
2 1

() -om51-0m

Question: Does the order in which we place the letters change the an-

) ways, step 2 in

(1) ways, step 3 in (3) ways, and step 4 in (

swer???
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Permutations of a Set with Repeated Elements

Theorem: Suppose a collection consists of n objects of which:

ny are of type 1 and are indistinguishable from each other

ng are of type 2 and are indistinguishable from each other

ny are of type k and are indistinguishable from each other

and suppose n = n +ng +...+ng. Then the number of distinct

permutations of the n objects are

n n—ni n—ny —ng n—mi—ng — ... Nkg—1
niy no ns Tk

this expression simplifies to

n!

nl!-n2!~n3!~~-nk!

Counting and Probability: Combinations, Pascal’s Triangle, the Binomial Theorem — p. 16/51




Homework #11 — Not Due!!! Version 15

(Epp-v3.0)
Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19

(Epp-v2.0)
Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19

r-Combinations with Repetition Allowed

Definition: An r-combination with repetition allowed, or a
multi-set of size r, chosen from a set S of n elements is an
unordered selection of elements taken from S with repetition al-
lowed. If S = {s1,89,...,8,}, we write a multi-set of size r as
[Xiy» Xiy, - - -, Xi, | where each x;; € S and it is allowed for some

(or all) of the z;, to equal each other.

Example: Let S = {1,2,3,4} then some of the 5-combinations are
1,1,1,1,1], [1,2,3,3,5], [1,2,3,4,5]

Note that since a multi-set is unordered, the following are considered

equivalent
1,1,1,1,2] = [1,1,2,1,1]
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Counting r-Combinations with Repetition Allowed 1of 3 Counting r-Combinations with Repetition Allowed 20f 3

How many r-combinations with repetition allowed are there?

If we view each element of S as a category, and view the construction
of the multi-set as a selection from these categories with repetition

allowed... We can write down a table like this:

Cat#l Cat#2 Cat#3 Cat#4 Cat#5 Multi-set
X | oxx | X | X | [1,2,2,3,4]
XXXX | | | | X [1,1,1,1,5]
| XX | X | | XX [2,2,3,5,5]

We notice that we can describe each multi-set with a 9-digit string
containing 5 x's and 4 -'s, e.g. “x-xx-x-x-" corresponds to [1,2,2,3,4],
and “-xx-x--xx" corresponds to [2,2,3,5,5].
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With this description of the multi-set, we notice that we need (n — 1)
-'s to separate the n categories (elements), and r x's to symbolize

the choices.
We have a total of (rr +n — 1) symbols.

Generation of the possible symbol combinations can be viewed as a

2-step process:
1. Choose a subset of r positions for the x's
2. Choose a subset of (n — 1) positions for the -'s
This can be done in
(r—l—n—l) <n—1> _ (r—f—n—l) - <r+n—1>
T n—1 T r
ways.
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Counting r-Combinations with Repetition Allowed 30of3

We summarize our finding in a theorem:

Theorem: The number of r-combinations with repetitions al-

lowed (or multi-sets of size ) that can be selected from a set of

()

This equals the number of ways 7 objects can be selected from n

n elements is

categories of objects with repetition allowed.
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Summary: Counting Formulas

Order Matters  Order Does Not Matter

Repetition Allowed

Repetition Not Allowed

& n+k—1
s ()

Table: We have four different ways of choosing k elements

from a set of n elements. The count is very different de-

pending on whether order and/or repetition matters.

Counting and Probabil
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Example: Integer Solutions...

Problem: How many integer solutions are there to the equation
1+ T2+ 23+ 74 =10

if we require x1, 22,3, x4 > 07

Solution: Think of z1, 29, 23, 24 as 4 categories. Then this problem

is equivalent to selecting 10 objects from 4 categories

(with repetition allowed), the answer is given by

1 1
(THL ),Withrleandn:4 - (13>:286.

r
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Quick Summary: Counting

1 of 2

In the last few lectures we have derived a number of counting

formulas, i.e.

Type Ordering Ordered Selection Unordered Selection
Name Permutation r-permutation r-combination
n
Symbol — P(n,r) ( )
r
n! n!
# of Possibilities n! —_— —_
(n—r)! (n—mr)l-rl

Table: Summary of p

ermutations of n elements, ordered

selection and unordered selection of r elements from a set

containing n elements.
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Quick Summary: Counting 2 of 2

Order Matters  Order Does Not Matter

k—1
Repetition Allowed nk (n + ; >

Repetition Not Allowed

Table: We have four different ways of choosing k elements
from a set of n elements. The count is very different de-

pending on whether order and/or repetition matters.
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Looking Forward...

Next, we will take a closer look at the properties of counting, and

n

1. Derive a number of useful formulas for < > for special values

-
of n and 7,

2. Find relations between different values of (n)
r

3. In particular we will discuss Pascal’s Formula (Pascal’s Trian-
gle) which is perhaps one of the most used formulas in combi-

natorics (the study of counting combinations).

4. We wrap up our discussion of counting with a discussion of the
Binomial Theorem.
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(

Some Values of (")

n n! n! 1 1
— = = = = — = 1
n nl-(n—mn)! nl-00 0 1

Hence, there is only one way of selecting all the elements (without
repetition). [Here, n > 0]

n n! n! non
(n—1> -l -1 (-1 11 "

Hence, there are only n ways to select all but 1 element. [Here, n > 1]

n B n! B n! ~nn—-1) nn-1)
n—2>_(n—2)!‘(n—(n—2))!_(n—2)!-2!_ 2! 2

[Here, n > 2]
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Combinatorial vs. Algebraic Proof

() and (")

(7;) represents the number of ways to select r elements from n

elements. (E.g. selecting which 5 players of 12 who should be on the

court.)

We can think of ( n ) as the complementary action: selecting which
n—r
n — r elements we do not want from the n elements. (E.g. selecting

which 7 players of 12 who should be on the bench.)

The resulting action (what elements are selected / what players are
on the court) is the same — so the number of ways to perform the
two actions should be the same... A bit of algebra and use of the
definition of (") shows that this is indeed true:

C«l) " —T;‘!)!-r! R (Z!— - <nrir)
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New Formulas from Old by Substitution

We have established that
n n(n —1)
= 7 7 > 2
<n - 2> 5 , YneZ, n>

n is just dummy variable (place holder) which can be replaced
by any other integer expression — as long as the integer expres-
sion is greater than or equal to 2, and each occurrence is n is replaced.

Examples:
mALy _(mtm
m—1 2

(-t

E+2\  (k+2)(k+1)
3 < K >—f’ k20

Counting and Probability: Combinations, Pascal’s Triangle, the Binomial Theorem — p. 29/51

Pascal’'s Formula Blaise Pascal (1623-1662)

n+1
r

) to the values of

Pascal's Formula relates the value of (

(ﬁl) and <Z>
(nT) - (ril1> +(1;)

Usage: If we know all the values <n> r=0,1,2...,n are known,
r

. 1
we can immediately find the values for <n + ), r=12...,n. —
r

By one addition, per value!

1
The “missing” values (n + ) where r =0, or r = n + 1 are always

r
1, since they correspond to selecting none/all of the n 4 1 elements.
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Table: Pascal's Formula

n\r 0 1 2 3 4 5 ceeor—=1 r
0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10\>1% 5 1

ol ) G BN BN O G () ()
ntl ) (70 () () ("“)X S I G BT Gty I G

0 1 2 3 4 5 r—1 T

Table: llustration of Pascal's Formula. The arrows indicate how two
previously computed values are combined to fill in a new value in
the table.
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Proving Pascal’s Formula

There are two very different approaches to proving Pascal's Formula:

1. The first version is algebraic. It uses the formula for the number

L n n!
of r-combinations < ) =
r

———— and pure algebraic
(n—7r)rl

manipulation.

2. The second version is combinatorial. It uses the definition of the
number of r-combinations as the number of subsets of size r

taken from a set with n elements.

We look at both versions, since both approaches have applications in

other situations.
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Pascal's Formula, Algebraic Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
(") =()+ ()
= + .
r r—1 r

Proof: Let n and r be positive integers with r < n, from previously

r < n, then

proved theorems we can write:

(rﬁl)+(7:) = (7’—1)!-(72—7“4—1)!+T!-(TTLL!—7’)!

To add these fractions, we need a common denominator. The first

fraction is “missing” an 7, and the second is “missing” a factor of
(n—r+1). We get...

Pascal's Formula, Algebraic Proof 2 of 2

We can now combine the terms:
n! r n! (n—r+1)
r=(n—r+D! r rl-(n—r) (n—r+1)

and get
renl4(n—r+1)-n! (n+1)-n! B (n+1)!
rl-(n—r+1)! Sl (D) =) (1) =)

Finally, we identify

which proves the theorem. [

n! - n! (n—r+1)
r=(n—r+D! r rl-(n—r) (n—r+1)
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Pascal’s Formula, Combinatorial Proof 1of 2 Pascal’s Formula, Combinatorial Proof 2 of 2

Theorem: Let n and r be positive integers and suppose
n+1 n n
(7)== ()

r r—1 r

Proof: Let n and r be positive integers with » < n. Suppose S is

r < n, then

a set with n + 1 elements. The number of subsets of size  can be
calculated by thinking of S as the union of the set with n elements

{x1,29,...,2,} and the set {x, 1} containing one element.
Any subset of S either contains x,,11 or it does not:

1. If a subset of size r contains x,41 then it also contains r — 1
elements from {21, x,...,2,}. There are (") of these.

2. If a subset of size r does not contain x,,11 then it contains r
elements from {z1,z2,...,2,}. There are (:f) of these.
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Since the subsets of type##1 (containing z,+1) and type#2 (not con-
taining x,11) are disjoint, the addition rule applies, and we have:

#subsets of {x1,22,...,&Tn, Tnt1} =
#subsets of {x1,22,...,%,} ofsize (r — 1)+
#subsets of {x1,x2,...,x,} of size r

Which means,

(=G 0)

as was to be shown. [J
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Homework #11 — Not Due!!! Version %

(Epp-v3.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
Epp-6.5.1, Epp-6.5.3, Epp-6.5.5, Epp-6.5. 10,
Epp-6.5.11, Epp-6.6.11, Epp-6.6.14

(Epp-v2.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
Epp-6.5.1, Epp-6.5.3, Epp-6.5.5, Epp-6.5.10,
Epp-6.5.11, Epp-6.6.11, Epp-6.6.14

The Binomial Theorem Introduction

Definition: Binomial —

A binomial is a sum of two terms a + b.

The binomial theorem gives an expression for the powers of a binomial
(a+b)™* Vn € Z* and a,b € R.

We know (the distributive law of algebra) that the answer is the sum
of the product of all individual terms, e.g.

(a+b)? = (a+b)(a+b)
= aa+ ab+ ba + bb
= a®+2ab+b?
(a+b)3 = (a+b)(a+b)(a+b)
= aaa + aab + aba + abb + baa + bab + bba + bbb
= a® +3a%b 4 3ab? + b3
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The Binomial Theorem (a+0b)* 1of 3 The Binomial Theorem (a+b)* 20of 3
Consider In particular (selections high-lighted)
bt = b b b b
(a+b) (a+b)(a+b)(@a+b)(a+b) (a+b)(a+b)(a+b)a+b) — aabb
1st factor 2nd factor 3rd factor 4th factor b b b 1 b) - bab
= aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb (a+b)(a+b)(a+b)(a ava

‘+baaa + baab + baba + babb + bbaa + bbab + bbba + bbbb (a+b)(a+b)latb)a+b) — abba
(a+b)(a+b)(a+b)(a+b) — baab
Each term on the right-hand-side is a built by (a+b)(a+b)(a+b)at+b) — baba
1. Selecting one of {a,b} from the first factor (2 possibilities) (a+b)(a+b)a+b)(a+b) — bbaa

Selecting one of {a, b} from the second factor (2 possibilities)
Selecting one of {a, b} from the third factor (2 possibilities)

Selecting one of {a, b} from the fourth factor (2 possibilities)

ok w N

Multiplying the selected terms together (2¢ = 16 total possibil-
ities)
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This shows that the coefficient for the a2b2-term is
4\ (2
(2)()-¢
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The Binomial Theorem (a+b)? 30f 3

In general the coefficient for the term a*~*b* (0 < k < 4) corresponds
to
1. Selecting k of 4 positions for the b's
— (2) possibilities.
2. Selecting 4 — k of (4 — k) positions for the a's

- (4—k

4_k) = 1 possibilities.

Hence, the coefficient for a*~*pF (0<k<4)is (i) and we have

(a+b)t = (é) at + G) a3t + (;l) a?b® + (;L) ab® + (i) b
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The Binomial Theorem Statement

We are now ready to state the binomial theorem:

Theorem: — Given any real numbers a and b and any non-

negative integer n,
" /n
b)Y = n—kbk
@ o =3 (k)

(a+b)" —a”—i—(T)a”_1b1+<g>an_2b2+...+( " 1)albn‘ﬂ-bn
n—

We will look at the algebraic and combinatorial versions of the proof.
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The Binomial Theorem A Definition

We need the following definitions for our algebraic version of the proof:

Definition: For any real number a and any non-negative integer
n, the non-negative integer powers of a are defined as follows:

1 iftn=20

o gl ifn >0

Notice that here we are defining:
0°=1

This is convenient here, but not always desirable in other mathematical

applications...
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The Binomial Theorem Algebraic Proof 1of 4

Suppose a and b are real numbers. We prove that
" /n
(a+0b)" = Z (k:) a™ *bk | for all integers n. > 0,
k=0

by induction on n...

Base When n = 0 the binomial theorem states that
0 /n
(a+b)°= kz_o <k) a™ Rk

The left-hand-side is 1 (by the definition of power), and the
right-hand side is

0 n 0
Z avkpk — a0 = 1
k 0
k=0
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The Binomial Theorem Algebraic Proof 20f 4

Inductive Step — Assume true for n = m, showtrue for n = m + 1

Let m > 1 be a given integer, and suppose the equality holds for
n=m, Ie.
L (m
by — m—k:bk
(a+b) Z( k)a
k=0
We must show that

m—+1

(a+b)™=>" (m - 1) alm D —kpk

k=0

We use the definition of the (m + 1)st power and the inductive hy-
pothesis:

(a+b)™ = (a+b)(a+b)™ a+b)z< )amkbk
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The Binomial Theorem Algebraic Proof 3of 4

Now,
(a+b)™™ = (a+0b) Z (7;) a™ Ry
k=0
k=0
_ — (m m+1)—krk — (m m—kpk+1
_ Z(k)a< ) b+2<k)a b
k=0 k=0

We make a change of variables in the second summation j = k + 1:

m m—+1
(a+b)m = Z (7;) almt)—kpk o Z (j T 1) q(m+1) =g
j=1

k=0

j is just a dummy variable, so we can rename it k (again)...
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The Binomial Theorem Algebraic Proof 4 of 4

m m—+1
(a+ b+t = Z (C’Z) q(mD—kpk Z (kTiL 1) q(m+D)—kpk
k=1

k=0

We can now combine the terms 1 < k& < m;:

ot = @)l (2 o e

We use the fact that (ﬁﬂ) = (marl) = (”ml) = (76‘) =1 and Pascal’s

Formula to get

(a+ b)m+1 = g Z (m; 1) qmHD)—kpk 4 pm+1
k=1

m—+1 m+ 1
= Z( L )a(m+1)_kbk ...and Bob’s your uncle! (]
k=0
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The Binomial Theorem Combinatorial Proof

Let a and b be real numbers and n an integer n > 1. The expression
(a+b)™ can be expanded (using the distributive law) into products of
n letters, where each letter is either @ or b for each k =0,1,2,...,n,

the product
av kv =a.a-a-...-a-b-b-b-...-b

n — k factors k factors

occurs as a term in the sum the same number of times as there are

orderings of (n — k) a’'s and k b's.

The number of such orderings is (Z) the number of ways to choose
k positions in which to place the b's. Hence, when like terms are
combined, the coefficient of a*b* in the sum is (Z) Thus,

(a+0b)" = Z <Z) a"kpk. O
k=0
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Example: Estimating a Numerical Power

Which number is larger: (1.01)%000:000 or 10,0007

Solution: By the binomial theorem

(1.01)1,000,000  — (7 4 .01)%,000,000
- 14 (1700(1)7000)1999»9990,011+positive terms

= 141,000,000 -1 -0.01 + positive terms

14 10, 000 4 positive terms
10,001
10,000

vV vV
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Example: Deriving Another Combinatorial Identity

Problem: Use the binomial theorem to show that

Solution: Since 2 = (14 1), 2" = (14 1)". We apply the binomial
theorem with ¢ = b = 1:

2" = (14+1)" = ;Z: (Z) 1Rk = zn: (Z)

0 k=0

Consequently,
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Homework #11 — Not Due Final Version

(Epp-v3.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
Epp-6.5.1, Epp-6.5.3, Epp-6.5.5, Epp-6.5.10,
Epp-6.5.11, Epp-6.6.11, Epp-6.6.14
Epp-6.7.1, Epp-6.7.17

(Epp-v2.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
Epp-6.5.1, Epp-6.5.3, Epp-6.5.5, Epp-6.5.10,
Epp-6.5.11, Epp-6.6.11, Epp-6.6.14
Epp-6.7.1, Epp-6.7.13
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