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Counting Combinations � Introdu
tionConsider drawing a poker hand (�ve 
ards, e.g.{10♥,J♥,Q♥,K♥,A♣}) from a de
k of 
ards. How manypossibilities are there?Last time we introdu
ed the 
on
ept of an r-permutationDe�nition: An r-permutation of a set of n elements is an or-dered sele
tion of r elements taken from the set. The number ofr-permutations of a set of n elements is denoted P(n, r).

But a poker hand is not an ordered sele
tion � it does not matterin what order you draw the 
ards!Next, we introdu
e r-
ombinations � an unordered sele
tion of relements from a set of n elements...
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Counting Subsets � r-
ombinations

De�nition: r-
ombination �Let n and r be non-negative integers with r ≤ n. An r-
ombination of a set of n elements is a subset of r of the n ele-ments. The symbol (
n
r

), read �n 
hoose r,� denotes the numberof subsets of size r (r-
ombinations) that 
an be 
hosen from aset of n elements.

Selection Type Ordered Unordered

Name r-permutation r-combination

Symbol P (n, r)
(
n
r

)

# of Possibilities n!
(n−r)! ???Table: Summary of ordered (permutations) and unordered (
om-binations) sele
tion of r elements from a set 
ontaining n elements.
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ExampleExample#1: A 3-
ombination of S, where n(S) = 4. Let S =

{Math, Physics, Chemistry, Biology } � next semesteryou must take 3 of these subje
ts, what are your op-tions?

{Physics, Chemistry, Biology } {Math, Chemistry, Biology }

{Math, Physics, Biology } {Math, Physics, Chemistry }

Example#2: A 2-
ombination of S, where n(S) = 4. Let S =

{0, 1, 2, 3}, how many subsets are there?

{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}We noti
e that the number of 
ombinations is given by

(
4

3

)

=
4!

3!
= 4,

(
4

2

)

=
4!

2! · 2!
=

24

4
= 6
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(
n

r

) vs. P(n, r) 1 of 2We 
an think of ordered sele
tion as a 2-step pro
ess:1. Sele
t r (unordered ) elements from the set of n elements.2. Assign an ordering to the r elements.If there are n1 ways to perform step 1 and n2 ways to perform step 2,then by the multipli
ation rule there are n1 ·n2 ways to perform thetwo-step pro
ess.We know we 
an perform the two-step pro
ess (generating an r-
ombination) in n1 ·n2 = P (n, r) ways, where n1 =
(
n
r

), and n2 = r!by the following theorem (from last le
ture)

Theorem: For any integer r ≥ 1, the number of permutationsof a set with r elements is r! (r-fa
torial).
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(
n

r

) vs. P(n, r) 2 of 2We now have the following relationship

P (n, r) =

(
n

r

)

· r! ⇔

(
n

r

)

=
P (n, r)

r!
=

n!

(n − r)! · r!

We summarize in a theorem:

Theorem: The number of subsets of size r (or r-
ombinations)that 
an be 
hosen from a set of n elements, (
n
r

), is given by theformula (
n

r

)

=
n!

(n − r)! · r!where n and r are non-negative integers with r ≤ n.
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Summary: Combinations, Set Combinations, and r-Permutations
Type Ordering Ordered Selection Unordered Selection

Name Permutation r-permutation r-combination

Symbol (count) — P (n, r)
(
n
r

)

# of Possibilities n! n!
(n−r)!

n!
(n−r)!·r!Table: Summary of permutations of n elements, ordered sele
tionand unordered sele
tion of r elements from a set 
ontaining nelements.
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Examples: Corporate Layo�sProblem: You are a middle-manager of MegaCorp In
., there are 12employees in your department. You have been 
hargedwith the task of sele
ting 5 of them for termination �how many ways 
an this be done?Solution: The number of ways this 
an be done is the number ofsubsets of size 5 of a set of 12 elements (a 5-
ombination). Thenumber is given by

(
12

5

)

=
12!

(12 − 5)! · 5!
=

12!

7! · 5!We 
an
el 
ommon fa
tors before evaluating...

12!

7! · 5!
=

12 · 11 · 10 · 9 · 8

5 · 4 · 3
︸︷︷︸

12

·2
=

11 · 10 · 9 · 8

5 · 2
= 11 · 9 · 8 = 792.
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Examples: Basketball TeamsProblem: We are to form a 5-person team out of 12 players. Two of themare a �dynami
 duo� and must either both be on the team, oro�. � How many ways 
an this be done?Solution: The problem splits into two 
ases1. The duo is on the team, and we have
(

10

3

)

=
10!

3! · 7!
= 120ways to sele
t the remaining 3 players from a pool of 10.2. The duo is o� the team, and we have

(
10

5

)

=
10!

5! · 5!
= 252ways to sele
t the 5 players from a pool of 10.Clearly, the 
ases are disjoint, so the addition rule applies and we have

120 + 252 = 372 
ombinations.
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Teams with Members of Two Types 1 of 2Suppose a group 
onsists of �ve men and seven women.

Problems:(a) How many 3M+2W teams are there?(b) How many 5-person team 
ontain at least 1M?(
) How many 5-person team 
ontain at most 1M?

Solutions:
Part (a) is straight-forward. We 
an think of this sele
tion as a 2-steppro
ess. First sele
t 3 out of 5 men, then 2 out of 7 women:

(
5

3

)

·

(
7

2

)

=
5!

3! · 2!
·

7!

5! · 2!
= 10 · 21 = 210.
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Teams with Members of Two Types 2 of 2For part (b) we use the di�eren
e rule

{≥ 1-man 5-person teams } = {All 5-person teams }−{All-Women 5-person teams }We get

(
12

5

)

−

(
7

5

)

=
12!

7!5!
−

7!

5!2!
= 792 − 21 = 771

For part (
) we use the addition rule
{0-man 5-person teams } ∪ {1-man 5-person teams }We get

(
5

0

)(
7

5

)

+

(
5

1

)(
7

4

)

= 1 · 21 + 5 · 35 = 196
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Poker Hands {8♥, 8♣, A♦, A♥, J♠} 1 of 3Problems:(a) How many 5-
ard poker hands 
ontain two pairs?(b) What is the probability that a 5-
ard hand dealt at random
ontains two pairs?

Solutions:(a) We 
an view this as a 4-step pro
ess1. Choose the denomination for the pairs2. Choose two 
ards from the smaller denomination3. Choose two 
ards from the larger denomination4. Choose one 
ard from the remaining 
ards
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Poker Hands {8♥, 8♣, A♦, A♥, J♠} 2 of 3Sin
e there are 13 denominations {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A}there are (
13
2

) ways to perform step 1.

There are 4 
ards of ea
h denomination {♣,♦,♥,♠}, so thereforeea
h of steps 2 and 3 
an be performed in (
4
2

) ways.

There are 44 allowable 
ards remaining (if we pi
k any of the 4 
ardswhi
h have the same denomination we end up with a �full house,�e.g. {8♥, 8♣,A♦,A♥, A♠}), hen
e step 4 
an be performed in

(
44
1

) ways.
The steps are independent, hen
e the multipli
ation rule applies

(
13

2

)(
4

2

)(
4

2

)(
44

1

)

= 78 · 6 · 6 · 44 = 123,552so, 123, 552 poker hands 
ontain two pairs.
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Poker Hands {8♥, 8♣, A♦, A♥, J♠} 3 of 3Part (b):
There are a total of (

52
5

) 5-
ard hands from an ordinary de
k of 
ards.If all hands are equally likely, the probability of obtaining a hand withtwo pairs is

P (two pairs ) =
n(two-pair hands )

n(all hands )
=

123, 552

2, 598, 960
=

198

4165
= 0.0475

i.e. just shy of 5%.

To think about: How many poker hands beat (all) hands with twopairs?
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Permutations of a Set with Repeated ElementsProblem: How many distinguishable orderings are there of the lettersin the word �MISSISSIPPI�?Solution: Copies of the same letter 
annot be distinguished from one an-other... We 
an view the ordering as a 4-step pro
ess1. Choose a subset of four positions for the S's2. Choose a subset of four positions for the I's3. Choose a subset of two positions for the P's4. Choose a subset of one position for the M.There are 11 positions, so step 1 
an be performed in (
11
4

) ways, step 2 in

(
7
4

) ways, step 3 in (
3
2

) ways, and step 4 in (
1
1

) ways, for a grand total of

(
11

4

)(
7

4

)(
3

2

)(
1

1

)

= 330 · 35 · 3 · 1 = 34, 650Question: Does the order in whi
h we pla
e the letters 
hange the an-swer???
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Permutations of a Set with Repeated Elements

Theorem: Suppose a 
olle
tion 
onsists of n obje
ts of whi
h:
n1 are of type 1 and are indistinguishable from ea
h other
n2 are of type 2 and are indistinguishable from ea
h other...

nk are of type k and are indistinguishable from ea
h otherand suppose n = n1 +n2 + . . .+nk. Then the number of distin
tpermutations of the n obje
ts are
(

n

n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)

· · ·

(
n − n1 − n2 − . . . − nk−1

nk

)

this expression simpli�es to
n!

n1! · n2! · n3! · · ·nk!
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Homework #11 � Not Due!!! Version 1

3(Epp-v3.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19

(Epp-v2.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19

Counting and Probability: Combinations, Pascal’s Triangle, the Binomial Theorem – p. 17/51



r-Combinations with Repetition Allowed

De�nition: An r-
ombination with repetition allowed, or amulti-set of size r, 
hosen from a set S of n elements is anunordered sele
tion of elements taken from S with repetition al-lowed. If S = {s1, s2, . . . , sn}, we write a multi-set of size r as
[xi1

,xi2
, . . . ,xir ] where ea
h xij ∈ S and it is allowed for some(or all) of the xij to equal ea
h other.

Example: Let S = {1, 2, 3, 4} then some of the 5-
ombinations are

[1, 1, 1, 1, 1], [1, 2, 3, 3, 5], [1, 2, 3, 4, 5]Note that sin
e a multi-set is unordered, the following are 
onsideredequivalent
[1, 1, 1, 1, 2] ≡ [1, 1, 2, 1, 1]

Counting and Probability: Combinations, Pascal’s Triangle, the Binomial Theorem – p. 18/51



Counting r-Combinations with Repetition Allowed 1 of 3How many r-
ombinations with repetition allowed are there?

If we view ea
h element of S as a 
ategory, and view the 
onstru
tionof the multi-set as a sele
tion from these 
ategories with repetitionallowed... We 
an write down a table like this:
Cat#1 Cat#2 Cat#3 Cat#4 Cat#5 Multi-set

x | xx | x | x | [1,2,2,3,4]

xxxx | | | | x [1,1,1,1,5]

| xx | x | | xx [2,2,3,5,5]

We noti
e that we 
an des
ribe ea
h multi-set with a 9-digit string
ontaining 5 x's and 4 -'s, e.g. �x-xx-x-x-� 
orresponds to [1,2,2,3,4℄,and �-xx-x--xx� 
orresponds to [2,2,3,5,5℄.
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Counting r-Combinations with Repetition Allowed 2 of 3With this des
ription of the multi-set, we noti
e that we need (n− 1)-'s to separate the n 
ategories (elements), and r x's to symbolizethe 
hoi
es.
We have a total of (r + n − 1) symbols.

Generation of the possible symbol 
ombinations 
an be viewed as a2-step pro
ess:1. Choose a subset of r positions for the x's2. Choose a subset of (n − 1) positions for the -'sThis 
an be done in
(

r + n − 1

r

)(
n − 1

n − 1

)

=

(
r + n − 1

r

)

· 1 =

(
r + n − 1

r

)

ways.
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Counting r-Combinations with Repetition Allowed 3 of 3We summarize our �nding in a theorem:

Theorem: The number of r-
ombinations with repetitions al-lowed (or multi-sets of size r) that 
an be sele
ted from a set of
n elements is (

r + n − 1

r

)

This equals the number of ways r obje
ts 
an be sele
ted from n
ategories of obje
ts with repetition allowed.
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Summary: Counting Formulas

Order Matters Order Does Not Matter

Repetition Allowed nk

(
n + k − 1

k

)

Repetition Not Allowed P (n, k)

(
n

k

)

Table: We have four di�erent ways of 
hoosing k elementsfrom a set of n elements. The 
ount is very di�erent de-pending on whether order and/or repetition matters.
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Example: Integer Solutions...Problem: How many integer solutions are there to the equation
x1 + x2 + x3 + x4 = 10if we require x1, x2, x3, x4 ≥ 0?Solution: Think of x1, x2, x3, x4 as 4 
ategories. Then this problemis equivalent to sele
ting 10 obje
ts from 4 
ategories(with repetition allowed), the answer is given by

(
r + n − 1

r

)

, with r = 10 and n = 4 ⇒

(
13

10

)

= 286.
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Qui
k Summary: Counting 1 of 2In the last few le
tures we have derived a number of 
ountingformulas, i.e.

Type Ordering Ordered Selection Unordered Selection

Name Permutation r-permutation r-combination

Symbol — P (n, r)

(
n

r

)

# of Possibilities n!
n!

(n − r)!

n!

(n − r)! · r!

Table: Summary of permutations of n elements, orderedsele
tion and unordered sele
tion of r elements from a set
ontaining n elements.
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Qui
k Summary: Counting 2 of 2
Order Matters Order Does Not Matter

Repetition Allowed nk

(
n + k − 1

k

)

Repetition Not Allowed P (n, k)

(
n

k

)

Table: We have four di�erent ways of 
hoosing k elementsfrom a set of n elements. The 
ount is very di�erent de-pending on whether order and/or repetition matters.
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Looking Forward...Next, we will take a 
loser look at the properties of 
ounting, and1. Derive a number of useful formulas for (
n

r

) for spe
ial valuesof n and r,2. Find relations between di�erent values of (
n

r

)

3. In parti
ular we will dis
uss Pas
al's Formula (Pas
al's Trian-gle) whi
h is perhaps one of the most used formulas in 
ombi-natori
s (the study of 
ounting 
ombinations).4. We wrap up our dis
ussion of 
ounting with a dis
ussion of theBinomial Theorem.
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Some Values of (
n

r

)

(
n

n

)

=
n!

n! · (n − n)!
=

n!

n! · 0!
=

1

0!
=

1

1
= 1Hen
e, there is only one way of sele
ting all the elements (withoutrepetition). [Here, n ≥ 0℄

(
n

n− 1

)

=
n!

(n − 1)! · (n − (n − 1))!
=

n!

(n − 1)! · 1!
=

n

1!
=

n

1
= nHen
e, there are only n ways to sele
t all but 1 element. [Here, n ≥ 1℄

(
n

n − 2

)

=
n!

(n − 2)! · (n − (n − 2))!
=

n!

(n − 2)! · 2!
=

n(n − 1)

2!
=

n(n − 1)

2[Here, n ≥ 2℄
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(
n

r

) and (
n

n−r

) Combinatorial vs. Algebrai
 Proof
(
n
r

) represents the number of ways to sele
t r elements from nelements. (E.g. sele
ting whi
h 5 players of 12 who should be on the
ourt.)
We 
an think of (
n

n−r

) as the 
omplementary a
tion: sele
ting whi
h
n − r elements we do not want from the n elements. (E.g. sele
tingwhi
h 7 players of 12 who should be on the ben
h.)

The resulting a
tion (what elements are sele
ted / what players areon the 
ourt) is the same � so the number of ways to perform thetwo a
tions should be the same... A bit of algebra and use of thede�nition of (
n
r

) shows that this is indeed true:

(
n

r

)

=
n!

(n − r)! · r!
=

n!

r! · (n − r)!
=

(
n

n− r

)
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New Formulas from Old by SubstitutionWe have established that

(
n

n − 2

)

=
n(n − 1)

2
, ∀n ∈ Z, n ≥ 2

n is just dummy variable (pla
e holder) whi
h 
an be repla
edby any other integer expression � as long as the integer expres-sion is greater than or equal to 2, and ea
h o

urren
e is n is repla
ed.

Examples:1. (
m + 1

m − 1

)

=
(m + 1)m

2
, m ≥ 1

2. (
s − 1

s − 3

)

=
(s − 1)(s − 2)

2
, s ≥ 3

3. (
k + 2

k

)

=
(k + 2)(k + 1)

2
, k ≥ 0
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Pas
al's Formula Blaise Pas
al (1623�1662)

Pas
al's Formula relates the value of (
n + 1

r

) to the values of
(

n

r − 1

) and (
n

r

):

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

Usage: If we know all the values (
n

r

), r = 0, 1, 2 . . . , n are known,we 
an immediately �nd the values for (
n + 1

r

), r = 1, 2 . . . , n. �By one addition, per value!

The �missing� values (
n + 1

r

), where r = 0, or r = n + 1 are always

1, sin
e they 
orrespond to sele
ting none/all of the n + 1 elements.
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Table: Pas
al's Formula

n \ r 0 1 2 3 4 5 · · · r − 1 r · · ·

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

...

n
(
n

0

) (
n

1

) (
n

2

) (
n

3

) (
n

4

) (
n

5

)
· · ·

(
n

r−1

) (
n

r

)
· · ·

n + 1
(
n+1

0

) (
n+1

1

) (
n+1

2

) (
n+1

3

) (
n+1

4

) (
n+1

5

)
· · ·

(
n+1
r−1

) (
n+1

r

)
· · ·

...

Table: Illustration of Pascal’s Formula. The arrows indi
ate how twopreviously 
omputed values are 
ombined to �ll in a new value inthe table.
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Proving Pas
al's FormulaThere are two very di�erent approa
hes to proving Pas
al's Formula:1. The �rst version is algebrai
. It uses the formula for the numberof r-
ombinations (
n

r

)

=
n!

(n − r)! · r!

and pure algebrai
manipulation.

2. The se
ond version is 
ombinatorial. It uses the de�nition of thenumber of r-
ombinations as the number of subsets of size rtaken from a set with n elements.We look at both versions, sin
e both approa
hes have appli
ations inother situations.
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Pas
al's Formula, Algebrai
 Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n, from previouslyproved theorems we 
an write:
(

n

r − 1

)

+

(
n

r

)

=
n!

(r − 1)! · (n − r + 1)!
+

n!

r! · (n − r)!

To add these fra
tions, we need a 
ommon denominator. The �rstfra
tion is �missing� an , and the se
ond is �missing� a fa
tor of. We get...
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Pas
al's Formula, Algebrai
 Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n, from previouslyproved theorems we 
an write:
(

n

r − 1

)

+

(
n

r

)

=
n!

(r − 1)! · (n − r + 1)!
+

n!

r! · (n − r)!To add these fra
tions, we need a 
ommon denominator. The �rstfra
tion is �missing� an r, and the se
ond is �missing� a fa
tor of

(n − r + 1). We get...
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Pas
al's Formula, Algebrai
 Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n, from previouslyproved theorems we 
an write:
(

n

r − 1

)

+

(
n

r

)

=
n!

(r − 1)! · (n − r + 1)!
+

n!

r! · (n − r)!To add these fra
tions, we need a 
ommon denominator. The �rstfra
tion is �missing� an r, and the se
ond is �missing� a fa
tor of

(n − r + 1). We get...
n!

(r − 1)! · (n − r + 1)!
·
r

r
+

n!

r! · (n − r)!
·
(n − r + 1)

(n − r + 1)
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Pas
al's Formula, Algebrai
 Proof 2 of 2We 
an now 
ombine the terms:

n!

(r − 1)! · (n − r + 1)!
·
r

r
+

n!

r! · (n − r)!
·
(n − r + 1)

(n − r + 1)

and get
Finally, we identify

whi
h proves the theorem.
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Pas
al's Formula, Algebrai
 Proof 2 of 2We 
an now 
ombine the terms:

n!

(r − 1)! · (n − r + 1)!
·
r

r
+

n!

r! · (n − r)!
·
(n − r + 1)

(n − r + 1)

and get

r · n! + (n − r + 1) · n!

r! · (n − r + 1)!
=

(n + 1) · n!

r! · ((n + 1) − r))!
=

(n + 1)!

r! · ((n + 1) − r)!

Finally, we identify

whi
h proves the theorem.
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Pas
al's Formula, Algebrai
 Proof 2 of 2We 
an now 
ombine the terms:

n!

(r − 1)! · (n − r + 1)!
·
r

r
+

n!

r! · (n − r)!
·
(n − r + 1)

(n − r + 1)

and get

r · n! + (n − r + 1) · n!

r! · (n − r + 1)!
=

(n + 1) · n!

r! · ((n + 1) − r))!
=

(n + 1)!

r! · ((n + 1) − r)!

Finally, we identify

(n + 1)!

r! · ((n + 1) − r)!
=

(
n + 1

r

)

whi
h proves the theorem. �
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Pas
al's Formula, Combinatorial Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n.

Suppose isa set with elements. The number of subsets of size 
an be
al
ulated by thinking of as the union of the set with elementsand the set 
ontaining one element.Any subset of either 
ontains or it does not:1. If a subset of size 
ontains then it also 
ontainselements from . There are of these.2. If a subset of size does not 
ontain then it 
ontainselements from . There are of these.
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Pas
al's Formula, Combinatorial Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n. Suppose S isa set with n + 1 elements. The number of subsets of size r 
an be
al
ulated by thinking of S as the union of the set with n elements

{x1, x2, . . . , xn} and the set {xn+1} 
ontaining one element.Any subset of S either 
ontains xn+1 or it does not:

1. If a subset of size 
ontains then it also 
ontainselements from . There are of these.2. If a subset of size does not 
ontain then it 
ontainselements from . There are of these.
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Pas
al's Formula, Combinatorial Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n. Suppose S isa set with n + 1 elements. The number of subsets of size r 
an be
al
ulated by thinking of S as the union of the set with n elements

{x1, x2, . . . , xn} and the set {xn+1} 
ontaining one element.Any subset of S either 
ontains xn+1 or it does not:1. If a subset of size r 
ontains xn+1 then it also 
ontains r − 1elements from {x1, x2, . . . , xn}. There are (
n

r−1

) of these.2. If a subset of size r does not 
ontain xn+1 then it 
ontains relements from {x1, x2, . . . , xn}. There are (
n
r

) of these.
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Pas
al's Formula, Combinatorial Proof 2 of 2Sin
e the subsets of type#1 (
ontaining xn+1) and type#2 (not 
on-taining xn+1) are disjoint, the addition rule applies, and we have:
#subsets of {x1, x2, . . . , xn, xn+1} =

#subsets of {x1, x2, . . . , xn} of size (r − 1)+

#subsets of {x1, x2, . . . , xn} of size rWhi
h means,

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.as was to be shown. �
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The Binomial Theorem Introdu
tion

De�nition: Binomial �A binomial is a sum of two terms a + b.The binomial theorem gives an expression for the powers of a binomial
(a + b)n ∀n ∈ Z

+ and a, b ∈ R.We know (the distributive law of algebra) that the answer is the sumof the produ
t of all individual terms, e.g.
(a + b)2 = (a + b)(a + b)

= aa + ab + ba + bb

= a2 + 2ab + b2

(a + b)3 = (a + b)(a + b)(a + b)

= aaa + aab + aba + abb + baa + bab + bba + bbb

= a3 + 3a2b + 3ab2 + b3
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The Binomial Theorem (a + b)4 1 of 3Consider

(a + b)4 = (a + b)
︸ ︷︷ ︸

1st factor

(a + b)
︸ ︷︷ ︸

2nd factor

(a + b)
︸ ︷︷ ︸

3rd factor

(a + b)
︸ ︷︷ ︸

4th factor

= aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb

+baaa + baab + baba + babb + bbaa + bbab + bbba + bbbb

Ea
h term on the right-hand-side is a built by1. Sele
ting one of {a, b} from the �rst fa
tor (2 possibilities)2. Sele
ting one of {a, b} from the se
ond fa
tor (2 possibilities)3. Sele
ting one of {a, b} from the third fa
tor (2 possibilities)4. Sele
ting one of {a, b} from the fourth fa
tor (2 possibilities)5. Multiplying the sele
ted terms together (24 = 16 total possibil-ities)
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The Binomial Theorem (a + b)4 2 of 3In parti
ular (sele
tions high-lighted)

(a + b)(a + b)(a + b)(a + b) → aabb

(a + b)(a + b)(a + b)(a + b) → abab

(a + b)(a + b)(a + b)(a + b) → abba

(a + b)(a + b)(a + b)(a + b) → baab

(a + b)(a + b)(a + b)(a + b) → baba

(a + b)(a + b)(a + b)(a + b) → bbaa

This shows that the 
oe�
ient for the a2b2-term is

(
4

2

)(
2

2

)

= 6.
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The Binomial Theorem (a + b)4 3 of 3In general the 
oe�
ient for the term a4−kbk (0 ≤ k ≤ 4) 
orrespondsto1. Sele
ting k of 4 positions for the b's� (
4
k

) possibilities.2. Sele
ting 4 − k of (4 − k) positions for the a's� (
4−k
4−k

)
= 1 possibilities.

Hen
e, the 
oe�
ient for a4−kbk (0 ≤ k ≤ 4) is (
4
k

), and we have

(a + b)4 =

(
4

0

)

a4 +

(
4

1

)

a3b1 +

(
4

2

)

a2b2 +

(
4

3

)

ab3 +

(
4

4

)

b4
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The Binomial Theorem StatementWe are now ready to state the binomial theorem:

Theorem: � Given any real numbers a and b and any non-negative integer n,

(a + b)n =

n∑

k=0

(
n

k

)

an−kbk

(a+b)n = an +

(
n

1

)

an−1b1 +

(
n

2

)

an−2b2 + . . .+

(
n

n − 1

)

a1bn−1 +bn

We will look at the algebrai
 and 
ombinatorial versions of the proof.
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The Binomial Theorem A De�nitionWe need the following de�nitions for our algebrai
 version of the proof:

De�nition: For any real number a and any non-negative integer
n, the non-negative integer powers of a are de�ned as follows:

an =







1 if n = 0

a · an−1 if n > 0

Noti
e that here we are de�ning:
00 = 1This is 
onvenient here, but not always desirable in other mathemati
alappli
ations...
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The Binomial Theorem Algebrai
 Proof 1 of 4Suppose a and b are real numbers. We prove that
(a + b)n =

n∑

k=0

(
n

k

)

an−kbk, for all integers n ≥ 0,

by indu
tion on n...

Base When n = 0 the binomial theorem states that
(a + b)0 =

0∑

k=0

(
n

k

)

an−kbk

The left-hand-side is 1 (by the de�nition of power), and theright-hand side is
0∑

k=0

(
n

k

)

an−kbk =

(
0

0

)

a0b0 = 1
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The Binomial Theorem Algebrai
 Proof 2 of 4
Inductive Step — Assume true for n = m, show true for n = m + 1

Let m ≥ 1 be a given integer, and suppose the equality holds for
n = m, i.e.

(a + b)m =

m∑

k=0

(
m

k

)

am−kbk

We must show that

(a + b)m+1 =

m+1∑

k=0

(
m + 1

k

)

a(m+1)−kbk

We use the de�nition of the (m + 1)st power and the indu
tive hy-pothesis:
(a + b)m+1 = (a + b)(a + b)m = (a + b)

m∑

k=0

(
m

k

)

am−kbk
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The Binomial Theorem Algebrai
 Proof 3 of 4Now,

(a + b)m+1 = (a + b)

m∑

k=0

(
m

k

)

am−kbk

= a

m∑

k=0

(
m

k

)

am−kbk + b

m∑

k=0

(
m

k

)

am−kbk

=
m∑

k=0

(
m

k

)

a(m+1)−kbk +
m∑

k=0

(
m

k

)

am−kbk+1

We make a 
hange of variables in the se
ond summation j = k + 1:

(a + b)m+1 =
m∑

k=0

(
m

k

)

a(m+1)−kbk +
m+1∑

j=1

(
m

j − 1

)

a(m+1)−jbj

j is just a dummy variable, so we 
an rename it k (again)...
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The Binomial Theorem Algebrai
 Proof 4 of 4
(a + b)m+1 =

m∑

k=0

(
m

k

)

a(m+1)−kbk +

m+1∑

k=1

(
m

k − 1

)

a(m+1)−kbk

We 
an now 
ombine the terms 1 ≤ k ≤ m:
(a + b)m+1 =

(
m

0

)

am+1 +
m∑

k=1

[(
m

k

)

+

(
m

k − 1

)]

a(m+1)−kbk +

(
m

m

)

bm+1

We use the fa
t that (
m+1
m+1

)
=

(
m+1

0

)
=

(
m
m

)
=

(
m
0

)
= 1 and Pas
al'sFormula to get

(a + b)m+1 = am+1 +
m∑

k=1

(
m + 1

k

)

a(m+1)−kbk + bm+1

=
m+1∑

k=0

(
m + 1

k

)

a(m+1)−kbk ...and Bob’s your uncle! �
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The Binomial Theorem Combinatorial ProofLet a and b be real numbers and n an integer n ≥ 1. The expression
(a+ b)n 
an be expanded (using the distributive law) into produ
ts of
n letters, where ea
h letter is either a or b for ea
h k = 0, 1, 2, . . . , n,the produ
t

an−kbk = a · a · a · . . . · a
︸ ︷︷ ︸

n − k factors

· b · b · b · . . . · b
︸ ︷︷ ︸

k factorso

urs as a term in the sum the same number of times as there areorderings of (n − k) a's and k b's.

The number of su
h orderings is (
n
k

), the number of ways to 
hoose

k positions in whi
h to pla
e the b's. Hen
e, when like terms are
ombined, the 
oe�
ient of an−kbk in the sum is (
n
k

). Thus,

(a + b)n =
n∑

k=0

(
n

k

)

an−kbk. �
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Example: Estimating a Numeri
al PowerWhi
h number is larger: (1.01)1,000,000 or 10, 000?

Solution: By the binomial theorem

(1.01)1,000,000 = (1 + 0.01)1,000,000

= 1 +
(
1,000,000

1

)
1999,9990.011 + positive terms

= 1 + 1, 000, 000 · 1 · 0.01 + positive terms

= 1 + 10, 000 + positive terms

> 10, 001

> 10, 000
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Example: Deriving Another Combinatorial IdentityProblem: Use the binomial theorem to show that
2n =

n∑

k=0

(
n

k

)

Solution: Sin
e 2 = (1 + 1), 2n = (1 + 1)n. We apply the binomialtheorem with a = b = 1:

2n = (1 + 1)n =

n∑

k=0

(
n

k

)

1n−k1k =

n∑

k=0

(
n

k

)

Consequently,

2n =

(
n

0

)

+

(
n

1

)

+

(
n

2

)

+ . . . +

(
n

n

)

.
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