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Counting Combinations � IntrodutionConsider drawing a poker hand (�ve ards, e.g.{10♥,J♥,Q♥,K♥,A♣}) from a dek of ards. How manypossibilities are there?Last time we introdued the onept of an r-permutationDe�nition: An r-permutation of a set of n elements is an or-dered seletion of r elements taken from the set. The number ofr-permutations of a set of n elements is denoted P(n, r).

But a poker hand is not an ordered seletion � it does not matterin what order you draw the ards!Next, we introdue r-ombinations � an unordered seletion of relements from a set of n elements...
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Counting Subsets � r-ombinations

De�nition: r-ombination �Let n and r be non-negative integers with r ≤ n. An r-ombination of a set of n elements is a subset of r of the n ele-ments. The symbol (
n
r

), read �n hoose r,� denotes the numberof subsets of size r (r-ombinations) that an be hosen from aset of n elements.

Selection Type Ordered Unordered

Name r-permutation r-combination

Symbol P (n, r)
(
n
r

)

# of Possibilities n!
(n−r)! ???Table: Summary of ordered (permutations) and unordered (om-binations) seletion of r elements from a set ontaining n elements.
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ExampleExample#1: A 3-ombination of S, where n(S) = 4. Let S =

{Math, Physics, Chemistry, Biology } � next semesteryou must take 3 of these subjets, what are your op-tions?

{Physics, Chemistry, Biology } {Math, Chemistry, Biology }

{Math, Physics, Biology } {Math, Physics, Chemistry }

Example#2: A 2-ombination of S, where n(S) = 4. Let S =

{0, 1, 2, 3}, how many subsets are there?

{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}We notie that the number of ombinations is given by

(
4

3

)

=
4!

3!
= 4,

(
4

2

)

=
4!

2! · 2!
=

24

4
= 6
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(
n

r

) vs. P(n, r) 1 of 2We an think of ordered seletion as a 2-step proess:1. Selet r (unordered ) elements from the set of n elements.2. Assign an ordering to the r elements.If there are n1 ways to perform step 1 and n2 ways to perform step 2,then by the multipliation rule there are n1 ·n2 ways to perform thetwo-step proess.We know we an perform the two-step proess (generating an r-ombination) in n1 ·n2 = P (n, r) ways, where n1 =
(
n
r

), and n2 = r!by the following theorem (from last leture)

Theorem: For any integer r ≥ 1, the number of permutationsof a set with r elements is r! (r-fatorial).
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(
n

r

) vs. P(n, r) 2 of 2We now have the following relationship

P (n, r) =

(
n

r

)

· r! ⇔

(
n

r

)

=
P (n, r)

r!
=

n!

(n − r)! · r!

We summarize in a theorem:

Theorem: The number of subsets of size r (or r-ombinations)that an be hosen from a set of n elements, (
n
r

), is given by theformula (
n

r

)

=
n!

(n − r)! · r!where n and r are non-negative integers with r ≤ n.
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Summary: Combinations, Set Combinations, and r-Permutations
Type Ordering Ordered Selection Unordered Selection

Name Permutation r-permutation r-combination

Symbol (count) — P (n, r)
(
n
r

)

# of Possibilities n! n!
(n−r)!

n!
(n−r)!·r!Table: Summary of permutations of n elements, ordered seletionand unordered seletion of r elements from a set ontaining nelements.
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Examples: Corporate Layo�sProblem: You are a middle-manager of MegaCorp In., there are 12employees in your department. You have been hargedwith the task of seleting 5 of them for termination �how many ways an this be done?Solution: The number of ways this an be done is the number ofsubsets of size 5 of a set of 12 elements (a 5-ombination). Thenumber is given by

(
12

5

)

=
12!

(12 − 5)! · 5!
=

12!

7! · 5!We anel ommon fators before evaluating...

12!

7! · 5!
=

12 · 11 · 10 · 9 · 8

5 · 4 · 3
︸︷︷︸

12

·2
=

11 · 10 · 9 · 8

5 · 2
= 11 · 9 · 8 = 792.
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Examples: Basketball TeamsProblem: We are to form a 5-person team out of 12 players. Two of themare a �dynami duo� and must either both be on the team, oro�. � How many ways an this be done?Solution: The problem splits into two ases1. The duo is on the team, and we have
(

10

3

)

=
10!

3! · 7!
= 120ways to selet the remaining 3 players from a pool of 10.2. The duo is o� the team, and we have

(
10

5

)

=
10!

5! · 5!
= 252ways to selet the 5 players from a pool of 10.Clearly, the ases are disjoint, so the addition rule applies and we have

120 + 252 = 372 ombinations.
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Teams with Members of Two Types 1 of 2Suppose a group onsists of �ve men and seven women.

Problems:(a) How many 3M+2W teams are there?(b) How many 5-person team ontain at least 1M?() How many 5-person team ontain at most 1M?

Solutions:
Part (a) is straight-forward. We an think of this seletion as a 2-stepproess. First selet 3 out of 5 men, then 2 out of 7 women:

(
5

3

)

·

(
7

2

)

=
5!

3! · 2!
·

7!

5! · 2!
= 10 · 21 = 210.
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Teams with Members of Two Types 2 of 2For part (b) we use the di�erene rule

{≥ 1-man 5-person teams } = {All 5-person teams }−{All-Women 5-person teams }We get

(
12

5

)

−

(
7

5

)

=
12!

7!5!
−

7!

5!2!
= 792 − 21 = 771

For part () we use the addition rule
{0-man 5-person teams } ∪ {1-man 5-person teams }We get

(
5

0

)(
7

5

)

+

(
5

1

)(
7

4

)

= 1 · 21 + 5 · 35 = 196
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Poker Hands {8♥, 8♣, A♦, A♥, J♠} 1 of 3Problems:(a) How many 5-ard poker hands ontain two pairs?(b) What is the probability that a 5-ard hand dealt at randomontains two pairs?

Solutions:(a) We an view this as a 4-step proess1. Choose the denomination for the pairs2. Choose two ards from the smaller denomination3. Choose two ards from the larger denomination4. Choose one ard from the remaining ards
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Poker Hands {8♥, 8♣, A♦, A♥, J♠} 2 of 3Sine there are 13 denominations {2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A}there are (
13
2

) ways to perform step 1.

There are 4 ards of eah denomination {♣,♦,♥,♠}, so thereforeeah of steps 2 and 3 an be performed in (
4
2

) ways.

There are 44 allowable ards remaining (if we pik any of the 4 ardswhih have the same denomination we end up with a �full house,�e.g. {8♥, 8♣,A♦,A♥, A♠}), hene step 4 an be performed in

(
44
1

) ways.
The steps are independent, hene the multipliation rule applies

(
13

2

)(
4

2

)(
4

2

)(
44

1

)

= 78 · 6 · 6 · 44 = 123,552so, 123, 552 poker hands ontain two pairs.
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Poker Hands {8♥, 8♣, A♦, A♥, J♠} 3 of 3Part (b):
There are a total of (

52
5

) 5-ard hands from an ordinary dek of ards.If all hands are equally likely, the probability of obtaining a hand withtwo pairs is

P (two pairs ) =
n(two-pair hands )

n(all hands )
=

123, 552

2, 598, 960
=

198

4165
= 0.0475

i.e. just shy of 5%.

To think about: How many poker hands beat (all) hands with twopairs?
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Permutations of a Set with Repeated ElementsProblem: How many distinguishable orderings are there of the lettersin the word �MISSISSIPPI�?Solution: Copies of the same letter annot be distinguished from one an-other... We an view the ordering as a 4-step proess1. Choose a subset of four positions for the S's2. Choose a subset of four positions for the I's3. Choose a subset of two positions for the P's4. Choose a subset of one position for the M.There are 11 positions, so step 1 an be performed in (
11
4

) ways, step 2 in

(
7
4

) ways, step 3 in (
3
2

) ways, and step 4 in (
1
1

) ways, for a grand total of

(
11

4

)(
7

4

)(
3

2

)(
1

1

)

= 330 · 35 · 3 · 1 = 34, 650Question: Does the order in whih we plae the letters hange the an-swer???
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Permutations of a Set with Repeated Elements

Theorem: Suppose a olletion onsists of n objets of whih:
n1 are of type 1 and are indistinguishable from eah other
n2 are of type 2 and are indistinguishable from eah other...

nk are of type k and are indistinguishable from eah otherand suppose n = n1 +n2 + . . .+nk. Then the number of distintpermutations of the n objets are
(

n

n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)

· · ·

(
n − n1 − n2 − . . . − nk−1

nk

)

this expression simpli�es to
n!

n1! · n2! · n3! · · ·nk!
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Homework #11 � Not Due!!! Version 1

3(Epp-v3.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19

(Epp-v2.0)

Epp-6.4.6, Epp-6.4.16 , Epp-6.4.19
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r-Combinations with Repetition Allowed

De�nition: An r-ombination with repetition allowed, or amulti-set of size r, hosen from a set S of n elements is anunordered seletion of elements taken from S with repetition al-lowed. If S = {s1, s2, . . . , sn}, we write a multi-set of size r as
[xi1

,xi2
, . . . ,xir ] where eah xij ∈ S and it is allowed for some(or all) of the xij to equal eah other.

Example: Let S = {1, 2, 3, 4} then some of the 5-ombinations are

[1, 1, 1, 1, 1], [1, 2, 3, 3, 5], [1, 2, 3, 4, 5]Note that sine a multi-set is unordered, the following are onsideredequivalent
[1, 1, 1, 1, 2] ≡ [1, 1, 2, 1, 1]
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Counting r-Combinations with Repetition Allowed 1 of 3How many r-ombinations with repetition allowed are there?

If we view eah element of S as a ategory, and view the onstrutionof the multi-set as a seletion from these ategories with repetitionallowed... We an write down a table like this:
Cat#1 Cat#2 Cat#3 Cat#4 Cat#5 Multi-set

x | xx | x | x | [1,2,2,3,4]

xxxx | | | | x [1,1,1,1,5]

| xx | x | | xx [2,2,3,5,5]

We notie that we an desribe eah multi-set with a 9-digit stringontaining 5 x's and 4 -'s, e.g. �x-xx-x-x-� orresponds to [1,2,2,3,4℄,and �-xx-x--xx� orresponds to [2,2,3,5,5℄.
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Counting r-Combinations with Repetition Allowed 2 of 3With this desription of the multi-set, we notie that we need (n− 1)-'s to separate the n ategories (elements), and r x's to symbolizethe hoies.
We have a total of (r + n − 1) symbols.

Generation of the possible symbol ombinations an be viewed as a2-step proess:1. Choose a subset of r positions for the x's2. Choose a subset of (n − 1) positions for the -'sThis an be done in
(

r + n − 1

r

)(
n − 1

n − 1

)

=

(
r + n − 1

r

)

· 1 =

(
r + n − 1

r

)

ways.
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Counting r-Combinations with Repetition Allowed 3 of 3We summarize our �nding in a theorem:

Theorem: The number of r-ombinations with repetitions al-lowed (or multi-sets of size r) that an be seleted from a set of
n elements is (

r + n − 1

r

)

This equals the number of ways r objets an be seleted from nategories of objets with repetition allowed.
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Summary: Counting Formulas

Order Matters Order Does Not Matter

Repetition Allowed nk

(
n + k − 1

k

)

Repetition Not Allowed P (n, k)

(
n

k

)

Table: We have four di�erent ways of hoosing k elementsfrom a set of n elements. The ount is very di�erent de-pending on whether order and/or repetition matters.
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Example: Integer Solutions...Problem: How many integer solutions are there to the equation
x1 + x2 + x3 + x4 = 10if we require x1, x2, x3, x4 ≥ 0?Solution: Think of x1, x2, x3, x4 as 4 ategories. Then this problemis equivalent to seleting 10 objets from 4 ategories(with repetition allowed), the answer is given by

(
r + n − 1

r

)

, with r = 10 and n = 4 ⇒

(
13

10

)

= 286.
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Quik Summary: Counting 1 of 2In the last few letures we have derived a number of ountingformulas, i.e.

Type Ordering Ordered Selection Unordered Selection

Name Permutation r-permutation r-combination

Symbol — P (n, r)

(
n

r

)

# of Possibilities n!
n!

(n − r)!

n!

(n − r)! · r!

Table: Summary of permutations of n elements, orderedseletion and unordered seletion of r elements from a setontaining n elements.
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Quik Summary: Counting 2 of 2
Order Matters Order Does Not Matter

Repetition Allowed nk

(
n + k − 1

k

)

Repetition Not Allowed P (n, k)

(
n

k

)

Table: We have four di�erent ways of hoosing k elementsfrom a set of n elements. The ount is very di�erent de-pending on whether order and/or repetition matters.
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Looking Forward...Next, we will take a loser look at the properties of ounting, and1. Derive a number of useful formulas for (
n

r

) for speial valuesof n and r,2. Find relations between di�erent values of (
n

r

)

3. In partiular we will disuss Pasal's Formula (Pasal's Trian-gle) whih is perhaps one of the most used formulas in ombi-natoris (the study of ounting ombinations).4. We wrap up our disussion of ounting with a disussion of theBinomial Theorem.
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Some Values of (
n

r

)

(
n

n

)

=
n!

n! · (n − n)!
=

n!

n! · 0!
=

1

0!
=

1

1
= 1Hene, there is only one way of seleting all the elements (withoutrepetition). [Here, n ≥ 0℄

(
n

n− 1

)

=
n!

(n − 1)! · (n − (n − 1))!
=

n!

(n − 1)! · 1!
=

n

1!
=

n

1
= nHene, there are only n ways to selet all but 1 element. [Here, n ≥ 1℄

(
n

n − 2

)

=
n!

(n − 2)! · (n − (n − 2))!
=

n!

(n − 2)! · 2!
=

n(n − 1)

2!
=

n(n − 1)

2[Here, n ≥ 2℄
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(
n

r

) and (
n

n−r

) Combinatorial vs. Algebrai Proof
(
n
r

) represents the number of ways to selet r elements from nelements. (E.g. seleting whih 5 players of 12 who should be on theourt.)
We an think of (
n

n−r

) as the omplementary ation: seleting whih
n − r elements we do not want from the n elements. (E.g. seletingwhih 7 players of 12 who should be on the benh.)

The resulting ation (what elements are seleted / what players areon the ourt) is the same � so the number of ways to perform thetwo ations should be the same... A bit of algebra and use of thede�nition of (
n
r

) shows that this is indeed true:

(
n

r

)

=
n!

(n − r)! · r!
=

n!

r! · (n − r)!
=

(
n

n− r

)
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New Formulas from Old by SubstitutionWe have established that

(
n

n − 2

)

=
n(n − 1)

2
, ∀n ∈ Z, n ≥ 2

n is just dummy variable (plae holder) whih an be replaedby any other integer expression � as long as the integer expres-sion is greater than or equal to 2, and eah ourrene is n is replaed.

Examples:1. (
m + 1

m − 1

)

=
(m + 1)m

2
, m ≥ 1

2. (
s − 1

s − 3

)

=
(s − 1)(s − 2)

2
, s ≥ 3

3. (
k + 2

k

)

=
(k + 2)(k + 1)

2
, k ≥ 0
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Pasal's Formula Blaise Pasal (1623�1662)

Pasal's Formula relates the value of (
n + 1

r

) to the values of
(

n

r − 1

) and (
n

r

):

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

Usage: If we know all the values (
n

r

), r = 0, 1, 2 . . . , n are known,we an immediately �nd the values for (
n + 1

r

), r = 1, 2 . . . , n. �By one addition, per value!

The �missing� values (
n + 1

r

), where r = 0, or r = n + 1 are always

1, sine they orrespond to seleting none/all of the n + 1 elements.
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Table: Pasal's Formula

n \ r 0 1 2 3 4 5 · · · r − 1 r · · ·

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

...

n
(
n

0

) (
n

1

) (
n

2

) (
n

3

) (
n

4

) (
n

5

)
· · ·

(
n

r−1

) (
n

r

)
· · ·

n + 1
(
n+1

0

) (
n+1

1

) (
n+1

2

) (
n+1

3

) (
n+1

4

) (
n+1

5

)
· · ·

(
n+1
r−1

) (
n+1

r

)
· · ·

...

Table: Illustration of Pascal’s Formula. The arrows indiate how twopreviously omputed values are ombined to �ll in a new value inthe table.
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Proving Pasal's FormulaThere are two very di�erent approahes to proving Pasal's Formula:1. The �rst version is algebrai. It uses the formula for the numberof r-ombinations (
n

r

)

=
n!

(n − r)! · r!

and pure algebraimanipulation.

2. The seond version is ombinatorial. It uses the de�nition of thenumber of r-ombinations as the number of subsets of size rtaken from a set with n elements.We look at both versions, sine both approahes have appliations inother situations.
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Pasal's Formula, Algebrai Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n, from previouslyproved theorems we an write:
(

n

r − 1

)

+

(
n

r

)

=
n!

(r − 1)! · (n − r + 1)!
+

n!

r! · (n − r)!

To add these frations, we need a ommon denominator. The �rstfration is �missing� an , and the seond is �missing� a fator of. We get...
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Pasal's Formula, Algebrai Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n, from previouslyproved theorems we an write:
(

n

r − 1

)

+

(
n

r

)

=
n!

(r − 1)! · (n − r + 1)!
+

n!

r! · (n − r)!To add these frations, we need a ommon denominator. The �rstfration is �missing� an r, and the seond is �missing� a fator of

(n − r + 1). We get...
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Pasal's Formula, Algebrai Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n, from previouslyproved theorems we an write:
(

n

r − 1

)

+

(
n

r

)

=
n!

(r − 1)! · (n − r + 1)!
+

n!

r! · (n − r)!To add these frations, we need a ommon denominator. The �rstfration is �missing� an r, and the seond is �missing� a fator of

(n − r + 1). We get...
n!

(r − 1)! · (n − r + 1)!
·
r

r
+

n!

r! · (n − r)!
·
(n − r + 1)

(n − r + 1)
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Pasal's Formula, Algebrai Proof 2 of 2We an now ombine the terms:

n!

(r − 1)! · (n − r + 1)!
·
r

r
+

n!

r! · (n − r)!
·
(n − r + 1)

(n − r + 1)

and get
Finally, we identify

whih proves the theorem.
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Pasal's Formula, Algebrai Proof 2 of 2We an now ombine the terms:

n!

(r − 1)! · (n − r + 1)!
·
r

r
+

n!

r! · (n − r)!
·
(n − r + 1)

(n − r + 1)

and get

r · n! + (n − r + 1) · n!

r! · (n − r + 1)!
=

(n + 1) · n!

r! · ((n + 1) − r))!
=

(n + 1)!

r! · ((n + 1) − r)!

Finally, we identify

whih proves the theorem.
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Pasal's Formula, Algebrai Proof 2 of 2We an now ombine the terms:

n!

(r − 1)! · (n − r + 1)!
·
r

r
+

n!

r! · (n − r)!
·
(n − r + 1)

(n − r + 1)

and get

r · n! + (n − r + 1) · n!

r! · (n − r + 1)!
=

(n + 1) · n!

r! · ((n + 1) − r))!
=

(n + 1)!

r! · ((n + 1) − r)!

Finally, we identify

(n + 1)!

r! · ((n + 1) − r)!
=

(
n + 1

r

)

whih proves the theorem. �
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Pasal's Formula, Combinatorial Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n.

Suppose isa set with elements. The number of subsets of size an bealulated by thinking of as the union of the set with elementsand the set ontaining one element.Any subset of either ontains or it does not:1. If a subset of size ontains then it also ontainselements from . There are of these.2. If a subset of size does not ontain then it ontainselements from . There are of these.
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Pasal's Formula, Combinatorial Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n. Suppose S isa set with n + 1 elements. The number of subsets of size r an bealulated by thinking of S as the union of the set with n elements

{x1, x2, . . . , xn} and the set {xn+1} ontaining one element.Any subset of S either ontains xn+1 or it does not:

1. If a subset of size ontains then it also ontainselements from . There are of these.2. If a subset of size does not ontain then it ontainselements from . There are of these.
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Pasal's Formula, Combinatorial Proof 1 of 2

Theorem: Let n and r be positive integers and suppose
r ≤ n, then

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.

Proof: Let n and r be positive integers with r ≤ n. Suppose S isa set with n + 1 elements. The number of subsets of size r an bealulated by thinking of S as the union of the set with n elements

{x1, x2, . . . , xn} and the set {xn+1} ontaining one element.Any subset of S either ontains xn+1 or it does not:1. If a subset of size r ontains xn+1 then it also ontains r − 1elements from {x1, x2, . . . , xn}. There are (
n

r−1

) of these.2. If a subset of size r does not ontain xn+1 then it ontains relements from {x1, x2, . . . , xn}. There are (
n
r

) of these.
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Pasal's Formula, Combinatorial Proof 2 of 2Sine the subsets of type#1 (ontaining xn+1) and type#2 (not on-taining xn+1) are disjoint, the addition rule applies, and we have:
#subsets of {x1, x2, . . . , xn, xn+1} =

#subsets of {x1, x2, . . . , xn} of size (r − 1)+

#subsets of {x1, x2, . . . , xn} of size rWhih means,

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

.as was to be shown. �
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Homework #11 � Not Due!!! Version 2

3(Epp-v3.0)
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The Binomial Theorem Introdution

De�nition: Binomial �A binomial is a sum of two terms a + b.The binomial theorem gives an expression for the powers of a binomial
(a + b)n ∀n ∈ Z

+ and a, b ∈ R.We know (the distributive law of algebra) that the answer is the sumof the produt of all individual terms, e.g.
(a + b)2 = (a + b)(a + b)

= aa + ab + ba + bb

= a2 + 2ab + b2

(a + b)3 = (a + b)(a + b)(a + b)

= aaa + aab + aba + abb + baa + bab + bba + bbb

= a3 + 3a2b + 3ab2 + b3
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The Binomial Theorem (a + b)4 1 of 3Consider

(a + b)4 = (a + b)
︸ ︷︷ ︸

1st factor

(a + b)
︸ ︷︷ ︸

2nd factor

(a + b)
︸ ︷︷ ︸

3rd factor

(a + b)
︸ ︷︷ ︸

4th factor

= aaaa + aaab + aaba + aabb + abaa + abab + abba + abbb

+baaa + baab + baba + babb + bbaa + bbab + bbba + bbbb

Eah term on the right-hand-side is a built by1. Seleting one of {a, b} from the �rst fator (2 possibilities)2. Seleting one of {a, b} from the seond fator (2 possibilities)3. Seleting one of {a, b} from the third fator (2 possibilities)4. Seleting one of {a, b} from the fourth fator (2 possibilities)5. Multiplying the seleted terms together (24 = 16 total possibil-ities)
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The Binomial Theorem (a + b)4 2 of 3In partiular (seletions high-lighted)

(a + b)(a + b)(a + b)(a + b) → aabb

(a + b)(a + b)(a + b)(a + b) → abab

(a + b)(a + b)(a + b)(a + b) → abba

(a + b)(a + b)(a + b)(a + b) → baab

(a + b)(a + b)(a + b)(a + b) → baba

(a + b)(a + b)(a + b)(a + b) → bbaa

This shows that the oe�ient for the a2b2-term is

(
4

2

)(
2

2

)

= 6.
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The Binomial Theorem (a + b)4 3 of 3In general the oe�ient for the term a4−kbk (0 ≤ k ≤ 4) orrespondsto1. Seleting k of 4 positions for the b's� (
4
k

) possibilities.2. Seleting 4 − k of (4 − k) positions for the a's� (
4−k
4−k

)
= 1 possibilities.

Hene, the oe�ient for a4−kbk (0 ≤ k ≤ 4) is (
4
k

), and we have

(a + b)4 =

(
4

0

)

a4 +

(
4

1

)

a3b1 +

(
4

2

)

a2b2 +

(
4

3

)

ab3 +

(
4

4

)

b4
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The Binomial Theorem StatementWe are now ready to state the binomial theorem:

Theorem: � Given any real numbers a and b and any non-negative integer n,

(a + b)n =

n∑

k=0

(
n

k

)

an−kbk

(a+b)n = an +

(
n

1

)

an−1b1 +

(
n

2

)

an−2b2 + . . .+

(
n

n − 1

)

a1bn−1 +bn

We will look at the algebrai and ombinatorial versions of the proof.
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The Binomial Theorem A De�nitionWe need the following de�nitions for our algebrai version of the proof:

De�nition: For any real number a and any non-negative integer
n, the non-negative integer powers of a are de�ned as follows:

an =







1 if n = 0

a · an−1 if n > 0

Notie that here we are de�ning:
00 = 1This is onvenient here, but not always desirable in other mathematialappliations...
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The Binomial Theorem Algebrai Proof 1 of 4Suppose a and b are real numbers. We prove that
(a + b)n =

n∑

k=0

(
n

k

)

an−kbk, for all integers n ≥ 0,

by indution on n...

Base When n = 0 the binomial theorem states that
(a + b)0 =

0∑

k=0

(
n

k

)

an−kbk

The left-hand-side is 1 (by the de�nition of power), and theright-hand side is
0∑

k=0

(
n

k

)

an−kbk =

(
0

0

)

a0b0 = 1
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The Binomial Theorem Algebrai Proof 2 of 4
Inductive Step — Assume true for n = m, show true for n = m + 1

Let m ≥ 1 be a given integer, and suppose the equality holds for
n = m, i.e.

(a + b)m =

m∑

k=0

(
m

k

)

am−kbk

We must show that

(a + b)m+1 =

m+1∑

k=0

(
m + 1

k

)

a(m+1)−kbk

We use the de�nition of the (m + 1)st power and the indutive hy-pothesis:
(a + b)m+1 = (a + b)(a + b)m = (a + b)

m∑

k=0

(
m

k

)

am−kbk
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The Binomial Theorem Algebrai Proof 3 of 4Now,

(a + b)m+1 = (a + b)

m∑

k=0

(
m

k

)

am−kbk

= a

m∑

k=0

(
m

k

)

am−kbk + b

m∑

k=0

(
m

k

)

am−kbk

=
m∑

k=0

(
m

k

)

a(m+1)−kbk +
m∑

k=0

(
m

k

)

am−kbk+1

We make a hange of variables in the seond summation j = k + 1:

(a + b)m+1 =
m∑

k=0

(
m

k

)

a(m+1)−kbk +
m+1∑

j=1

(
m

j − 1

)

a(m+1)−jbj

j is just a dummy variable, so we an rename it k (again)...
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The Binomial Theorem Algebrai Proof 4 of 4
(a + b)m+1 =

m∑

k=0

(
m

k

)

a(m+1)−kbk +

m+1∑

k=1

(
m

k − 1

)

a(m+1)−kbk

We an now ombine the terms 1 ≤ k ≤ m:
(a + b)m+1 =

(
m

0

)

am+1 +
m∑

k=1

[(
m

k

)

+

(
m

k − 1

)]

a(m+1)−kbk +

(
m

m

)

bm+1

We use the fat that (
m+1
m+1

)
=

(
m+1

0

)
=

(
m
m

)
=

(
m
0

)
= 1 and Pasal'sFormula to get

(a + b)m+1 = am+1 +
m∑

k=1

(
m + 1

k

)

a(m+1)−kbk + bm+1

=
m+1∑

k=0

(
m + 1

k

)

a(m+1)−kbk ...and Bob’s your uncle! �
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The Binomial Theorem Combinatorial ProofLet a and b be real numbers and n an integer n ≥ 1. The expression
(a+ b)n an be expanded (using the distributive law) into produts of
n letters, where eah letter is either a or b for eah k = 0, 1, 2, . . . , n,the produt

an−kbk = a · a · a · . . . · a
︸ ︷︷ ︸

n − k factors

· b · b · b · . . . · b
︸ ︷︷ ︸

k factorsours as a term in the sum the same number of times as there areorderings of (n − k) a's and k b's.

The number of suh orderings is (
n
k

), the number of ways to hoose

k positions in whih to plae the b's. Hene, when like terms areombined, the oe�ient of an−kbk in the sum is (
n
k

). Thus,

(a + b)n =
n∑

k=0

(
n

k

)

an−kbk. �
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Example: Estimating a Numerial PowerWhih number is larger: (1.01)1,000,000 or 10, 000?

Solution: By the binomial theorem

(1.01)1,000,000 = (1 + 0.01)1,000,000

= 1 +
(
1,000,000

1

)
1999,9990.011 + positive terms

= 1 + 1, 000, 000 · 1 · 0.01 + positive terms

= 1 + 10, 000 + positive terms

> 10, 001

> 10, 000
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Example: Deriving Another Combinatorial IdentityProblem: Use the binomial theorem to show that
2n =

n∑

k=0

(
n

k

)

Solution: Sine 2 = (1 + 1), 2n = (1 + 1)n. We apply the binomialtheorem with a = b = 1:

2n = (1 + 1)n =

n∑

k=0

(
n

k

)

1n−k1k =

n∑

k=0

(
n

k

)

Consequently,

2n =

(
n

0

)

+

(
n

1

)

+

(
n

2

)

+ . . . +

(
n

n

)

.
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