Relations on Sets
Reflexivity, Symmetry and Transitivity; Equivalence Relations

Lecture \#14

Peter Blomgren

Department of Mathematics and Statistics
San Diego State University
San Diego, CA 92182-7720
blomgren@terminus.SDSU.EDU http://terminus.SDSU.EDU
\$Id: lecture.tex,v 1.5 2006/12/05 00:52:29 blomgren Exp \$

Relations: Introduction

Mathematical Relations - Examples:

* Two logical expressions can be said to be related if they have the same truth tables.
* A set A can be said to be related to a set B if $A \subseteq B$.
* A real number x can be said to related to y if $x<y$.
* An integer n can be said to related to m if $n \mid m$.
* An integer n can be said to related to m if n and m are both odd.
* Etc, etc, etc, ...

We are going to study mathematical relations on sets: their properties and representations.

Relations: Introductory Example

1 of 2

Let $A=\{0,1,2\}$ and $B=\{1,2,3\}$.

The relation: Let an element $x \in A$ be related to an element $y \in B$ if and only if $x<y$.

Notation: $\quad x R y \equiv " x$ is related to $y ", x \not R y \equiv " x$ is not related to $y "$

We have the following relations:

$0 R 1$	since	$0<1$	$1 \not R 1$	since
$1 \nless 1$				
$0 R 2$	since	$0<2$	$2 \not R 1$	since
$0 \nless 1$				
$0 R 3$	since	$0<3$	$2 \not R 2$	since
$1 R 2 \nless 2$				
$1 R 2$	since	$1<2$		
$1 R 3$	since	$1<3$		
$2 R 3$	since	$2<3$		

Relations: Introductory Example

Relations and Cartesian Products:
The Cartesian product $(A \times B)$ of two sets A and B is the set of all ordered pairs whose first element is in A and second elements in B :

$$
A \times B=\{(x, y) \mid x \in A \text { and } y \in B\}
$$

In our example
$A \times B=\{(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$
The elements of some ordered pairs

$$
\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}
$$

are considered to be related (others are not).
Knowing which ordered pairs are in this set is equivalent to knowing which elements are related.

Definition: Binary Relation -

Let A and B be sets. A (binary) relation R from A to B is a subset of $A \times B$. Given an ordered pair $(x, y) \in A \times B, x$ is related to y by R, written $x R y$, if and only if $(x, y) \in R$.

Symbolic Notation

$$
\begin{aligned}
x R y & \Leftrightarrow \quad(x, y) \in R \\
x \not R y & \Leftrightarrow \quad(x, y) \notin R
\end{aligned}
$$

The term binary is used in the definition to indicate that the relation is a subset of the Cartesian product of two sets.

Illustration: Relations

Figure: Given 2 sets A and B, we form the Cartesian product $A \times B$;
$(x, y) \in A \times B \equiv(x \in A)$ and $(y \in$ $B)$.

The subset $R \subseteq A \times B$ can be specified

1. Directly / Explicitly, by indicating what pairs $(x, y) \in R$. This is only feasible when A and B are finite (and small) sets.
2. By specifying a rule for what elements are in R, e.g. by saying that $(x, y) \in R$ if and only if $x=y^{2}$.

Example: Congruence Modulo 2 Relation 1 of 2

We generalize the previous example to the set of all integers \mathbb{Z}, i.e.

$$
\text { for all }(m, n) \in \mathbb{Z} \times \mathbb{Z}, m R n \Leftrightarrow m-n \text { is even }
$$

Questions:
(a) is $4 R 0$? $2 R 6$? $3 R(-3) ? \quad 5 R 2$?
(b) List 5 integers that are related by R to 1 .
(c) Prove that if n is odd, then $n R 1$.

Answers:

(a-i) Yes, $4 R 0$, since $4-0=4$ is even.
(a-ii) Yes, $2 R 6$, since $2-6=-4$ is even.
(a-iii) Yes, $3 R(-3)$, since $3-(-3)=6$ is even.
(a-iv) No, $5 \not R 2$, since $5-2=3$ is odd.

Example: Congruence Modulo 2 Relation

(b) There are infinitely many examples, e.g.

1	since $1-1=0$	is even
11	since $11-1=10$	is even
111	since $111-1=110$	is even
1111	since $1111-1=1110$	is even
11111	since $11111-1=11110$	is even

(c) Proof: Suppose n is any odd integer. Then $n=2 k+1$ for some integer k. By substitution

$$
n-1=2 k+1-1=2 k \text { is even }
$$

Hence

$$
n R 1, \forall n \text { odd. }
$$

Let $A=\{1,2,3\}$ and $B=\{1,3,5\}$

Figure: Arrow diagram representation of the relation

$$
\text { for all }(x, y) \in A \times B
$$

$$
R=\{(2,1),(2,5)\}
$$

$$
(x, y) \in R \Leftrightarrow x<y
$$

Notes: (i) It is possible to have an element that does not have an arrow coming out of it; (ii) It is possible to have several arrows coming out of the same element of A pointing in different directions; (iii) It is possible to have an element in B that does not have an arrow pointing to it.

Example: Directed Graph of a Relation

Let $A=\{3,4,5,6,7,8\}$ and define a binary relation R on A :

$$
R=\{(x, y) \in A \times A: 2 \mid(x-y)\}
$$

Figure: We notice that the graph must be symmetric, since if $2 \mid n$, then $2 \mid(-n)$. Since $2 \mid 0$, there is a loop at every node in the graph.

Definition: A binary relation on a set \mathbf{A} is a binary relation from A to A

In this case, we can modify the arrow diagram to be a directed graph - instead of representing A twice, we only represent it once and draw arrows from each point of A to each related point, e.g.

there is an arrow from \mathbf{x} to $\mathbf{y} \Leftrightarrow \mathbf{x} \mathbf{R} \mathbf{y} \Leftrightarrow(\mathbf{x}, \mathbf{y}) \in \mathbf{R}$

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 10/43

Properties of a Binary Relation on One Set A

Recall:

Definition: A binary relation on a set \mathbf{A} is a binary relation from A to A.

In the context of a binary relation on a set, we can name 3 properties:

Definition: Let R be a binary relation on a set A

1. R is Reflexive if and only if $\forall x \in A, x R x$.
2. R is Symmetric if and only if $\forall x, y \in A$, if $x R y$ then $y R x$.
3. R is Transitive if and only if $\forall x, y, z \in A$, if $x R y$ and $y R z$ then $x R z$.

Reflexivity

Formal: $\quad R$ is Reflexive if and only if $\forall x \in A, x R x$.
Functional: $\quad R$ is Reflexive \Leftrightarrow for all $x \in A,(x, x) \in R$.
Informal: Each element is related to itself.
Graph: Each point of the graph has an arrow looping around back to itself.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 13/43

Transitivity

Formal: $\quad R$ is Transitive if and only if $\forall x, y, z \in A$, if $x R y$ and $y R z$ then $x R z$.

Functional: R is Transitive \Leftrightarrow for all $x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.

Informal: If one element is related to a second element, and that second element is related to a third element, then the first element is related to the third element.

Graph: In all cases where there is an arrow going from one point to a second, and from the second point to a third, there is an arrow going from the first point to the third

Relations: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 15/43

Symmetry

Formal: $\quad R$ is Symmetric if and only if $\forall x, y \in A$, if $x R y$ then $y R x$.

Functional: $\quad R$ is Symmetric \Leftrightarrow for all $x, y \in A$, if $(x, y) \in R$ then $(y, x) \in R$.

Informal: If one element is related to a second element, then the second element is related to the first.

Graph: In all cases where there is an arrow going from one point to a second, there is an arrow going from the second point back to the first.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 14/43

Non-Reflexivity, Non-Symmetry, and Non-Transitivity

If R is a binary relation defined on a set A, then

1. R is not reflexive \Leftrightarrow there is an element $x \in A$ such that $x \not R x$, i.e. $(x, x) \notin R$.
2. R is not symmetric \Leftrightarrow there are elements $x, y \in A$ such that $x R y$ but $y \not R x$, i.e. $(x, y) \in R$, but $(y, x) \notin R$.
3. R is not transitive \Leftrightarrow there are elements $x, y, z \in A$ such that $x R y$ and $y R z$ but $x \not R z$, i.e. $(x, y),(y, z) \in R$, but $(x, z) \notin R$.

To show that a binary relation does not have one of the properties, it is sufficient to find a counterexample.

Let $A=\{0,1,2,3\}$ and define relations R, S, and T :

$$
\begin{aligned}
R & =\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\} \\
S & =\{(0,0),(0,2),(0,3),(2,3)\} \\
T & =\{(0,1),(2,3)\}
\end{aligned}
$$

Fill in the table:

	Reflexive	Symmetric	Transitive
R			
S			
T			

We have $A=\{0,1,2,3\}$ and

$$
R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}
$$

\mathbf{R} is reflexive since there is a loop at each point in the directed graph.
\mathbf{R} is symmetric since in for every arrow going from one point to another, there is another arrow going back.
\mathbf{R} is not transitive since e.g. $1 R 0$ and $0 R 3$ but $1 \not R 3$ i.e. there is no "short-cut" arrow connecting 1 and 3 .

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 18/43

Example

The Relation T
We have $A=\{0,1,2,3\}$ and

$$
\begin{aligned}
& T=\{(0,1),(2,3)\} \\
& \mathbf{0} \bullet \longrightarrow \bullet \mathbf{1}
\end{aligned}
$$

\mathbf{T} is not reflexive since there are missing loops at $0,1,2$, and 3 .
\mathbf{T} is not symmetric, the arrows from 1 -to- 0 , and 3 -to- 2 are missing.
\mathbf{T} is transitive since it is not not transitive.
S is not reflexive since there are missing loops at 1,2 , and 3.
S is not symmetric, the arrows from 2-to-0, 3-to-0, and 3-to-2 are missing. \mathbf{S} is transitive since there is always a "short-cut" arrow so that if $(x, y) \in S$ and $(y, z) \in S$ then $(x, z) \in S$.

Let $A=\{0,1,2,3\}$ and define relations R, S, and T :

$$
\begin{aligned}
& R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\} \\
& S=\{(0,0),(0,2),(0,3),(2,3)\} \\
& T=\{(0,1),(2,3)\}
\end{aligned}
$$

Fill in the table:

	Reflexive	Symmetric	Transitive
R	Yes	Yes	No
S	No	No	Yes
T	No	No	Yes

Irreflexivity

Formal: $\quad R$ is Irreflexive if and only if $\forall x \in A, \mathbf{x} \mathbf{R} \mathbf{x}$.
Functional: $\quad R$ is Irreflexive \Leftrightarrow for all $x \in A,(\mathbf{x}, \mathbf{x}) \notin \mathbf{R}$.
Informal: No element is related to itself.
Graph: No point of the graph has an arrow looping around back to itself.

Anti-Symmetry

Formal: $\quad R$ is Anti-Symmetric if and only if $\forall x, y \in A$, if $x R y$ then $\mathbf{y} \mathbf{R} \mathbf{x}$.

Functional: $\quad R$ is Anti-Symmetric \Leftrightarrow for all $x, y \in A$, if $(x, y) \in R$

Definition: Let R be a binary relation on a set A

1. R is Irreflexive if and only if $\forall x \in A, x \not R x$.
2. R is Anti-symmetric if and only if $\forall x, y \in A$, if $x R y$ then $y \not R x$.
3. R is Intransitive if and only if $\forall x, y, z \in A$, if $x R y$ and $y R z$ then $x \not R z$.

- $\quad R$ can be reflexive, non-reflexive, or irreflexive,
- $\quad R$ can be symmetric. non-symmetric, or anti-symmetric
- $\quad R$ can be transitive, non-transitive, or intransitive.

Think about these definitions!!!

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 22/43
then $(\mathbf{y}, \mathbf{x}) \notin \mathbf{R}$.

Informal: If one element is related to a second element, then the second element is NOT related to the first.

Graph: In all cases where there is an arrow going from one point to a second, there is no arrow going from the second point back to the first.
Graph: In all cases where there is an arrow going from one

Intransitivity

Formal: $\quad R$ is Intransitive if and only if $\forall x, y, z \in A$, if $x R y$ and $y R z$ then $\mathbf{x} \mathbf{R} \mathbf{z}$

Functional: R is Intransitive \Leftrightarrow for all $x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$ then $(\mathbf{x}, \mathbf{z}) \notin \mathbf{R}$.

Informal: If one element is related to a second element, and that second element is related to a third element, then the first element is not related to the third element.

Graph: In all cases where there is an arrow going from one point to a second, and from the second point to a third, there is never an arrow going from the first point to the third (no shortcut exist, anywhere.).

Example: Equality ($=$) on \mathbb{R}

Let $A=\mathbb{R}$ (the set of real numbers), and define the relation R

$$
x R y \quad \Leftrightarrow \quad x=y
$$

Properties:

\mathbf{R} is reflexive: $\quad R$ is reflexive if and only if $\forall x \in \mathbb{R}, x R x$. Here, this means $x=x$, i.e. $\forall x \in \mathbb{R} x=x$. This statement is certainly true; every real number equals itself.
\mathbf{R} is symmetric: \quad This is true since if $x=y$ then $y=x$, hence $(x, y) \in R$ and $(y, x) \in R$.
\mathbf{R} is transitive: \quad This is true since if $x=y$ and $y=z$, then $x=z$.

Example: Less Than ($<$) on \mathbb{R}

Let $A=\mathbb{R}$ (the set of real numbers), and define the relation R

$$
x R y \quad \Leftrightarrow \quad x<y
$$

Properties:

\mathbf{R} is irreflexive: \quad If $x R x$ then $x<x$, but that is never true, hence $x \not R x$ $\forall x \in \mathbb{R}$.
\mathbf{R} is anti-symmetric: If $x R y$ then $x<y$, which means $y \nless x$ i.e. $y \not R x$.
\mathbf{R} is transitive: \quad This is true since if $x<y$ and $y<z$, then $x<z$.

Example: Congruence Modulo 3 on \mathbb{Z}

We define a relation R on \mathbb{Z} as follows

$$
\forall m, n \in \mathbb{Z}: \quad m R n \quad \Leftrightarrow \quad 3 \mid(m-n)
$$

\mathbf{R} is reflexive: \quad Suppose m is an integer. Now, $m-m=0$ and $3 \mid 0$ since $0=3 \cdot 0$, so by definition of R we have $m R m$.
\mathbf{R} is symmetric: Suppose $m, n \in \mathbb{Z}$ such that $m R n$. By definition of R we have $3 \mid(m-n) \Leftrightarrow m-n=3 \cdot k$, for some $k \in \mathbb{Z}$. Multiplying both sides by (-1) gives $n-m=3 \cdot(-k)$, which shows $3 \mid(n-m)$, hence $n R m$.
\mathbf{R} is transitive: Suppose $m, n, p \in \mathbb{Z}$ such that $m R n$ and $n R p$. We have $3 \mid(m-n)$ and $3 \mid(n-p)$, and we can write $(m-n)=3 r$ and $(n-p)=3 s$ for some $r, s \in \mathbb{Z}$. Adding the two gives $(m-n)+(n-p)=(m-p)=3(r+s)$ which shows that $3 \mid(m-p)$. Hence $m R p$, and it follows that R is transitive.

Equivalence Relations: Different, but the Same...
Idea: We are going to group elements that look different, but really are the same...

Example: Think about the rational numbers, there are several ways of writing the same fraction, e.g.

$$
\frac{1}{2}=\frac{-1}{-2}=\frac{2}{4}=\frac{4711}{9422}
$$

We can define a relation on $\mathbb{Q} \times \mathbb{Q}$, where \mathbb{Q} is the set of all rational numbers

$$
R=\{(x, y) \in \mathbb{Q} \times \mathbb{Q}: x=y\}
$$

now $\left(\frac{1}{2}, \frac{2}{4}\right) \in R,\left(\frac{4711}{9422}, \frac{2}{4}\right) \in R,\left(\frac{1}{3}, \frac{2}{6}\right) \in R$, etc...

Example: Relation Induced by a Partition

Let $A=\{0,1,2,3,4\}$ and consider the following partition of A :

$$
A_{1}=\{0,3,4\}, \quad A_{2}=\{1\}, \quad A_{3}=\{2\}
$$

Now, two elements $x, y \in A$ are related if and only if they belong to the same subset of the partition..

Hence,

$$
\mathbf{R}=\left\{\begin{array}{l}
(0,0),(0,3),(0,4),(1,1), \\
(2,2),(3,0),(3,3),(3,4), \\
(4,0),(4,3),(4,4)
\end{array}\right\}
$$

A Relation Induced by a Partition

Recall:

Definition: A collection of non-empty sets $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a partition of a set A if and only if

1. $A=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$.
2. $A_{1}, A_{2}, \ldots, A_{n}$ are mutually disjoint.

Definition: Given a partition of a set A the binary relation induced by the partition, R, is defined on A as follows

$$
\forall x, y \in A, \quad x R y \quad \Leftrightarrow \quad \text { there is a set } A_{i} \text { of the partition such }
$$ that both $x \in A_{i}$ and $y \in A_{i}$.

We need an example to make sense out of this definition...

Equivalence Relations

Theorem: Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.

Definition: Equivalence Relation -

Let A be a non-empty set and R a binary relation on $A . R$ is an equivalence relation if and only if R is reflexive, symmetric, and transitive.

Example: By the theorem the relation induced by a partition is an equivalence relation.

Notation: Congruence Modulo n

Notation: Let $m, n, d \in \mathbb{Z}$ with $d>0$. The notation

$$
m \equiv n \quad(\bmod d)
$$

is read " m is congruent to n modulo d " and means that

$$
d \mid(m-n)
$$

Symbolically,

$$
m \equiv n \quad(\bmod d) \quad \Leftrightarrow \quad d \mid(m-n)
$$

Recall the Quotient-Remainder Theorem:

Theorem: Given any integer n and a positive integer d, there exist unique integers q (the quotient) and r (the remainder) such that

$$
n=d \cdot q+r, \quad \text { and } \quad 0 \leq r<d
$$

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 33/43

Equivalence Classes

Suppose we have a set A and an equivalence relation R on A. Given a particular element $x \in A$ it is natural to ask the question "what elements are related to x ?"

All the elements that are related to x form a subset of A and this subset is called the equivalence class of x :

Definition: Suppose A is a set and R is an equivalence relation on A. For each element $x \in A$, the equivalence class of x, denoted $[\mathbf{x}]$ and called the class of x for short, is the set of all elements $y \in A$ such that $y R x$.

Symbolically,

$$
[x]=\{y \in A \mid y R x\}
$$

Equivalence Relation: Congruence Modulo 3

Let R be the relation $R=\{(m, n) \in \mathbb{Z} \times \mathbb{Z}: m=n(\bmod 3)\}$. We show that this is an equivalence relation.
[Reflexivity] Let $m \in Z$, then $3 \mid(m-m)$ since $0=3 \cdot 0$, and it follows that $m R m$.
[Symmetry] Let $m, n \in Z$, so that $m R n$. We have $3 \mid(m-n) \Leftrightarrow$ $(m-n)=3 \cdot k$ for some $k \in \mathbb{Z} \Leftrightarrow(n-m)=3 \cdot(-k)$ $\Leftrightarrow 3 \mid(n-m) \Leftrightarrow n R m$.
[Transitivity] Let $m, n, p \in Z$, so that $m R n$ and $n R p$. We have

$$
\begin{array}{rll}
3 \mid(m-n) & \Leftrightarrow & (m-n)=3 \cdot r, r \in \mathbb{Z} \\
3 \mid(n-p) & \Leftrightarrow & (n-p)=3 \cdot s, s \in \mathbb{Z} \\
\hline & \text { add } & (m-p)=3 \cdot(r+s)
\end{array}
$$

Hence $3 \mid(m-p)$ and we have $m R p . \square$

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 34/43

Example: Equivalence Classes

Let $A=\{0,1,2,3,4\}$ and define a binary relation R on A

$$
R=\{(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0),(4,4)\}
$$

Figure: The array diagram (directed graph) corresponding to the relation.

By quick inspection we see that R is reflexive, symmetric, and transitive, hence an equivalence relation.

The equivalence classes are:

$$
\begin{aligned}
& {[0]=\{x \in A \mid x R 0\}=\{0,4\}} \\
& {[1]=\{x \in A \mid x R 1\}=\{1,3\}} \\
& {[2]=\{x \in A \mid x R 2\}=\{2\}} \\
& {[3]=\{x \in A \mid x R 3\}=\{1,3\}} \\
& {[4]=\{x \in A \mid x R 4\}=\{0,4\}}
\end{aligned}
$$

Note that $[0]=[4]$ and $[1]=[3]$, hence the distinct equivalence classes are: $\{0,4\},\{1,3\},\{2\}$.

Example: Equivalence Classes of Congruence Modulo $3 \quad 1$ of 3

Let R be the relation of congruence modulo 3 on the set \mathbb{Z}, i.e. $\forall m, n \in \mathbb{Z}$

$$
m R n \Leftrightarrow 3 \mid(m-n) \Leftrightarrow m \equiv n(\bmod 3)
$$

We describe the equivalence classes: For each integer a, the class of a is

$$
\begin{aligned}
{[a] } & =\{x \in \mathbb{Z} \mid x R a\} \\
& =\{x \in \mathbb{Z}|3|(x-a)\} \\
& =\{x \in \mathbb{Z} \mid x-a=3 \cdot k, k \in \mathbb{Z}\} \\
& =\{x \in \mathbb{Z} \mid x=3 \cdot k+a, k \in \mathbb{Z}\}
\end{aligned}
$$

In particular

$$
\begin{array}{ll}
{[0]=\{x \in \mathbb{Z} \mid x=3 \cdot k, k \in \mathbb{Z}\}} & =\{0,3,-3,6,-6,9,-9, \ldots\} \\
{[1]=\{x \in \mathbb{Z} \mid x=3 \cdot k+1, k \in \mathbb{Z}\}} & =\{1,4,-2,7,-5,10,-8, \ldots\} \\
{[2]=\{x \in \mathbb{Z} \mid x=3 \cdot k+2, k \in \mathbb{Z}\}} & =\{2,5,-1,8,-4,11,-7, \ldots\}
\end{array}
$$

Equivalence Classes: A Theorem

The following theorem tells us that an equivalence relation induces a partition:

Theorem: If A is a non-empty set and R is an equivalence relation on A, then the distinct equivalence classes of R form a partition of A; i.e. the union of the equivalence classes is all of A and the intersection of any two distinct classes is empty.

Example: Equivalence Classes of Congruence Modulo 3

We have

$$
\begin{array}{ll}
{[0]=\{x \in \mathbb{Z} \mid x=3 \cdot k, k \in \mathbb{Z}\}} & =\{0,3,-3,6,-6,9,-9, \ldots\} \\
{[1]=\{x \in \mathbb{Z} \mid x=3 \cdot k+1, k \in \mathbb{Z}\}} & =\{1,4,-2,7,-5,10,-8, \ldots\} \\
{[2]=\{x \in \mathbb{Z} \mid x=3 \cdot k+2, k \in \mathbb{Z}\}} & =\{2,5,-1,8,-4,11,-7, \ldots\}
\end{array}
$$

By lemma\#1

$$
\begin{aligned}
& {[0]=[3]=[-3]=[6]=[-6]=[9]=[-9]=\ldots} \\
& {[1]=[4]=[-2]=[7]=[-5]=[10]=[-8]=\ldots} \\
& {[2]=[5]=[-1]=[8]=[-4]=[11]=[-7]=\ldots}
\end{aligned}
$$

Hence the distinct equivalence classes are

$$
\begin{gathered}
\{x \in \mathbb{Z} \mid x=3 \cdot k, k \in \mathbb{Z}\}, \quad\{x \in \mathbb{Z} \mid x=3 \cdot k+1, k \in \mathbb{Z}\} \\
\{x \in \mathbb{Z} \mid x=3 \cdot k+2, k \in \mathbb{Z}\}
\end{gathered}
$$

The distinct equivalence classes are

$$
\begin{gathered}
\{x \in \mathbb{Z} \mid x=3 \cdot k, k \in \mathbb{Z}\}, \quad\{x \in \mathbb{Z} \mid x=3 \cdot k+1, k \in \mathbb{Z}\} \\
\{x \in \mathbb{Z} \mid x=3 \cdot k+2, k \in \mathbb{Z}\}
\end{gathered}
$$

The class of [0] can also be called the class of [3] or the class of [96], but the class is the set $\{x \in \mathbb{Z} \mid x=3 \cdot k, k \in \mathbb{Z}\}$.

Definition: Suppose R is an equivalence relation on a set A and S is an equivalence class of R. A representative of the class S is any element $a \in A$ such that $[a]=S$.

[^0](Epp-v2.0)
10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25, 10.2.3, 10.2.4,
$10.2 .12,10.2 .14,10.2 .37,10.3 .2,10.3 .14,10.3 .16,10.3 .35$

Notes

- It is possible to define multiplication and addition of the equivalence classes corresponding to the rational numbers (previous example).
- The rational numbers can be defined as equivalence classes of ordered integers.
- It can be shown that all integers - negative, zero, and positive can be defined as equivalence classes of ordered pairs of positive integers.
- Frege and Peano showed (late 19th century) that the positive integers can be defined entirely in terms of sets.
- Dedekind (1848-1916) showed that all real numbers can be defined as sets of rational numbers.
- All together, these results show that the real numbers can be defined using logic and set theory alone!

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 42/43

[^0]: (Epp-v3.0)
 10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25, 10.2.3, 10.2.4,
 $10.2 .12,10.2 .14,10.2 .37,10.3 .3,10.3 .17,10.3 .19,10.3 .40$

