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Relations: Introdution

Mathematical Relations — Examples:

* Two logial expressions an be said to be related if they have thesame truth tables.

* A set A an be said to be related to a set B if A ⊆ B.
* A real number x an be said to related to y if x < y.
* An integer n an be said to related to m if n|m.
* An integer n an be said to related to m if n and m are both odd.

* Et, et, et, ...We are going to study mathematial relations on sets: theirproperties and representations.
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Relations: Introdutory Example 1 of 2Let A = {0, 1, 2} and B = {1, 2, 3}.

The relation: Let an element x ∈ A be related to an element y ∈ Bif and only if x < y.Notation: xR y ≡ “x is related to y” , x 6R y ≡ “x is not related to y”

We have the following relations:

0R 1 since 0 < 1

0R 2 since 0 < 2

0R 3 since 0 < 3

1R 2 since 1 < 2

1R 3 since 1 < 3

2R 3 since 2 < 3

1 6R 1 since 1 6< 1

2 6R 1 since 2 6< 1

2 6R 2 since 2 6< 2
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Relations: Introdutory Example 2 of 2

Relations and Cartesian Products:The Cartesian produt (A×B) of two sets A and B is the set of allordered pairs whose �rst element is in A and seond elements in B:

A×B = {(x, y) |x ∈ A and y ∈ B}In our example

A×B = {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}The elements of some ordered pairs

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}are onsidered to be related (others are not).Knowing whih ordered pairs are in this set is equivalent to knowingwhih elements are related.
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Relations: Formal De�nition

De�nition: Binary Relation �Let A and B be sets. A (binary) relation R from A to B isa subset of A × B. Given an ordered pair (x, y) ∈ A × B, x isrelated to y by R, written xR y, if and only if (x, y) ∈ R.

Symbolic Notation

xR y ⇔ (x, y) ∈ R

x 6R y ⇔ (x, y) 6∈ R

The term binary is used in the de�nition to indiate that the relationis a subset of the Cartesian produt of two sets.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 5/43

Illustration: Relations

A B

A x B R

A B

A x B

Figure: Given 2 sets A and B, we

form the Cartesian product A × B;

(x, y) ∈ A×B ≡ (x ∈ A) and (y ∈

B).

Figure: The Relation R is a subset of

A × B. If and only if (x, y) ∈ R we

say that x is related to y by R, symbol-

ically xR y.The subset R ⊆ A×B an be spei�ed1. Diretly / Expliitly, by indiating what pairs (x, y) ∈ R. Thisis only feasible when A and B are �nite (and small) sets.2. By speifying a rule for what elements are in R, e.g. by sayingthat (x, y) ∈ R if and only if x = y2.
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Example: Congruene Modulo 2 Relation 1 of 2We generalize the previous example to the set of all integers Z, i.e.

for all (m,n) ∈ Z× Z, m R n ⇔ m− n is evenQuestions:(a) is 4R 0? 2R 6? 3R (−3)? 5R 2?(b) List 5 integers that are related by R to 1.() Prove that if n is odd, then nR 1.

Answers:(a-i) Yes, 4R 0, sine 4− 0 = 4 is even.(a-ii) Yes, 2R 6, sine 2− 6 = −4 is even.(a-iii) Yes, 3R (−3), sine 3− (−3) = 6 is even.(a-iv) No, 5 6R 2, sine 5− 2 = 3 is odd.
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Example: Congruene Modulo 2 Relation 2 of 2(b) There are in�nitely many examples, e.g.

1 since 1− 1 = 0 is even

11 since 11− 1 = 10 is even

111 since 111− 1 = 110 is even

1111 since 1111− 1 = 1110 is even

11111 since 11111− 1 = 11110 is even() Proof: Suppose n is any odd integer. Then n = 2k +1 for someinteger k. By substitution

n− 1 = 2k + 1− 1 = 2k is evenHene

nR 1, ∀n odd. �
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Representation: Arrow Diagrams for RelationsLet A = {1, 2, 3} and B = {1, 3, 5}

1

2

3

1

3

5

Figure: Arrow diagram representation of

the relation

for all (x, y) ∈ A×B,

(x, y) ∈ R ⇔ x < y

1

2

3

1

3

5

Figure: Arrow diagram representation of

the relation

R = {(2, 1), (2, 5)}

Notes: (i) It is possible to have an element that does not have an arrow coming

out of it; (ii) It is possible to have several arrows coming out of the same element

of A pointing in different directions; (iii) It is possible to have an element in B

that does not have an arrow pointing to it.
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Relation from A to A Direted Graph of a Relation

De�nition: A binary relation on a set A is a binary relationfrom A to A.
In this ase, we an modify the arrow diagram to be a direted graph� instead of representing A twie, we only represent it one and drawarrows from eah point of A to eah related point, e.g.

1 2

3

4

5

there is an arrow from x to y ⇔ xRy ⇔ (x,y) ∈ R
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Example: Direted Graph of a RelationLet A = {3, 4, 5, 6, 7, 8} and de�ne a binary relation R on A:

R = {(x, y) ∈ A×A : 2|(x− y)}

3

6

4

57

8

Figure: We notice that the graph must be symmetric, since if 2|n,

then 2|(−n). Since 2|0, there is a loop at every node in the graph.
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Properties of a Binary Relation on One Set AReall:
De�nition: A binary relation on a set A is a binary relationfrom A to A.

In the ontext of a binary relation on a set, we an name 3 properties:

De�nition: Let R be a binary relation on a set A1. R is Re�exive if and only if ∀x ∈ A, xR x.2. R is Symmetri if and only if ∀x, y ∈ A, if xR y then y R x.3. R is Transitive if and only if ∀x, y, z ∈ A, if xR y and y R zthen xR z.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 12/43



Re�exivityFormal: R is Re�exive if and only if ∀x ∈ A, xR x.Funtional: R is Re�exive ⇔ for all x ∈ A, (x, x) ∈ R.Informal: Eah element is related to itself.Graph: Eah point of the graph has an arrow looping aroundbak to itself.
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SymmetryFormal: R is Symmetri if and only if ∀x, y ∈ A, if xR y then
y R x.Funtional: R is Symmetri ⇔ for all x, y ∈ A, if (x, y) ∈ R then
(y, x) ∈ R.Informal: If one element is related to a seond element, then theseond element is related to the �rst.Graph: In all ases where there is an arrow going from onepoint to a seond, there is an arrow going from theseond point bak to the �rst.
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TransitivityFormal: R is Transitive if and only if ∀x, y, z ∈ A, if xR yand y R z then xR z.Funtional: R is Transitive ⇔ for all x, y, z ∈ A, if (x, y) ∈ Rand (y, z) ∈ R then (x, z) ∈ R.Informal: If one element is related to a seond element, and thatseond element is related to a third element, then the�rst element is related to the third element.Graph: In all ases where there is an arrow going from onepoint to a seond, and from the seond point to athird, there is an arrow going from the �rst point tothe third.
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Non-Re�exivity, Non-Symmetry, and Non-TransitivityIf R is a binary relation de�ned on a set A, then

1. R is not re�exive ⇔ there is an element x ∈ A suh that

x 6R x, i.e. (x, x) 6∈ R.

2. R is not symmetri ⇔ there are elements x, y ∈ A suh that

xR y but y 6R x, i.e. (x, y) ∈ R, but (y, x) 6∈ R.

3. R is not transitive ⇔ there are elements x, y, z ∈ A suh that

xR y and y R z but x 6R z, i.e. (x, y), (y, z) ∈ R, but (x, z) 6∈ R.

To show that a binary relation does not have one of the properties,it is su�ient to �nd a ounterexample.
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Example 1 of 5Let A = {0, 1, 2, 3} and de�ne relations R, S, and T :

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

S = {(0, 0), (0, 2), (0, 3), (2, 3)}

T = {(0, 1), (2, 3)}Fill in the table:

Reflexive Symmetric Transitive

R

S

T
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Example The Relation R 2 of 5We have A = {0, 1, 2, 3} and

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

0 1

23

R is reflexive since there is a loop at each point in the directed graph.

R is symmetric since in for every arrow going from one point to another, there is an-

other arrow going back.

R is not transitive since e.g. 1 R 0 and 0 R 3 but 1 6R 3 i.e. there is no “short-cut”

arrow connecting 1 and 3.
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Example The Relation S 3 of 5We have A = {0, 1, 2, 3} and

S = {(0, 0), (0, 2), (0, 3), (2, 3)}

0 1

23

S is not reflexive since there are missing loops at 1, 2, and 3.

S is not symmetric , the arrows from 2-to-0, 3-to-0, and 3-to-2 are missing.

S is transitive since there is always a “short-cut” arrow so that if (x, y) ∈ S and

(y, z) ∈ S then (x, z) ∈ S.
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Example The Relation T 4 of 5We have A = {0, 1, 2, 3} and

T = {(0, 1), (2, 3)}

0 1

23

T is not reflexive since there are missing loops at 0, 1, 2, and 3.

T is not symmetric , the arrows from 1-to-0, and 3-to-2 are missing.

T is transitive since it is not not transitive.
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Example The Relations R, S and T 5 of 5Let A = {0, 1, 2, 3} and de�ne relations R, S, and T :

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}

S = {(0, 0), (0, 2), (0, 3), (2, 3)}

T = {(0, 1), (2, 3)}Fill in the table:

Reflexive Symmetric Transitive

R Yes Yes No

S No No Yes

T No No Yes
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Irre�exivity, Anti-Symmetry, and Intransitivity

De�nition: Let R be a binary relation on a set A1. R is Irre�exive if and only if ∀x ∈ A, x 6R x.2. R is Anti-symmetri if and only if ∀x, y ∈ A, if xR y then
y 6R x.3. R is Intransitive if and only if ∀x, y, z ∈ A, if xR y and

y R z then x 6R z.
• R an be re�exive, non-re�exive, or irre�exive,

• R an be symmetri. non-symmetri, or anti-symmetri

• R an be transitive, non-transitive, or intransitive.Think about these de�nitions!!!
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Irre�exivityFormal: R is Irre�exive if and only if ∀x ∈ A, x 6R x.Funtional: R is Irre�exive ⇔ for all x ∈ A, (x,x) 6∈ R.Informal: No element is related to itself.Graph: No point of the graph has an arrow looping aroundbak to itself.

x
xx

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 23/43

Anti-SymmetryFormal: R is Anti-Symmetri if and only if ∀x, y ∈ A, if xR ythen y 6R x.Funtional: R is Anti-Symmetri⇔ for all x, y ∈ A, if (x, y) ∈ Rthen (y,x) 6∈ R.Informal: If one element is related to a seond element, then theseond element is NOT related to the �rst.Graph: In all ases where there is an arrow going from onepoint to a seond, there is no arrow going from theseond point bak to the �rst.
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IntransitivityFormal: R is Intransitive if and only if ∀x, y, z ∈ A, if xR yand y R z then x 6R z.Funtional: R is Intransitive ⇔ for all x, y, z ∈ A, if (x, y) ∈ Rand (y, z) ∈ R then (x, z) 6∈ R.Informal: If one element is related to a seond element, and thatseond element is related to a third element, then the�rst element is not related to the third element.Graph: In all ases where there is an arrow going from onepoint to a seond, and from the seond point to athird, there is never an arrow going from the �rstpoint to the third (no shortut exist, anywhere.).

X
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Example: Equality (=) on RLet A = R (the set of real numbers), and de�ne the relation R

xR y ⇔ x = yProperties:

R is reflexive: R is reflexive if and only if ∀x ∈ R, xR x. Here, this

means x = x, i.e. ∀x ∈ R x = x. This statement is

certainly true; every real number equals itself.

R is symmetric: This is true since if x = y then y = x, hence (x, y) ∈ R

and (y, x) ∈ R.

R is transitive: This is true since if x = y and y = z, then x = z.
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Example: Less Than (<) on RLet A = R (the set of real numbers), and de�ne the relation R

xR y ⇔ x < yProperties:

R is irreflexive: If xR x then x < x, but that is never true, hence x 6R x

∀x ∈ R.

R is anti-symmetric: If xR y then x < y, which means y 6< x i.e. y 6R x.

R is transitive: This is true since if x < y and y < z, then x < z.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 27/43

Example: Congruene Modulo 3 on ZWe de�ne a relation R on Z as follows

∀m,n ∈ Z : m R n ⇔ 3|(m− n)

R is reflexive: Suppose m is an integer. Now, m − m = 0 and 3|0 since

0 = 3 · 0, so by definition of R we have m R m. �

R is symmetric: Suppose m,n ∈ Z such that m R n. By definition of R

we have 3|(m − n) ⇔ m − n = 3 · k, for some k ∈ Z.

Multiplying both sides by (−1) gives n − m = 3 · (−k),

which shows 3|(n−m), hence nR m. �

R is transitive: Suppose m,n, p ∈ Z such that m R n and nR p. We have

3|(m−n) and 3|(n−p), and we can write (m−n) = 3r

and (n − p) = 3s for some r, s ∈ Z. Adding the two

gives (m − n) + (n− p) = (m − p) = 3(r + s) which

shows that 3|(m − p). Hence m R p, and it follows that R

is transitive. �
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Equivalene Relations: Di�erent, but the Same...Idea: We are going to group elements that look di�erent, but reallyare the same...Example: Think about the rational numbers, there are several waysof writing the same fration, e.g.

1

2
=

−1

−2
=

2

4
=

4711

9422

We an de�ne a relation on Q×Q, where Q is the set of all rationalnumbers

R = {(x, y) ∈ Q×Q : x = y}

now (

1

2
, 2

4

)

∈ R, (

4711

9422
, 2

4

)

∈ R, (

1

3
, 2

6

)

∈ R, et...
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A Relation Indued by a PartitionReall:De�nition: A olletion of non-empty sets {A1, A2, . . . , An} isa partition of a set A if and only if1. A = A1 ∪A2 ∪ . . . ∪An.2. A1, A2, . . . , An are mutually disjoint.

De�nition: Given a partition of a set A the binary relationindued by the partition, R, is de�ned on A as follows

∀x, y ∈ A, xR y ⇔ there is a set Ai of the partition such

that both x ∈ Ai and y ∈ Ai.

We need an example to make sense out of this de�nition...
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Example: Relation Indued by a PartitionLet A = {0, 1, 2, 3, 4} and onsider the following partition of A:

A1 = {0, 3, 4}, A2 = {1}, A3 = {2}Now, two elements x, y ∈ A are related if and only if they belong tothe same subset of the partition...

0 3

4

1 2

Hene,
R =



















(0, 0), (0, 3), (0, 4), (1, 1),

(2, 2), (3, 0), (3, 3), (3, 4),

(4, 0), (4, 3), (4, 4)
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Equivalene Relations

Theorem: Let A be a set with a partition and let R be therelation indued by the partition. Then R is re�exive, symmetri,and transitive.
De�nition: Equivalene Relation �Let A be a non-empty set and R a binary relation on A. R is anequivalene relation if and only if R is re�exive, symmetri, andtransitive.

Example: By the theorem the relation indued by a partition is anequivalene relation.
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Notation: Congruene Modulo n

Notation: Let m,n, d ∈ Z with d > 0. The notation

m ≡ n (mod d)is read �m is ongruent to n modulo d� and means that

d|(m− n)Symbolially,

m ≡ n (mod d) ⇔ d|(m− n)

Reall the Quotient-Remainder Theorem:Theorem: Given any integer n and a positive integer d, there existunique integers q (the quotient) and r (the remainder) suh that

n = d · q + r, and 0 ≤ r < d
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Equivalene Relation: Congruene Modulo 3Let R be the relation R = {(m,n) ∈ Z× Z : m = n(mod 3)}. Weshow that this is an equivalene relation.[Reflexivity ℄ Let m ∈ Z, then 3|(m − m) sine 0 = 3 · 0, and itfollows that m R m.[Symmetry ℄ Let m,n ∈ Z, so that m R n. We have 3|(m − n) ⇔

(m− n) = 3 · k for some k ∈ Z ⇔ (n−m) = 3 · (−k)

⇔ 3|(n−m) ⇔ nR m.[Transitivity ℄ Let m,n, p ∈ Z, so that m R n and nR p. We have

3|(m− n) ⇔ (m− n) = 3 · r, r ∈ Z

3|(n− p) ⇔ (n− p) = 3 · s, s ∈ Z

add (m− p) = 3 · (r + s)Hene 3|(m− p) and we have m R p. �
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Equivalene ClassesSuppose we have a set A and an equivalene relation R on A. Givena partiular element x ∈ A it is natural to ask the question �whatelements are related to x?�

All the elements that are related to x form a subset of A and thissubset is alled the equivalene lass of x:

De�nition: Suppose A is a set and R is an equivalene relationon A. For eah element x ∈ A, the equivalene lass of x,denoted [x] and alled the lass of x for short, is the set of allelements y ∈ A suh that y R x.

Symbolially,

[x] = {y ∈ A| y R x}
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Example: Equivalene Classes 1 of 2Let A = {0, 1, 2, 3, 4} and de�ne a binary relation R on A

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)}

0 1 2

4 3

Figure: The array diagram (directed graph) corresponding to the relation.

By quik inspetion we see that R is re�exive, symmetri, and transi-tive, hene an equivalene relation.
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Example: Equivalene Classes 2 of 2

0 1 2

4 3

The equivalene lasses are:

[0] = {x ∈ A |xR 0} = {0, 4}

[1] = {x ∈ A |xR 1} = {1, 3}

[2] = {x ∈ A |xR 2} = {2}

[3] = {x ∈ A |xR 3} = {1, 3}

[4] = {x ∈ A |xR 4} = {0, 4}Note that [0] = [4] and [1] = [3], hene the distint equivalenelasses are: {0, 4}, {1, 3}, {2}.
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Equivalene Classes: A TheoremThe following theorem tells us that an equivalene relation indues apartition:
Theorem: If A is a non-empty set and R is an equivalene re-lation on A, then the distint equivalene lasses of R form apartition of A; i.e. the union of the equivalene lasses is all of Aand the intersetion of any two distint lasses is empty.
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Example: Equivalene Classes of Congruene Modulo 3 1 of 3Let R be the relation of ongruene modulo 3 on the set Z, i.e.

∀m,n ∈ Z

m R n ⇔ 3|(m− n) ⇔ m ≡ n(mod 3)We desribe the equivalene lasses: For eah integer a, the lass of
a is

[a] = {x ∈ Z |xR a}

= {x ∈ Z | 3|(x − a)}

= {x ∈ Z |x− a = 3 · k, k ∈ Z}

= {x ∈ Z |x = 3 · k + a, k ∈ Z}In partiular

[0] = {x ∈ Z |x = 3 · k, k ∈ Z} = {0, 3,−3, 6,−6, 9,−9, . . .}

[1] = {x ∈ Z |x = 3 · k + 1, k ∈ Z} = {1, 4,−2, 7,−5, 10,−8, . . .}

[2] = {x ∈ Z |x = 3 · k + 2, k ∈ Z} = {2, 5,−1, 8,−4, 11,−7, . . .}
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Example: Equivalene Classes of Congruene Modulo 3 2 of 3We have
[0] = {x ∈ Z |x = 3 · k, k ∈ Z} = {0, 3,−3, 6,−6, 9,−9, . . .}

[1] = {x ∈ Z |x = 3 · k + 1, k ∈ Z} = {1, 4,−2, 7,−5, 10,−8, . . .}

[2] = {x ∈ Z |x = 3 · k + 2, k ∈ Z} = {2, 5,−1, 8,−4, 11,−7, . . .}By lemma#1

[0] = [3] = [−3] = [6] = [−6] = [9] = [−9] = . . .

[1] = [4] = [−2] = [7] = [−5] = [10] = [−8] = . . .

[2] = [5] = [−1] = [8] = [−4] = [11] = [−7] = . . .Hene the distint equivalene lasses are

{x ∈ Z |x = 3 · k, k ∈ Z}, {x ∈ Z |x = 3 · k + 1, k ∈ Z},

{x ∈ Z |x = 3 · k + 2, k ∈ Z}
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Example: Equivalene Classes of Congruene Modulo 3 3 of 3The distint equivalene lasses are

{x ∈ Z |x = 3 · k, k ∈ Z}, {x ∈ Z |x = 3 · k + 1, k ∈ Z},

{x ∈ Z |x = 3 · k + 2, k ∈ Z}The lass of [0] an also be alled the lass of [3] or the lass of [96],but the lass is the set {x ∈ Z |x = 3 · k, k ∈ Z}.

De�nition: Suppose R is an equivalene relation on a set A and

S is an equivalene lass of R. A representative of the lass S isany element a ∈ A suh that [a] = S.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 41/43

Notes

• It is possible to de�ne multipliation and addition of the equiva-lene lasses orresponding to the rational numbers (previous ex-ample).

• The rational numbers an be de�ned as equivalene lasses ofordered integers.

• It an be shown that all integers � negative, zero, and positive �an be de�ned as equivalene lasses of ordered pairs of positiveintegers.

• Frege and Peano showed (late 19th entury) that the positive in-tegers an be de�ned entirely in terms of sets.

• Dedekind (1848�1916) showed that all real numbers an be de�nedas sets of rational numbers.
• All together, these results show that the real numbers an bede�ned using logi and set theory alone!
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Homework #12 � Not Due Final Version(Epp-v3.0)10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25 , 10.2.3, 10.2.4,10.2.12, 10.2.14, 10.2.37 , 10.3.3, 10.3.17, 10.3.19, 10.3.40

(Epp-v2.0)10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25 , 10.2.3, 10.2.4,10.2.12, 10.2.14, 10.2.37 , 10.3.2, 10.3.14, 10.3.16, 10.3.35
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