Math 245: Discrete Mathematics

Relations on Sets Reflexivity, Symmetry and Transitivity; Equivalence Relations Lecture #14

> Peter Blomgren Department of Mathematics and Statistics San Diego State University San Diego, CA 92182-7720 blomgren@terminus.SDSU.EDU http://terminus.SDSU.EDU

\$Id: lecture.tex,v 1.5 2006/12/05 00:52:29 blomgren Exp \$

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 1/43

Relations: Introductory Example

1 of 2

Let $A = \{0, 1, 2\}$ and $B = \{1, 2, 3\}$.

The relation: Let an element $x \in A$ be related to an element $y \in B$ if and only if x < y.

Notation: $x R y \equiv "x$ is related to y", $x \not R y \equiv "x$ is not related to y"

We have the following relations:

0R1	since	0 < 1	$1 \not \mathbb{R} 1$	since	$1 \not< 1$
0R2	since	0 < 2	2 R 1	since	$2 \not < 1$
0 R 3	since	0 < 3	2 ₽ 2	since	$2 \not< 2$
1R2	since	1 < 2			
1R3	since	1 < 3			
2R3	since	2 < 3			

Relations: Introduction

Mathematical Relations — Examples:

- * Two logical expressions can be said to be related if they have the same truth tables.
- * A set A can be said to be related to a set B if $A \subseteq B$.
- * A real number x can be said to related to y if x < y.
- * An integer n can be said to related to m if n|m.
- * An integer n can be said to related to m if n and m are both odd.
- * Etc, etc, etc, ...

We are going to study *mathematical relations on sets*: their properties and representations.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 2/43

Relations: Introductory Example

2 of 2

Relations and Cartesian Products:

The Cartesian product $(A \times B)$ of two sets A and B is the set of all ordered pairs whose first element is in A and second elements in B:

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

In our example

 $A\times B=\{(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}$

The elements of some ordered pairs

$$\{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}\$$

are considered to be related (others are not).

Knowing which ordered pairs are in this set is equivalent to knowing which elements are related.

Relations: Formal Definition

Definition: Binary Relation —

Let A and B be sets. A (binary) relation R from A to B is a subset of $A \times B$. Given an ordered pair $(x, y) \in A \times B$, x is related to y by R, written x R y, if and only if $(x, y) \in R$.

Symbolic Notation

 $\begin{array}{lll} x \, R \, y & \Leftrightarrow & (x,y) \in R \\ \\ x \ \ R \ y & \Leftrightarrow & (x,y) \not\in R \end{array}$

The term *binary* is used in the definition to indicate that the relation is a subset of the Cartesian product of *two* sets.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 5/43

Example: Congruence Modulo 2 Relation 1 of 2

We generalize the previous example to the set of all integers \mathbb{Z} , *i.e.*

for all $(m,n) \in \mathbb{Z} \times \mathbb{Z}, \ m R n \ \Leftrightarrow \ m-n$ is even

Questions:

- (a) is 4R0? 2R6? 3R(-3)? 5R2?
- (b) List 5 integers that are related by R to 1.
- (c) Prove that if n is odd, then n R 1.

Answers:

(a-i) Yes, 4R0, since 4-0=4 is even.

- (a-ii) Yes, 2R6, since 2-6 = -4 is even.
- (a-iii) Yes, 3R(-3), since 3 (-3) = 6 is even.
- (a-iv) No, 5 \mathbb{R} 2, since 5-2=3 is odd.

Illustration: Relations A B A B A B A B AxB R AxB

Figure: Given 2 sets A and B, we form the Cartesian product $A \times B$; $(x, y) \in A \times B \equiv (x \in A)$ and $(y \in B)$.

Figure: The Relation R is a subset of $A \times B$. If and only if $(x, y) \in R$ we say that x is related to y by R, symbolically x R y.

The subset $R \subseteq A \times B$ can be specified

- 1. Directly / Explicitly, by indicating what pairs $(x, y) \in R$. This is only feasible when A and B are finite (and small) sets.
- 2. By specifying a rule for what elements are in R, e.g. by saying that $(x,y) \in R$ if and only if $x = y^2$.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 6/43

Example: Congruence Modulo 2 Relation 2 of 2

(b) There are infinitely many examples, e.g.

1	since $1-1=0$	is even
11	since $11-1=10$	is even
111	since $111 - 1 = 110$	is even
1111	since $1111 - 1 = 1110$	is even
11111	since $11111 - 1 = 11110$	is even

(c) **Proof:** Suppose n is any odd integer. Then n = 2k + 1 for some integer k. By substitution

$$n-1 = 2k + 1 - 1 = 2k$$
 is even

Hence

 $n R 1, \forall n \text{ odd.} \square$

Representation: Arrow Diagrams for Relations

Let $A=\{1,2,3\}$ and $B=\{1,3,5\}$

Figure: Arrow diagram representation of the relation

Figure: Arrow diagram representation of the relation

for all
$$(x, y) \in A \times B$$
,
 $(x, y) \in R \Leftrightarrow x < y$

$$= \{(2,1), (2,5)\}$$

Notes: *(i)* It is possible to have an element that does not have an arrow coming out of it; *(ii)* It is possible to have several arrows coming out of the same element of A pointing in different directions; *(iii)* It is possible to have an element in B that does not have an arrow pointing to it.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 9/43

R

Example: Directed Graph of a Relation

Let $A = \{3, 4, 5, 6, 7, 8\}$ and define a binary relation R on A:

$$R = \{(x, y) \in A \times A : 2 | (x - y) \}$$

Figure: We notice that the graph must be symmetric, since if 2|n, then 2|(-n). Since 2|0, there is a loop at every node in the graph.

Relation from A to A Directed Graph of a Relation

Definition: A binary relation on a set \mathbf{A} is a binary relation from A to A.

In this case, we can modify the arrow diagram to be a **directed graph** — instead of representing A twice, we only represent it once and draw arrows from each point of A to each related point, *e.g.*

there is an arrow from x to y \Leftrightarrow x R y \Leftrightarrow $(x, y) \in R$ Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 10/43

Properties of a Binary Relation on One Set A

Recall:

Definition: A binary relation on a set A is a binary relation from A to A.

In the context of a binary relation on a set, we can name 3 properties:

Definition: Let R be a binary relation on a set A

- 1. *R* is **Reflexive** if and only if $\forall x \in A$, x R x.
- 2. *R* is **Symmetric** if and only if $\forall x, y \in A$, if x R y then y R x.
- 3. R is **Transitive** if and only if $\forall x, y, z \in A$, if x R y and y R z then x R z.

Reflexivity

Formal: R is Reflexive if and only if $\forall x \in A, x$.
--

- **Functional:** R is Reflexive \Leftrightarrow for all $x \in A$, $(x, x) \in R$.
- **Informal:** Each element is related to itself.
- **Graph:** Each point of the graph has an arrow looping around back to itself.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 13/43

Transitivity

- Formal: R is Transitive if and only if $\forall x, y, z \in A$, if x R yand y R z then x R z.
- **Functional:** R is **Transitive** \Leftrightarrow for all $x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.
- Informal: If one element is related to a second element, and that second element is related to a third element, then the first element is related to the third element.
- **Graph:** In all cases where there is an arrow going from one point to a second, and from the second point to a third, there is an arrow going from the first point to the third.

Symmetry

- Formal: R is Symmetric if and only if $\forall x, y \in A$, if x R y then y R x.
- Functional: R is Symmetric \Leftrightarrow for all $x, y \in A$, if $(x, y) \in R$ then $(y, x) \in R$.
- Informal: If one element is related to a second element, then the second element is related to the first.
- **Graph:** In all cases where there is an arrow going from one point to a second, there is an arrow going from the second point back to the first.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 14/43

Non-Reflexivity, Non-Symmetry, and Non-Transitivity

If R is a binary relation defined on a set A, then

- 1. R is not reflexive \Leftrightarrow there is an element $x \in A$ such that $x \not R x$, *i.e.* $(x, x) \notin R$.
- 2. R is not symmetric \Leftrightarrow there are elements $x, y \in A$ such that x R y but $y \not R x$, *i.e.* $(x, y) \in R$, but $(y, x) \notin R$.
- 3. *R* is not transitive \Leftrightarrow there are elements $x, y, z \in A$ such that x R y and y R z but x R z, *i.e.* $(x, y), (y, z) \in R$, but $(x, z) \notin R$.

To show that a binary relation does *not* have one of the properties, it is sufficient to find a counterexample.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 15/43

Example

1 of 5

Example

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T:

$$\begin{split} R &= \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\} \\ S &= \{(0,0), (0,2), (0,3), (2,3)\} \\ T &= \{(0,1), (2,3)\} \end{split}$$

Fill in the table:

	Reflexive	Symmetric	Transitive
R			
s			
т			

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 17/43

Example	The Relation S	3 of 5
We have $A = \{0, 1$	$,2,3\}$ and	
2	$S = \{(0,0), (0,2), (0,3), (2,3)\}$	
S is not reflexive since	there are missing loops at 1, 2, and 3.	
S is not symmetric, the	e arrows from 2-to-0, 3-to-0, and 3-to-2 are	e missing.
S is transitive since the	ere is always a "short-cut" arrow so tha	t if $(x,y) \in S$ and
$(y,z)\in S$ then (x,z)	$\in S.$	

We have $A = \{0, \dots, N\}$	$\{1,2,3\}$ and	
$R = \{(0, 0)\}$	(0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3)	$(3,0),(3,3)\}$
R is reflexive since the	there is a loop at each point in the directed g	raph.
R is symmetric since	e in for every arrow going from one point to	another, there is a
other arrow going bac	ck.	
other arrow going bac R is not transitive s	ck. since e.g. $1R0$ and $0R3$ but $1R3$ i.e. t	here is no "short-c
other arrow going bac R is not transitive s arrow connecting 1 ar Rela	ck. since e.g. $1R0$ and $0R3$ but $1R3$ i.e. to nd 3.	here is no "short-c
other arrow going bac R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0, 1\}$	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ i.e. t nd 3. ations on Sets: Reflexivity, Symmetry and Transitivity The Relation T 1, 2, 3 and	here is no "short-c y; Equivalence Relation 4 of 5
other arrow going bac R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0, 0\}$	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ <i>i.e.</i> to nd 3. Attions on Sets: Reflexivity, Symmetry and Transitivity The Relation T $T_{1}, 1, 2, 3$ and $T = \{(0, 1), (2, 3)\}$	here is no "short-o y; Equivalence Relation 4 of 5
other arrow going back R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0, 0\}$	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ <i>i.e.</i> to nd 3. attons on Sets: Reflexivity, Symmetry and Transitivity The Relation T 1, 1, 2, 3 and $T = \{(0, 1), (2, 3)\}$	here is no "short-o y; Equivalence Relatio 4 of 5
other arrow going back R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0, 0\}$	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ <i>i.e.</i> t nd 3. ations on Sets: Reflexivity, Symmetry and Transitivity The Relation T 1, 1, 2, 3 and $T = \{(0, 1), (2, 3)\}$ $0 \bullet \frown \bullet 1$	here is no "short-c y: Equivalence Relation 4 of 5
other arrow going back R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0, 0\}$	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ <i>i.e.</i> t nd 3. ations on Sets: Reflexivity, Symmetry and Transitivity The Relation T T, 1, 2, 3 and $T = \{(0, 1), (2, 3)\}$ $0 \bullet - \bullet 1$	here is no "short-c y: Equivalence Relation 4 of 5
other arrow going bac R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0, 0\}$	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ <i>i.e.</i> t nd 3. ations on Sets: Reflexivity, Symmetry and Transitivity The Relation T 1, 1, 2, 3 and $T = \{(0, 1), (2, 3)\}$ $0 \bullet - \bullet 1$	here is no "short-c y: Equivalence Relatio 4 of 5
other arrow going bac R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0,$	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ <i>i.e.</i> to nd 3. attons on Sets: Reflexivity, Symmetry and Transitivity The Relation T 1, 1, 2, 3 and $T = \{(0, 1), (2, 3)\}$ $0 \bullet 1$ $3 \bullet 4 \bullet 2$	here is no "short-c y; Equivalence Relation 4 of 5
other arrow going bac R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0, 0\}$ T is not reflexive sin	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ <i>i.e.</i> t nd 3. attons on Sets: Reflexivity, Symmetry and Transitivity The Relation T $T = \{(0, 1), (2, 3)\}$ $0 \bullet 1$ $3 \bullet 4 \bullet 2$ acce there are missing loops at 0, 1, 2, and 3.	here is no "short-o y; Equivalence Relatio 4 of 5
other arrow going bac R is not transitive s arrow connecting 1 ar Rela Example We have $A = \{0, 0\}$ T is not reflexive sin T is not symmetric , f	ck. since e.g. $1 R 0$ and $0 R 3$ but $1 R 3$ <i>i.e.</i> t nd 3. ations on Sets: Reflexivity, Symmetry and Transitivity The Relation T 1, 1, 2, 3 and $T = \{(0, 1), (2, 3)\}$ $0 \bullet - \bullet 1$ $3 \bullet - \bullet 2$ ance there are missing loops at 0, 1, 2, and 3. the arrows from 1-to-0, and 3-to-2 are missing	here is no "short-c y: Equivalence Relation 4 of 5

The Relation R

2 of 5

Example The Relations R, S and T

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T:

$$\begin{split} R &= \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\} \\ S &= \{(0,0), (0,2), (0,3), (2,3)\} \\ T &= \{(0,1), (2,3)\} \end{split}$$

Fill in the table:

	Reflexive	Symmetric	Transitive
R	Yes	Yes	No
s	No	No	Yes
т	No	No	Yes

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 21/43

5 of 5

Irreflexivity

- Formal: R is Irreflexive if and only if $\forall x \in A, \mathbf{x} \not \mathbb{R} \mathbf{x}$.
- **Functional:** *R* is Irreflexive \Leftrightarrow for all $x \in A$, $(\mathbf{x}, \mathbf{x}) \notin \mathbf{R}$.
- Informal: No element is related to itself.
- **Graph:** No point of the graph has an arrow looping around back to itself.

Irreflexivity, Anti-Symmetry, and Intransitivity

Definition: Let R be a binary relation on a set A

- 1. *R* is **Irreflexive** if and only if $\forall x \in A$, $x \not \mathbb{R} x$.
- 2. R is Anti-symmetric if and only if $\forall x, y \in A$, if x R y then $y \not \mathbb{R} x$.
- 3. R is **Intransitive** if and only if $\forall x, y, z \in A$, if x R y and y R z then $x \not R z$.
- R can be reflexive, non-reflexive, or irreflexive,
- R can be symmetric. non-symmetric, or anti-symmetric
- *R* can be transitive, non-transitive, or intransitive.

Think about these definitions!!!

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 22/43

Anti-Symmetry				
Formal:	R is Anti-Symmetric if and only if $\forall x, y \in A$, if $x R y$ then $\mathbf{y} \not \mathbf{R} \mathbf{x}$.			
Functional:	R is Anti-Symmetric \Leftrightarrow for all $x, y \in A$, if $(x, y) \in R$ then $(\mathbf{y}, \mathbf{x}) \notin \mathbf{R}$.			
Informal:	If one element is related to a second element, then the second element is NOT related to the first.			
Graph:	In all cases where there is an arrow going from one point to a second, there is no arrow going from the second point back to the first.			

Intransitivity

- Formal: R is Intransitive if and only if $\forall x, y, z \in A$, if x R yand y R z then **x R z**.
- **Functional:** R is Intransitive \Leftrightarrow for all $x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$ then $(\mathbf{x}, \mathbf{z}) \notin \mathbf{R}$.
- Informal: If one element is related to a second element, and that second element is related to a third element, then the first element is **not** related to the third element.
- **Graph:** In all cases where there is an arrow going from one point to a second, and from the second point to a third, there is **never** an arrow going from the first point to the third (no shortcut exist, anywhere.).

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 25/43

Example: Less Than (<) on \mathbb{R}

Let $A = \mathbb{R}$ (the set of real numbers), and define the relation R

$$x R y \Leftrightarrow x < y$$

Properties:

 $\begin{array}{ll} \textbf{R is irreflexive:} & \quad \text{If } x \, R \, x \text{ then } x < x \text{, but that is never true, hence } x \not R \, x \\ & \quad \forall x \in \mathbb{R}. \end{array}$

R is anti-symmetric: If x R y then x < y, which means $y \not\leq x$ *i.e.* $y \not R x$.

R is transitive: This is true since if x < y and y < z, then x < z.

Example: Equality (=) on \mathbb{R}

Let $A=\mathbb{R}$ (the set of real numbers), and define the relation R

$$x R y \quad \Leftrightarrow \quad x = y$$

Properties:

R is reflexive:	R is reflexive if and only if $\forall x \in \mathbb{R}$, $x R x.$ Here, this
	means $x = x$, <i>i.e.</i> $\forall x \in \mathbb{R} \ x = x$. This statement is
	certainly true; every real number equals itself.

R is symmetric: This is true since if x = y then y = x, hence $(x, y) \in R$ and $(y, x) \in R$.

R is transitive: This is true since if x = y and y = z, then x = z.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 26/43

Example: Congruence Modulo 3 on \mathbb{Z}

We define a relation R on $\mathbb Z$ as follows

$$\forall m, n \in \mathbb{Z}: \quad m R n \quad \Leftrightarrow \quad 3|(m-n)|$$

R is reflexive: Suppose *m* is an integer. Now, m - m = 0 and 3|0 since $0 = 3 \cdot 0$, so by definition of *R* we have m R m. \Box

- **R** is symmetric: Suppose $m, n \in \mathbb{Z}$ such that m R n. By definition of Rwe have $3|(m - n) \Leftrightarrow m - n = 3 \cdot k$, for some $k \in \mathbb{Z}$. Multiplying both sides by (-1) gives $n - m = 3 \cdot (-k)$, which shows 3|(n - m), hence n R m. \Box
- **R is transitive:** Suppose $m, n, p \in \mathbb{Z}$ such that m R n and n R p. We have 3|(m-n) and 3|(n-p), and we can write (m-n) = 3r and (n-p) = 3s for some $r, s \in \mathbb{Z}$. Adding the two gives (m-n) + (n-p) = (m-p) = 3(r+s) which shows that 3|(m-p). Hence m R p, and it follows that R is transitive. \Box

Equivalence Relations: Different, but the Same...

Idea: We are going to group elements that look different, but really are the same...

Example: Think about the rational numbers, there are several ways of writing the same fraction, *e.g.*

1		-1		2		4711
$\overline{2}$	=	-2	=	$\overline{4}$	=	9422

We can define a relation on $\mathbb{Q}\times\mathbb{Q},$ where \mathbb{Q} is the set of all rational numbers

 $R=\{(x,y)\in\mathbb{Q}\times\mathbb{Q}:x=y\}$

now $\left(\frac{1}{2}, \frac{2}{4}\right) \in R$, $\left(\frac{4711}{9422}, \frac{2}{4}\right) \in R$, $\left(\frac{1}{3}, \frac{2}{6}\right) \in R$, etc...

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 29/43

Example: Relation Induced by a Partition

Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A:

 $A_1 = \{0, 3, 4\}, \quad A_2 = \{1\}, \quad A_3 = \{2\}$

Now, two elements $x,y \in A$ are related if and only if they belong to the same subset of the partition...

A Relation Induced by a Partition

Recall:

Definition: A collection of non-empty sets $\{A_1, A_2, \ldots, A_n\}$ is a **partition** of a set A if and only if

 $1. \quad A = A_1 \cup A_2 \cup \ldots \cup A_n.$

2. A_1, A_2, \ldots, A_n are mutually disjoint.

Definition: Given a partition of a set A the binary relation induced by the partition, R, is defined on A as follows

 $\begin{aligned} \forall x,y \in A, \quad x \, R \, y \quad \Leftrightarrow \quad \text{there is a set} \, A_i \text{ of the partition such} \\ \text{that both } x \in A_i \text{ and } y \in A_i. \end{aligned}$

We need an example to make sense out of this definition...

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 30/43

Equivalence Relations

Theorem: Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.

Definition: Equivalence Relation —

Let A be a non-empty set and R a binary relation on A. R is an **equivalence relation** if and only if R is reflexive, symmetric, and transitive.

Example: By the theorem the relation induced by a partition is an equivalence relation.

Notation: Congruence Modulo n

Notation: Let $m, n, d \in \mathbb{Z}$ with $d > 0$. The notation						
		$m \equiv n$	\pmod{d})		
is read " m .	is read " m is congruent to n modulo d " and means that					
d (m-n)						
Symbolically,						
1	$m \equiv n$	\pmod{d}	\Leftrightarrow	d (m-n)		

Recall the Quotient-Remainder Theorem:

Theorem: Given any integer n and a positive integer d, there exist unique integers q (the quotient) and r (the remainder) such that

 $n = d \cdot q + r, \quad \text{and} \quad 0 \le r < d$

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 33/43

Equivalence Classes

Suppose we have a set A and an equivalence relation R on A. Given a particular element $x \in A$ it is natural to ask the question "what elements are related to x?"

All the elements that are related to x form a subset of A and this subset is called **the equivalence class of** x:

Definition: Suppose A is a set and R is an equivalence relation on A. For each element $x \in A$, the **equivalence class of** x, denoted $[\mathbf{x}]$ and called the **class of** x for short, is the set of all elements $y \in A$ such that y R x.

Symbolically,

$$[x] = \{ y \in A | y R x \}$$

Equivalence Relation: Congruence Modulo 3

Let R be the relation $R = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} : m = n \pmod{3}\}$. We show that this is an equivalence relation.

- **[Reflexivity]** Let $m \in Z$, then 3|(m m) since $0 = 3 \cdot 0$, and it follows that m R m.
- **[Symmetry]** Let $m, n \in \mathbb{Z}$, so that m R n. We have $3|(m n) \Leftrightarrow$ $(m - n) = 3 \cdot k$ for some $k \in \mathbb{Z} \Leftrightarrow (n - m) = 3 \cdot (-k)$ $\Leftrightarrow 3|(n - m) \Leftrightarrow n R m$.

[Transitivity] Let $m, n, p \in Z$, so that m R n and n R p. We have

 $3|(m-n) \Leftrightarrow (m-n) = 3 \cdot r, \ r \in \mathbb{Z}$ $3|(n-p) \Leftrightarrow (n-p) = 3 \cdot s, \ s \in \mathbb{Z}$ $add \quad (m-p) = 3 \cdot (r+s)$

Hence 3|(m-p) and we have m R p. \Box

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 34/43

Example: Equivalence Classes 1 of 2

Let $A=\{0,1,2,3,4\}$ and define a binary relation R on A

 $R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}$

Figure: The array diagram (directed graph) corresponding to the relation.

By quick inspection we see that R is reflexive, symmetric, and transitive, hence an equivalence relation.

2 of 2

The equivalence classes are:

 $\begin{array}{rcl} [0] &=& \{x \in A \,|\, x \, R \, 0\} &=& \{0,4\} \\ [1] &=& \{x \in A \,|\, x \, R \, 1\} &=& \{1,3\} \\ [2] &=& \{x \in A \,|\, x \, R \, 2\} &=& \{2\} \\ [3] &=& \{x \in A \,|\, x \, R \, 3\} &=& \{1,3\} \\ [4] &=& \{x \in A \,|\, x \, R \, 4\} &=& \{0,4\} \end{array}$

Note that [0] = [4] and [1] = [3], hence the *distinct* equivalence classes are: $\{0, 4\}, \{1, 3\}, \{2\}$.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 37/43

Example: Equivalence Classes of Congruence Modulo 3 1 of 3

Let R be the relation of congruence modulo 3 on the set \mathbb{Z} , *i.e.* $\forall m, n \in \mathbb{Z}$

 $m R n \Leftrightarrow 3 | (m - n) \Leftrightarrow m \equiv n \pmod{3}$

We describe the equivalence classes: For each integer a, the class of a is

$$[a] = \{x \in \mathbb{Z} \mid x R a\}$$

= $\{x \in \mathbb{Z} \mid 3 \mid (x - a)\}$
= $\{x \in \mathbb{Z} \mid x - a = 3 \cdot k, k \in \mathbb{Z}\}$
= $\{x \in \mathbb{Z} \mid x = 3 \cdot k + a, k \in \mathbb{Z}\}$

In particular

$$[0] = \{x \in \mathbb{Z} \mid x = 3 \cdot k, \ k \in \mathbb{Z}\} = \{0, 3, -3, 6, -6, 9, -9, \ldots\}$$
$$[1] = \{x \in \mathbb{Z} \mid x = 3 \cdot k + 1, \ k \in \mathbb{Z}\} = \{1, 4, -2, 7, -5, 10, -8, \ldots\}$$
$$[2] = \{x \in \mathbb{Z} \mid x = 3 \cdot k + 2, \ k \in \mathbb{Z}\} = \{2, 5, -1, 8, -4, 11, -7, \ldots\}$$

Equivalence Classes: A Theorem

The following theorem tells us that an equivalence relation induces a partition:

Theorem: If A is a non-empty set and R is an equivalence relation on A, then the distinct equivalence classes of R form a partition of A; *i.e.* the union of the equivalence classes is all of A and the intersection of any two distinct classes is empty.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 38/43

Example: Equivalence Classes of Congruence Modulo 3 2 of 3

We have

$$\begin{aligned} &[0] = \{x \in \mathbb{Z} \mid x = 3 \cdot k, \ k \in \mathbb{Z}\} \\ &= \{0, 3, -3, 6, -6, 9, -9, \ldots\} \\ &[1] = \{x \in \mathbb{Z} \mid x = 3 \cdot k + 1, \ k \in \mathbb{Z}\} \\ &= \{1, 4, -2, 7, -5, 10, -8, \ldots\} \\ &[2] = \{x \in \mathbb{Z} \mid x = 3 \cdot k + 2, \ k \in \mathbb{Z}\} \\ &= \{2, 5, -1, 8, -4, 11, -7, \ldots\} \end{aligned}$$

By lemma#1

$$[0] = [3] = [-3] = [6] = [-6] = [9] = [-9] = \dots$$

$$[1] = [4] = [-2] = [7] = [-5] = [10] = [-8] = \dots$$

$$[2] = [5] = [-1] = [8] = [-4] = [11] = [-7] = \dots$$

Hence the distinct equivalence classes are

$$\begin{aligned} x \in \mathbb{Z} \, | \, x &= 3 \cdot k, \ k \in \mathbb{Z} \}, \quad \{ x \in \mathbb{Z} \, | \, x &= 3 \cdot k + 1, \ k \in \mathbb{Z} \}, \\ \{ x \in \mathbb{Z} \, | \, x &= 3 \cdot k + 2, \ k \in \mathbb{Z} \} \end{aligned}$$

Example: Equivalence Classes of Congruence Modulo 3 3 of 3

The distinct equivalence classes are

$$\{x \in \mathbb{Z} \mid x = 3 \cdot k, \ k \in \mathbb{Z}\}, \quad \{x \in \mathbb{Z} \mid x = 3 \cdot k + 1, \ k \in \mathbb{Z}\},\$$

 $\{x \in \mathbb{Z} \mid x = 3 \cdot k + 2, \ k \in \mathbb{Z}\}$

The class of [0] can also be called the class of [3] or the class of [96], but the class *is* the set $\{x \in \mathbb{Z} \mid x = 3 \cdot k, k \in \mathbb{Z}\}$.

Definition: Suppose R is an equivalence relation on a set A and S is an equivalence class of R. A **representative** of the class S is any element $a \in A$ such that [a] = S.

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 41/43

Final Version Homework #12 — Not Due Final Version (Epp-v3.0) 10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25, 10.2.3, 10.2.4, 10.2.12, 10.2.14, 10.2.37, 10.3.3, 10.3.17, 10.3.19, 10.3.40 (Epp-v2.0) 10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25, 10.2.3, 10.2.4, 10.2.12, 10.2.14, 10.2.37, 10.3.2, 10.3.14, 10.3.16, 10.3.35

Notes

- It is possible to define multiplication and addition of the equivalence classes corresponding to the rational numbers (previous example).
- The rational numbers can be defined as equivalence classes of ordered integers.
- It can be shown that all integers negative, zero, and positive can be defined as equivalence classes of ordered pairs of positive integers.
- Frege and Peano showed (late 19th century) that the positive integers can be defined entirely in terms of sets.
- Dedekind (1848–1916) showed that all real numbers can be defined as sets of rational numbers.
- All together, these results show that the real numbers can be defined using logic and set theory alone!

Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations - p. 42/43