Relations on Sets

Reflexivity, Symmetry and Transitivity; Equivalence Relations

Lecture #14

Peter Blomgren

Department of Mathematics and Statistics
San Diego State University

San Diego, CA 92182-7720

blomgren@terminus.SDSU.EDU

http://terminus.SDSU.EDU

\$Id: lecture.tex,v 1.5 2006/12/05 00:52:29 blomgren Exp \$

Relations: Introduction

Mathematical Relations — Examples:

- * Two logical expressions can be said to be related if they have the same truth tables.
- * A set A can be said to be related to a set B if $A \subseteq B$.
- * A real number x can be said to related to y if x < y.
- * An integer n can be said to related to m if n|m.
- * An integer n can be said to related to m if n and m are both odd.
- * Etc, etc, etc, ...

We are going to study *mathematical relations on sets*: their properties and representations.

Let $A = \{0, 1, 2\}$ and $B = \{1, 2, 3\}$.

The relation: Let an element $x \in A$ be related to an element $y \in B$ if and only if x < y.

Notation: $x R y \equiv "x$ is related to y", $x \not R y \equiv "x$ is not related to y"

We have the following relations:

$$0R2$$
 since $0<2$

$$0R3$$
 since $0<3$

$$1R2$$
 since $1<2$

$$1R3$$
 since $1<3$

$$2R3$$
 since $2<3$

$$1 R 1$$
 since $1 \nleq 1$

$$2 R 1$$
 since $2 \not< 1$

$$2 R 2$$
 since $2 \not< 2$

Relations and Cartesian Products:

The Cartesian product $(A \times B)$ of two sets A and B is the set of all ordered pairs whose first element is in A and second elements in B:

$$A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

In our example

$$A \times B = \{(0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

The elements of some ordered pairs

$$\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$$

are considered to be related (others are not).

Knowing which ordered pairs are in this set is equivalent to knowing which elements are related.

Relations: Formal Definition

Definition: Binary Relation —

Let A and B be sets. A (binary) relation R from A to B is a subset of $A \times B$. Given an ordered pair $(x,y) \in A \times B$, x is related to y by R, written x R y, if and only if $(x,y) \in R$.

Symbolic Notation

$$x R y \Leftrightarrow (x,y) \in R$$
 $x R y \Leftrightarrow (x,y) \notin R$

The term *binary* is used in the definition to indicate that the relation is a subset of the Cartesian product of *two* sets.

Illustration: Relations

A

 \mathbf{B}

 \mathbf{A}

 \mathbf{B}

AxB

Figure: Given 2 sets A and B, we form the Cartesian product $A\times B$; $(x,y)\in A\times B\equiv (x\in A)$ and $(y\in B)$.

R AxB

Figure: The Relation R is a subset of $A \times B$. If and only if $(x,y) \in R$ we say that x is related to y by R, symbolically x R y.

The subset $R \subseteq A \times B$ can be specified

- 1. Directly / Explicitly, by indicating what pairs $(x,y) \in R$. This is only feasible when A and B are finite (and small) sets.
- 2. By specifying a rule for what elements are in R, e.g. by saying that $(x,y) \in R$ if and only if $x=y^2$.

We generalize the previous example to the set of all integers \mathbb{Z} , *i.e.*

for all
$$(m,n) \in \mathbb{Z} \times \mathbb{Z}, \ m R n \Leftrightarrow m-n$$
 is even

Questions:

- (a) is 4R0? 2R6? 3R(-3)? 5R2?
- (b) List 5 integers that are related by R to 1.
- (c) Prove that if n is odd, then nR1.

Answers:

- (a-i) Yes, 4R0, since 4 0 = 4 is even.
- (a-ii) Yes, 2R6, since 2-6 = -4 is even.
- (a-iii) Yes, 3R(-3), since 3 (-3) = 6 is even.
- (a-iv) No, 5 R 2, since 5 2 = 3 is odd.

(b) There are infinitely many examples, e.g.

1 since
$$1 - 1 = 0$$
 is even

11 since
$$11 - 1 = 10$$
 is even

$$111$$
 since $111 - 1 = 110$ is even

$$1111$$
 since $1111 - 1 = 1110$ is even

$$111111$$
 since $111111 - 1 = 111110$ is even

(c) **Proof:** Suppose n is any odd integer. Then n=2k+1 for some integer k. By substitution

$$n-1 = 2k+1-1 = 2k$$
 is even

Hence

$$nR1$$
, $\forall n$ odd. \square

Representation: Arrow Diagrams for Relations

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 3, 5\}$

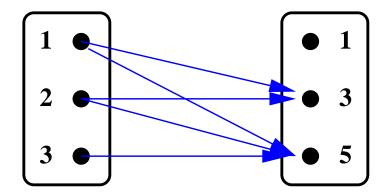


Figure: Arrow diagram representation of the relation

for all
$$(x, y) \in A \times B$$
, $(x, y) \in R \Leftrightarrow x < y$

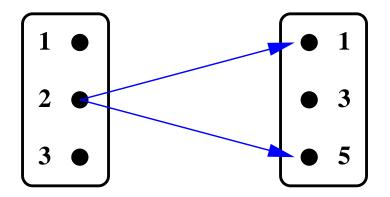


Figure: Arrow diagram representation of the relation

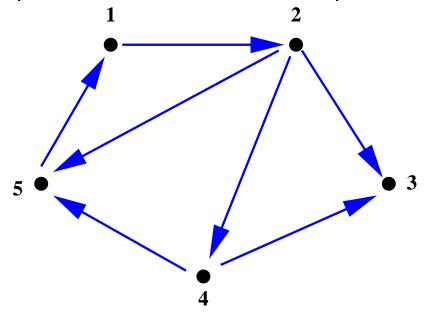
$$R = \{(2,1), (2,5)\}$$

Notes: (i) It is possible to have an element that does not have an arrow coming out of it; (ii) It is possible to have several arrows coming out of the same element of A pointing in different directions; (iii) It is possible to have an element in B that does not have an arrow pointing to it.

Relation from A to A Directed Graph of a Relation

Definition: A binary relation on a set A is a binary relation from A to A.

In this case, we can modify the arrow diagram to be a **directed graph** — instead of representing A twice, we only represent it once and draw arrows from each point of A to each related point, e.g.



there is an arrow from x to y $\,\Leftrightarrow\, \mathbf{x}\,\mathbf{R}\,\mathbf{y} \,\Leftrightarrow\, (\mathbf{x},\mathbf{y})\in\mathbf{R}$

Example: Directed Graph of a Relation

Let $A = \{3, 4, 5, 6, 7, 8\}$ and define a binary relation R on A:

$$R = \{(x, y) \in A \times A : \ 2|(x - y)\}$$

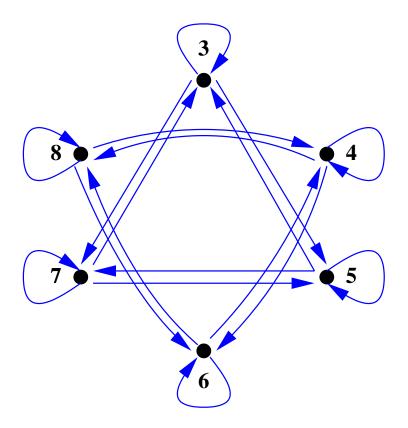


Figure: We notice that the graph must be symmetric, since if 2|n, then 2|(-n). Since 2|0, there is a loop at every node in the graph.

Properties of a Binary Relation on One Set A

Recall:

Definition: A binary relation on a set A is a binary relation from A to A.

In the context of a binary relation on a set, we can name 3 properties:

Definition: Let R be a binary relation on a set A

- 1. R is **Reflexive** if and only if $\forall x \in A$, x R x.
- 2. R is **Symmetric** if and only if $\forall x, y \in A$, if x R y then y R x.
- 3. R is **Transitive** if and only if $\forall x, y, z \in A$, if x R y and y R z then x R z.

Reflexivity

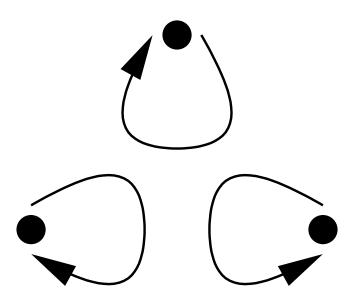
Formal: R is Reflexive if and only if $\forall x \in A$, x R x.

Functional: R is Reflexive \Leftrightarrow for all $x \in A$, $(x, x) \in R$.

Informal: Each element is related to itself.

Graph: Each point of the graph has an arrow looping around

back to itself.



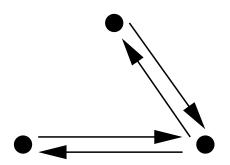
Symmetry

Formal: R is Symmetric if and only if $\forall x, y \in A$, if x R y then y R x.

Functional: R is Symmetric \Leftrightarrow for all $x, y \in A$, if $(x, y) \in R$ then $(y, x) \in R$.

Informal: If one element is related to a second element, then the second element is related to the first.

Graph: In all cases where there is an arrow going from one point to a second, there is an arrow going from the second point back to the first.



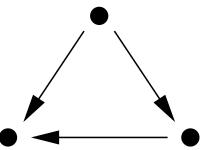
Transitivity

Formal: R is Transitive if and only if $\forall x, y, z \in A$, if x R y and y R z then x R z.

Functional: R is Transitive \Leftrightarrow for all $x,y,z\in A$, if $(x,y)\in R$ and $(y,z)\in R$ then $(x,z)\in R$.

Informal: If one element is related to a second element, and that second element is related to a third element, then the first element is related to the third element.

Graph: In all cases where there is an arrow going from one point to a second, and from the second point to a third, there is an arrow going from the first point to the third.



Non-Reflexivity, Non-Symmetry, and Non-Transitivity

If R is a binary relation defined on a set A, then

- 1. R is not reflexive \Leftrightarrow there is an element $x \in A$ such that $x \not R x$, i.e. $(x,x) \not \in R$.
- 2. R is not symmetric \Leftrightarrow there are elements $x, y \in A$ such that x R y but $y \not R x$, i.e. $(x, y) \in R$, but $(y, x) \not \in R$.
- 3. R is not transitive \Leftrightarrow there are elements $x, y, z \in A$ such that x R y and y R z but x R z, i.e. $(x, y), (y, z) \in R$, but $(x, z) \notin R$.

To show that a binary relation does *not* have one of the properties, it is sufficient to find a counterexample.

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T:

$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$$

$$S = \{(0,0), (0,2), (0,3), (2,3)\}$$

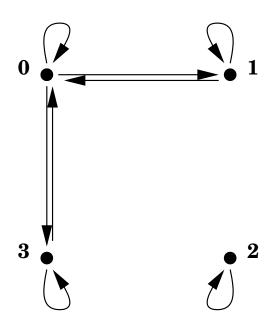
$$T = \{(0,1), (2,3)\}$$

Fill in the table:

	Reflexive	Symmetric	Transitive
R			
s			
Т			

We have $A=\{0,1,2,3\}$ and

$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$$



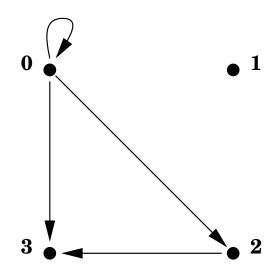
R is reflexive since there is a loop at each point in the directed graph.

R is symmetric since in for every arrow going from one point to another, there is another arrow going back.

R is not transitive since *e.g.* 1R0 and 0R3 but 1R3 *i.e.* there is no "short-cut" arrow connecting 1 and 3.

We have $A = \{0, 1, 2, 3\}$ and

$$S = \{(0,0), (0,2), (0,3), (2,3)\}$$



S is not reflexive since there are missing loops at 1, 2, and 3.

S is not symmetric, the arrows from 2-to-0, 3-to-0, and 3-to-2 are missing.

S is transitive since there is always a "short-cut" arrow so that if $(x,y) \in S$ and $(y,z) \in S$ then $(x,z) \in S$.

We have $A=\{0,1,2,3\}$ and

$$T = \{(0,1), (2,3)\}$$

T is not reflexive since there are missing loops at 0, 1, 2, and 3.

T is not symmetric, the arrows from 1-to-0, and 3-to-2 are missing.

T is transitive since it is *not* not transitive.

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T:

$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$$

$$S = \{(0,0), (0,2), (0,3), (2,3)\}$$

$$T = \{(0,1), (2,3)\}$$

Fill in the table:

	Reflexive	Symmetric	Transitive
R	Yes	Yes	No
s	No	No	Yes
т	No	No	Yes

Irreflexivity, Anti-Symmetry, and Intransitivity

Definition: Let R be a binary relation on a set A

- 1. R is Irreflexive if and only if $\forall x \in A$, $x \not R x$.
- 2. R is **Anti-symmetric** if and only if $\forall x, y \in A$, if x R y then $y \not R x$.
- 3. R is **Intransitive** if and only if $\forall x, y, z \in A$, if x R y and y R z then $x \not R z$.
- R can be reflexive, non-reflexive, or irreflexive,
- ullet R can be symmetric. non-symmetric, or anti-symmetric
- ullet R can be transitive, non-transitive, or intransitive.

Think about these definitions!!!

Irreflexivity

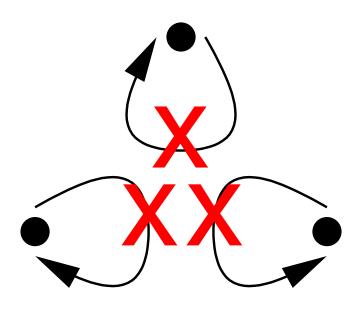
Formal: R is Irreflexive if and only if $\forall x \in A$, $\mathbf{x} \not \mathbf{R} \mathbf{x}$.

Functional: R is Irreflexive \Leftrightarrow for all $x \in A$, $(\mathbf{x}, \mathbf{x}) \notin \mathbf{R}$.

Informal: No element is related to itself.

Graph: No point of the graph has an arrow looping around

back to itself.



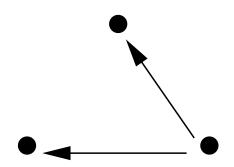
Anti-Symmetry

Formal: R is Anti-Symmetric if and only if $\forall x, y \in A$, if x R y then $\mathbf{y} \not \mathbf{R} \mathbf{x}$.

Functional: R is Anti-Symmetric \Leftrightarrow for all $x, y \in A$, if $(x, y) \in R$ then $(\mathbf{y}, \mathbf{x}) \notin \mathbf{R}$.

Informal: If one element is related to a second element, then the second element is **NOT** related to the first.

Graph: In all cases where there is an arrow going from one point to a second, there is **no** arrow going from the second point back to the first.



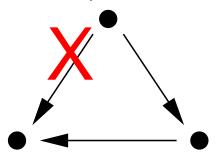
Intransitivity

Formal: R is Intransitive if and only if $\forall x, y, z \in A$, if x R y and y R z then $\mathbf{x} R \mathbf{z}$.

Functional: R is Intransitive \Leftrightarrow for all $x,y,z\in A$, if $(x,y)\in R$ and $(y,z)\in R$ then $(\mathbf{x},\mathbf{z})\not\in\mathbf{R}$.

Informal: If one element is related to a second element, and that second element is related to a third element, then the first element is **not** related to the third element.

Graph: In all cases where there is an arrow going from one point to a second, and from the second point to a third, there is **never** an arrow going from the first point to the third (no shortcut exist, anywhere.).



Example: Equality (=) on $\mathbb R$

Let $A = \mathbb{R}$ (the set of real numbers), and define the relation R

$$x R y \Leftrightarrow x = y$$

Properties:

R is reflexive: R is reflexive if and only if $\forall x \in \mathbb{R}$, x R x. Here, this

means x=x, i.e. $\forall x\in\mathbb{R}\ x=x$. This statement is

certainly true; every real number equals itself.

R is symmetric: This is true since if x = y then y = x, hence $(x, y) \in R$

and $(y, x) \in R$.

R is transitive: This is true since if x = y and y = z, then x = z.

Example: Less Than (<) on $\mathbb R$

Let $A = \mathbb{R}$ (the set of real numbers), and define the relation R

$$x R y \Leftrightarrow x < y$$

Properties:

R is irreflexive: If x R x then x < x, but that is never true, hence $x \not R x$

 $\forall x \in \mathbb{R}.$

R is anti-symmetric: If x R y then x < y, which means $y \not < x$ i.e. $y \not R x$.

R is transitive: This is true since if x < y and y < z, then x < z.

Example: Congruence Modulo 3 on $\ensuremath{\mathbb{Z}}$

We define a relation R on \mathbb{Z} as follows

$$\forall m, n \in \mathbb{Z} : mRn \Leftrightarrow 3|(m-n)$$

R is reflexive: Suppose m is an integer. Now, m-m=0 and 3|0 since $0=3\cdot 0$, so by definition of R we have $m\,R\,m$. \square

R is symmetric: Suppose $m,n\in\mathbb{Z}$ such that $m\,R\,n$. By definition of R we have $3|(m-n)\Leftrightarrow m-n=3\cdot k$, for some $k\in\mathbb{Z}$. Multiplying both sides by (-1) gives $n-m=3\cdot (-k)$, which shows 3|(n-m), hence $n\,R\,m$. \square

R is transitive: Suppose $m,n,p\in\mathbb{Z}$ such that $m\,R\,n$ and $n\,R\,p$. We have 3|(m-n) and 3|(n-p), and we can write (m-n)=3r and (n-p)=3s for some $r,s\in\mathbb{Z}$. Adding the two gives (m-n)+(n-p)=(m-p)=3(r+s) which shows that 3|(m-p). Hence $m\,R\,p$, and it follows that R is transitive. \square

Equivalence Relations: Different, but the Same...

Idea: We are going to group elements that look different, but really are the same...

Example: Think about the rational numbers, there are several ways of writing the same fraction, *e.g.*

$$\frac{1}{2} = \frac{-1}{-2} = \frac{2}{4} = \frac{4711}{9422}$$

We can define a relation on $\mathbb{Q} \times \mathbb{Q}$, where \mathbb{Q} is the set of all rational numbers

$$R = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : x = y\}$$

now
$$\left(\frac{1}{2}, \frac{2}{4}\right) \in R$$
, $\left(\frac{4711}{9422}, \frac{2}{4}\right) \in R$, $\left(\frac{1}{3}, \frac{2}{6}\right) \in R$, etc...

A Relation Induced by a Partition

Recall:

Definition: A collection of non-empty sets $\{A_1, A_2, \dots, A_n\}$ is a **partition** of a set A if and only if

- **1.** $A = A_1 \cup A_2 \cup ... \cup A_n$.
- 2. A_1, A_2, \ldots, A_n are mutually disjoint.

Definition: Given a partition of a set A the **binary relation** induced by the partition, R, is defined on A as follows

 $\forall x,y \in A, \quad x\,R\,y \quad \Leftrightarrow \quad \text{there is a set } A_i \text{ of the partition such}$ that both $x \in A_i$ and $y \in A_i$.

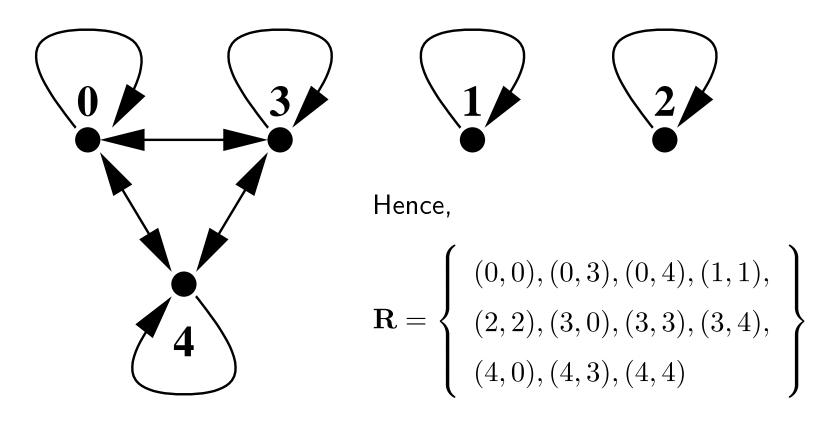
We need an example to make sense out of this definition...

Example: Relation Induced by a Partition

Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A:

$$A_1 = \{0, 3, 4\}, \quad A_2 = \{1\}, \quad A_3 = \{2\}$$

Now, two elements $x, y \in A$ are related if and only if they belong to the same subset of the partition...



Relations on Sets: Reflexivity, Symmetry and Transitivity; Equivalence Relations – p. 31/43

Equivalence Relations

Theorem: Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.

Definition: Equivalence Relation —

Let A be a non-empty set and R a binary relation on A. R is an **equivalence relation** if and only if R is reflexive, symmetric, and transitive.

Example: By the theorem the relation induced by a partition is an equivalence relation.

Notation: Congruence Modulo n

Notation: Let $m, n, d \in \mathbb{Z}$ with d > 0. The notation

$$m \equiv n \pmod{d}$$

is read "m is congruent to n modulo d" and means that

$$d|(m-n)$$

Symbolically,

$$m \equiv n \pmod{d} \Leftrightarrow d|(m-n)$$

Recall the **Quotient-Remainder Theorem:**

Theorem: Given any integer n and a positive integer d, there exist unique integers q (the quotient) and r (the remainder) such that

$$n = d \cdot q + r$$
, and $0 \le r < d$

Equivalence Relation: Congruence Modulo 3

Let R be the relation $R = \{(m, n) \in \mathbb{Z} \times \mathbb{Z} : m = n \pmod{3}\}$. We show that this is an equivalence relation.

[Reflexivity] Let $m \in \mathbb{Z}$, then 3|(m-m) since $0=3\cdot 0$, and it follows that $m\,R\,m$.

[Symmetry] Let $m,n\in Z$, so that $m\,R\,n$. We have $3|(m-n)\Leftrightarrow (m-n)=3\cdot k$ for some $k\in\mathbb{Z}\Leftrightarrow (n-m)=3\cdot (-k)\Leftrightarrow 3|(n-m)\Leftrightarrow n\,R\,m$.

[Transitivity] Let $m, n, p \in \mathbb{Z}$, so that m R n and n R p. We have

$$3|(m-n)$$
 \Leftrightarrow $(m-n)=3\cdot r,\ r\in\mathbb{Z}$ $3|(n-p)$ \Leftrightarrow $(n-p)=3\cdot s,\ s\in\mathbb{Z}$ add $(m-p)=3\cdot (r+s)$

Hence 3|(m-p) and we have m R p. \square

Equivalence Classes

Suppose we have a set A and an equivalence relation R on A. Given a particular element $x \in A$ it is natural to ask the question "what elements are related to x?"

All the elements that are related to x form a subset of A and this subset is called **the equivalence class of** x:

Definition: Suppose A is a set and R is an equivalence relation on A. For each element $x \in A$, the **equivalence class of** x, denoted $[\mathbf{x}]$ and called the **class of** x for short, is the set of all elements $y \in A$ such that y R x.

Symbolically,

$$[x] = \{ y \in A | \ y R x \}$$

Let $A = \{0, 1, 2, 3, 4\}$ and define a binary relation R on A

$$R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}$$

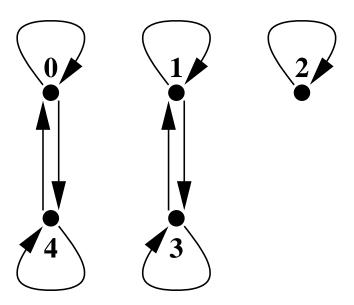
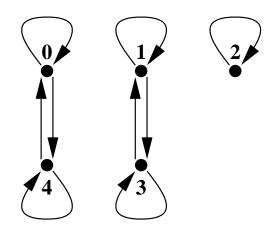


Figure: The array diagram (directed graph) corresponding to the relation.

By quick inspection we see that R is reflexive, symmetric, and transitive, hence an equivalence relation.



The equivalence classes are:

$$[0] = \{x \in A \mid x R 0\} = \{0, 4\}$$

$$[1] = \{x \in A \mid x R 1\} = \{1, 3\}$$

$$[2] = \{x \in A \mid x R 2\} = \{2\}$$

$$[3] = \{x \in A \mid x R 3\} = \{1, 3\}$$

$$[4] = \{x \in A \mid x R 4\} = \{0, 4\}$$

Note that [0] = [4] and [1] = [3], hence the **distinct** equivalence classes are: $\{0,4\}, \{1,3\}, \{2\}.$

Equivalence Classes: A Theorem

The following theorem tells us that an equivalence relation induces a partition:

Theorem: If A is a non-empty set and R is an equivalence relation on A, then the distinct equivalence classes of R form a partition of A; *i.e.* the union of the equivalence classes is all of A and the intersection of any two distinct classes is empty.

Let R be the relation of congruence modulo 3 on the set \mathbb{Z} , i.e. $\forall m,n\in\mathbb{Z}$

$$mRn \Leftrightarrow 3|(m-n) \Leftrightarrow m \equiv n \pmod{3}$$

We describe the equivalence classes: For each integer a, the class of a is

$$[a] = \{x \in \mathbb{Z} \mid x R a\}$$

$$= \{x \in \mathbb{Z} \mid 3 \mid (x - a)\}$$

$$= \{x \in \mathbb{Z} \mid x - a = 3 \cdot k, \ k \in \mathbb{Z}\}$$

$$= \{x \in \mathbb{Z} \mid x = 3 \cdot k + a, \ k \in \mathbb{Z}\}$$

In particular

$$[0] = \{x \in \mathbb{Z} \mid x = 3 \cdot k, \ k \in \mathbb{Z}\} = \{0, 3, -3, 6, -6, 9, -9, \ldots\}$$
$$[1] = \{x \in \mathbb{Z} \mid x = 3 \cdot k + 1, \ k \in \mathbb{Z}\} = \{1, 4, -2, 7, -5, 10, -8, \ldots\}$$
$$[2] = \{x \in \mathbb{Z} \mid x = 3 \cdot k + 2, \ k \in \mathbb{Z}\} = \{2, 5, -1, 8, -4, 11, -7, \ldots\}$$

We have

$$[0] = \{x \in \mathbb{Z} \mid x = 3 \cdot k, \ k \in \mathbb{Z}\} = \{0, 3, -3, 6, -6, 9, -9, \ldots\}$$
$$[1] = \{x \in \mathbb{Z} \mid x = 3 \cdot k + 1, \ k \in \mathbb{Z}\} = \{1, 4, -2, 7, -5, 10, -8, \ldots\}$$
$$[2] = \{x \in \mathbb{Z} \mid x = 3 \cdot k + 2, \ k \in \mathbb{Z}\} = \{2, 5, -1, 8, -4, 11, -7, \ldots\}$$

By lemma#1

$$[0] = [3] = [-3] = [6] = [-6] = [9] = [-9] = \dots$$

 $[1] = [4] = [-2] = [7] = [-5] = [10] = [-8] = \dots$
 $[2] = [5] = [-1] = [8] = [-4] = [11] = [-7] = \dots$

Hence the distinct equivalence classes are

$$\{x \in \mathbb{Z} \mid x = 3 \cdot k, \ k \in \mathbb{Z}\}, \quad \{x \in \mathbb{Z} \mid x = 3 \cdot k + 1, \ k \in \mathbb{Z}\},$$

$$\{x \in \mathbb{Z} \mid x = 3 \cdot k + 2, \ k \in \mathbb{Z}\}$$

The distinct equivalence classes are

$$\{x \in \mathbb{Z} \mid x = 3 \cdot k, \ k \in \mathbb{Z}\}, \quad \{x \in \mathbb{Z} \mid x = 3 \cdot k + 1, \ k \in \mathbb{Z}\},$$

$$\{x \in \mathbb{Z} \mid x = 3 \cdot k + 2, \ k \in \mathbb{Z}\}$$

The class of [0] can also be called the class of [3] or the class of [96], but the class *is* the set $\{x \in \mathbb{Z} \mid x = 3 \cdot k, \ k \in \mathbb{Z}\}.$

Definition: Suppose R is an equivalence relation on a set A and S is an equivalence class of R. A **representative** of the class S is any element $a \in A$ such that [a] = S.

Notes

- It is possible to define multiplication and addition of the equivalence classes corresponding to the rational numbers (previous example).
- The rational numbers can be defined as equivalence classes of ordered integers.
- It can be shown that all integers negative, zero, and positive can be defined as equivalence classes of ordered pairs of positive integers.
- Frege and Peano showed (late 19th century) that the positive integers can be defined entirely in terms of sets.
- Dedekind (1848–1916) showed that all real numbers can be defined as sets of rational numbers.
- All together, these results show that the real numbers can be defined using logic and set theory alone!

(Epp-v3.0)

10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25, 10.2.3, 10.2.4, 10.2.12, 10.2.14, 10.2.37, 10.3.3, 10.3.17, 10.3.19, 10.3.40

(Epp-v2.0)

10.1.1, 10.1.5, 10.1.7, 10.1.15, 10.1.23, 10.1.25, 10.2.3, 10.2.4, 10.2.12, 10.2.14, 10.2.37, 10.3.2, 10.3.14, 10.3.16, 10.3.35