	Outline				
Math 254: Introduction to Linear Algebra Notes $#1.1$ — Linear Equations	 Student Learning Objectives SLOs: Linear Equations Numbering of Lecture Notes Linear Equations 				
Peter Blomgren (blomgren@sdsu.edu) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/ Spring 2022 (Revised: January 18, 2022)	 Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution 3 Suggested Problems Suggested Problems 1.1 4 Supplemental Material Metacognitive Reflection Problem Statements 1.1 Row-Reduction Redux 3 Online Labs — Python / Jupyter Notebooks Rationale Interactive Labs : Installing and Running 				
Peter Blomgren (blomgren@sdsu.edu) 1.1. Linear Equations — (1/46)	Peter Blomgren (blomgren@sdsu.edu) 1.1. Linear Equations - (2/46)				
Student Learning Objectives SLOs: Linear Equations Numbering of Lecture Notes	Student Learning Objectives SLOs: Linear Equations Numbering of Lecture Notes				
SLOs 1.1 Linear Equations	Why are the Notes Numbered the Way They Are???				
 After this lecture you should: Be able to <i>Interpret</i> solutions of linear systems of 3 variables as intersections of planes. <i>Know</i> that linear systems can have 0 no, 1 one, or ∞ infintely many solutions. Be able to <i>Perform</i> basic <i>Row</i> Operations to determine all 	 The numbering of the topics originates from the the structure of Otto Bretcher's book (used Fall 2015 — Fall 2016). Since adopting Gilbert Strang's book (Spring 2017 — Spring 2018) the main "chapter topic number" (the "1" in 1.<i>n</i>) is retained, but the "section number" the ("1" in <i>n</i>.1) is slowly being replaced by the the enumerated lecture number on each topic. This is the first lecture on the First topic (Linear Equations); hence Notes #1.1. References to the particular sections of Gilbert Strang's book will 				
Be able to <i>Perform</i> basic <i>Kow-Operations</i> to determine all solutions of linear systems.	be added in the form [GS5–§1.1] (meaning section 1.1 in the 5th edition).				

— (3/46)

A First ExampleManipulate the System to Find the SolutionWe sweep the history lessons under our infinitely stretchable rug, and focus on the system of linear equations: $\begin{vmatrix} x + 2y + 3z = 39 \\ x + 3y + 2z = 34 \\ 3x + 2y + z = 26 \end{vmatrix} r_1 "row #1" \\ x + 3y + 2z = 34 \\ 3x + 2y + z = 26 \end{vmatrix} r_2 :: \\ 3x + 2y + z = 26 \end{vmatrix} r_3 :: \\ and the question:We want to manipulate the System to Find the SolutionImage: Provide the system of linear equations:Image: Provide the System of linear equation of the system?Image: Provide the System of linear equation of the system?Image: Provide the system of linear equation of the system?Image: Provide the System of the System of the System?Image: Provide the System of the System?Image: Provide the system of linear equation of the system?Image: Provide the System of the System?Image: Provide the System?Image: Provide the system of linear equation in the systemImage: Provide the System?Image: Provide the System?Image: Provide the system of linear equation in the systemImage: Provide the System?Image: Provide the System?Image: Provide the system of linear equations:Image: Provide the System?Image: Provide the System?Image: Provide the system of linear equation in the systemImage: Provide the System?Image: Provide the System?Image: Provide the system of linear equations:Image: Provide the System?Image: Provide the system?$	Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution			Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution	
We want to manipulate the system $\begin{vmatrix} x + 2y + 3z = 39 \\ x + 3y + 2z = 34 \\ y + 2z = 26 \\ z_{3} = 2 \\ $	A First Example			Manipulate the System	m to Find the S	Solution	
for the first f	We sweep the history lessons und and focus on the system of linear $\begin{vmatrix} x + 2y + 3z = \\ x + 3y + 2z = \\ 3x + 2y + z = \\ and the question:$ - What values of x, y, and z	er our infinitely stretchable rug, equations: $39 r_1$ "row #1" $34 r_2$: $26 r_3$: satisfy this system?		We want to manip From $\begin{vmatrix} x + 2y \\ x + 3y \\ 3x + 2y \end{vmatrix}$ in order to reveal th But, before we do th Interpretation of the	pulate the system y' + 3z = 3 y' + 2z = 3 y' + z = 3 we solution. hat, let's discuss e system	m $\begin{vmatrix} 39 \\ 34 \\ 70 \\ z = ??? \\ z = ??? \\ z = ??? \\ a Graphical / Geometric$	
$ \begin{aligned} \hline \label{eq:relation} \ First the phase of the equations in the system \begin{aligned} f(x,y) &= (3p - x - 2y)/3 \\ f(x,y) &= (2b - 3x - 2y) \end{aligned} \end{aligned}$					$ ightarrow ightarrow {f Qu}$	ick Geometric "Detour!" $ ightarrow ightarrow ightarrow$	
Peter Blomgren (bloggrendbdsus.edu)1.1. Linex Equations- (5/40)Linex Equations Suggestid ProblemCame with Example - Finding the Unique Solutions A Came with Endersof Many Solutions A Came with Endersof Many Solutions A Came with No SolutionsGeometric InterpretationIt have Solution represents the point(s?) where the planes meet. Solve for z in each one of the equations: $z_1(x, y) = (39 - x - 2y)/3$ $z_2(x, y) = (26 - 3x - 2y)$ The Plane Solution Plane with the x- and y-axes.It have Solution The Plane Solution of the planes are aligned with the x- and y-axes.			SAN DIEGO STATE UNIVERSITY			Sector University	GO STA TERSITY
$\frac{\operatorname{Example}}{\operatorname{Example}} \frac{\operatorname{Example}}{\operatorname{Example}} = \operatorname{Example} \frac{\operatorname{Example}}{\operatorname{Example}} \operatorname$	Peter Blomgren (blomgren@sdsu.edu)	1.1. Linear Equations —	(5/46)	Peter Blomgren	$\langle \texttt{blomgren@sdsu.edu} \rangle$	1.1. Linear Equations — (6/4	6)
Geometric Interpretation If we view each row/equation in the system $\begin{vmatrix} x + 2y + 3z = 39 \\ x + 3y + 2z = 34 \\ 3x + 2y + z = 26 \end{vmatrix}$ as a plane in 3D (x-y-z) space; the solution represents the point(s?) where the planes meet. Solve for z in each one of the equations: $z_1(x, y) = (39 - x - 2y)/3 \\ z_2(x, y) = (34 - x - 3y)/2 \\ z_3(x, y) = (26 - 3x - 2y)$ $\mathbf{Figure:}$ The planes $z_1(x, y), z_2(x, y), \text{ and } z_3(x, y) visualized. As a reference, the black lines on the planes are aligned with the x- and y-axes.$	Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution			Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution	
If we view each row/equation in the system $\begin{vmatrix} x + 2y + 3z = 39 \\ x + 3y + 2z = 34 \\ 3x + 2y + z = 26 \end{vmatrix}$ as a plane in 3D (x-y-z) space; the solution represents the point(s?) where the planes meet. Solve for z in each one of the equations: $\begin{aligned} z_1(x,y) &= (39 - x - 2y)/3 \\ z_2(x,y) &= (34 - x - 3y)/2 \\ z_3(x,y) &= (26 - 3x - 2y) \end{aligned}$ Figure: The planes $z_1(x,y)$, $z_2(x,y)$, and $z_3(x,y)$ visu-alized. As a reference, the black lines on the planes are aligned with the x- and y-axes.	Geometric Interpretation			The Three Planes			
Potor Blomgron (blomgron (If we view each row/equation in the $\begin{vmatrix} x + 2y - x + 3y - y \\ 3x + 2y - y \end{vmatrix}$ as a plane in 3D (x-y-z) space; the point(s?) where the planes meet. Solve for z in each one of the equal $z_1(x,y) = (x_2(x,y)) = (x_2(x,y)) = (x_2(x,y))$	the system $\begin{vmatrix} + & 3z &= & 39 \\ + & 2z &= & 34 \\ + & z &= & 26 \end{vmatrix}$ The solution represents the mations: 39 - x - 2y)/3 $34 - x - 3y)/2$ $26 - 3x - 2y)$		The Plane z1(x,y)	The Plan y_{x} and y_{y}	The Plane 23(x,y) The Plane 23(x,y) The Plane 23(x,y) $\frac{1}{9}$	
			SAN DIEGO STATE UNIVERSITY			Sas Di Sas Div Usivi	GO STA ERSITY

Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution	Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution
The Three Planes — Intersecting		OK, Back to Solving the System	
60 5 7 8 20 0 -20 -10 0 y-axis 10	-10 10 x-axis	 We can ADD or SUBTRACT multiples (to/from another equation; or MULTIPLY / DIVIDE / SCA without changing the solution. We do this in order to successively equations, so that in the end we read 	fractions) of any equation (row) LE an equation, y <i>Eliminate</i> variables from the reveal the solution.
Figure: The planes $z_1(x, y)$, $z_2(x, y)$ looking for the (in this case) ONE I	y), and $z_3(x, y)$ visualized. We are POINT where they all meet. [\exists Movie]	[G	S5–§2.2 — "The Idea of elimination"]
Peter Blomgren $\langle \texttt{blomgrenQsdsu.edu} \rangle$	1.1. Linear Equations — (9/46)	Peter Blomgren $\langle \texttt{blomgren}\texttt{gsdsu.edu} \rangle$	1.1. Linear Equations — (10/46)
Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution	Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution
Solving	"Forward elimination" 🛶 Upper Triangular System	Solution	"Back-substitution" \rightsquigarrow The Answer
"Forward elimination" stage:		"Backward elimination" or "Back	-substitution" starts
$\begin{vmatrix} x &+ & 2y &+ & 3z \\ x &+ & 3y &+ & 2z \\ 3x &+ & 2y &+ & z \end{vmatrix}$	$= 39$ $= 34$ $= 26$ $= 26$ $= subtract 3r_1$	$\begin{vmatrix} x &+ & 2y &+ & 3z &= \\ & y &- & z &= \\ & & & z &= \end{vmatrix}$	$\begin{array}{c c} 39 \\ -5 \\ 9.25 \end{array}$ subtract $3r_3$ add r_3
we get:			
$\begin{vmatrix} x &+ & 2y &+ & 3z \\ & y &- & z \\ & - & 4y &- & 8z \end{vmatrix}$	$ = 39 = -5 = -91 $ add $4r_2$	$\begin{vmatrix} x + 2y & = \\ y & = \\ z = \end{vmatrix}$	11.25 4.25 9.25
$\begin{vmatrix} x &+ 2y &+ 3z &= \\ y &- z &= \\ - 12z &= \end{vmatrix}$	39 -5 -111 divide by (−12)	x y	$ \begin{array}{rcl} = & 2.75 \\ = & 4.25 \\ z & = & 9.25 \end{array} $
Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	1.1. Linear Equations — (11/46)	Peter Blomgren (blomgren@sdsu.edu)	1.1. Linear Equations — (12/46)

Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution	Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution
Check the Solution!		Comments	1 of 2
Plug x y into	$ \begin{array}{rcl} = & 2.75 \\ = & 4.25 \\ z & = & 9.25 \end{array} $	 There are different paths to for instance you can fully as "down") before proceed in the end you will arrive at 	the solution: eliminate each column ("up" as well ding to the next one; the same solution.
$\begin{vmatrix} x + 2y + x + 3y + x + 3y + x + 2y +$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 This strategy does not sep "backward" stage When you do things by "han (order of operations) which i which makes the algebra as september of se	parate into "forward" and nd" you will probably pick a path is unique to the problem, and simple as possible.
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	""["["["["["["["["["["["["["["["["["["[e Math" starting from bottom of slide #11]
Peter Blomgren (blomgren@sdsu.edu)	1.1. Linear Equations — (13/46)	Peter Blomgren (blomgren@sdsu.edu)	1.1. Linear Equations — (14/46)
Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution	Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution
Comments	2 of 2	2 What About the Geometric Interpret	ation?!?
 When you do things by "code algorithm (recipe / step-by-st follows the same path, since computer (except dividing by The forward/backward spli collecting the results gives [GS5-§2.6 — "ELIMINATION = 	e" (in software), you develop an tep instructions) which always no algebra is "hard" for the zero which is very very bad.) t has the added benefit that some useful "side products" — see = FACTORIZATION; $A = LU$ "]	In a lot of books the Geometric In separate "thing," but it is natural the solution procedure (Elimination $\frac{60}{20}$ $\frac{40}{20}$ $\frac{60}{20}$ $\frac{10}{20}$	nterpretation "lives" as its own I to wonder what the impact of on) has on the Geometry. $\begin{vmatrix} x + 2y + 3z = 39 \\ x + 3y + 2z = 34 \\ 3x + 2y + z = 26 \end{vmatrix}$
	See DRUG SI UNIVERSIT	m	See DRIVS SAT UNIVESTIT

Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution		Linear Equations Example — Finding the Unique Solution Suggested Problems A Case with Infinitely Many Solutions A Case with No Solution
What Can Happen?			More solutions than you can shake an infinite stick at
A Linear System can have a unique solution (like our pr infinitely many solutions no solution	evious example)		$\begin{vmatrix} 2x + 4y + 6z = 0 \\ 4x + 5y + 6z = 3 \\ 7x + 8y + 9z = 6 \end{vmatrix}$
		SAN DIIGO STATE UNIVERSITY	Figure: We sense trouble when the three planes meet not in one point, but along a common line in space. Let us see how that manifests itself in the elimination process.
Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	1.1. Linear Equations — (2	21/46)	Peter Blomgren (blomgren@sdsu.edu) 1.1. Linear Equations
Linear Equations Suggested Problems	Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution		Linear Equations Suggested Problems A Case with Infinitely Many Solutions A Case with No Solution
Looking for infinitely many solutions.			Looking for infinitely many solutions
$\begin{vmatrix} 2x &+ 4y &+ 6z \\ 4x &+ 5y &+ 6z \\ 7x &+ 8y &+ 9z \\ x &+ 2y &+ 3z \end{vmatrix}$	= 0 divide by 2 = 3 = 6		$\begin{vmatrix} x &+ 2y &+ 3z &= 0 \\ y &+ 2z &= -1 \\ y &+ 2z &= -1 \end{vmatrix} -r_2$
$\begin{vmatrix} 4x &+ 5y &+ 6\\ 7x &+ 8y &+ 6\\ -3y &- 6z\\ - 6y &- 12z \end{vmatrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{vmatrix} x + 2y + 3z = 0 \\ y + 2z = -1 \\ 0 = 0 \end{vmatrix} \begin{vmatrix} -2r_2 \\ d'oh! \\ d'oh! \\ \begin{vmatrix} x & -z = 2 \\ y + 2z = -1 \\ 0 = 0 \end{vmatrix}$
$\begin{vmatrix} 4x + 5y + 6\\ 7x + 8y + 6\\ -7x + 8y + 6\\ -3y - 6z\\ -6y - 12z \end{vmatrix}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Sun Direco Start UNIVERSITY	$\begin{vmatrix} x + 2y + 3z = 0 \\ y + 2z = -1 \\ 0 = 0 \end{vmatrix} \begin{vmatrix} -2r_2 \\ d'oh! \\ d'oh! \\ \begin{vmatrix} x & -z = 2 \\ y + 2z = -1 \\ 0 = 0 \end{vmatrix}$

Linear Equations Suggested Problems Example — Finding the Unique Solution A Case with Infinitely Many Solutions A Case with No Solution	Linear Equations Suggested Problems A Case with Infinitely Many Solutions A Case with No Solution
Oh, there they are!	Somebody ran away with the solution!
We have: $\begin{vmatrix} x & - & z &= & 2 \\ y & + & 2z &= & -1 \\ 0 &= & 0 \end{vmatrix}$ This means that $\begin{vmatrix} x &= & 2+z \\ y &= & -1-2z \end{vmatrix}$ describes the line in space where the planes intersect; x and y are given as functions of z; the line is $(2+z, -1-2z, z), z \in [-\infty, \infty]$.	$\begin{vmatrix} x + 2y + 3z = 0 \\ 4x + 5y + 6z = 3 \\ 7x + 8y + 9z = 0 \end{vmatrix}$
We can write this in "line format" as: $ \begin{pmatrix} x &= & 2+t \\ y &= & -1-2t \\ z &= & t \\ \end{pmatrix} $ We can write this in "line format" as: $ (x, y, z) = (2, -1, 0) + t(1, -2, 1), t \in [-\infty, \infty]. $	Figure: Here, the planes intersect (pair-wise), but not in any common point, or line. Again, we go through the elimination to see how this manifests itself in the computation.
Peter Biomgren (blomgren vsdasu.edu) 1.1. Linear Equations (25/40) Example Finding the Unique Solution	Peter Biomgren (bLomgren@sdsu.edu) I.I. Linear Equations - (20/40) Example Finding the Unique Solution
Linear Equations A Case with Infinitely Many Solutions Suggested Problems A Case with No Solution	Linear Equations A Case with Infinitely Many Solutions Suggested Problems A Case with No Solution
Looking for Nothing	Looking for Nothing and Finding Nonsense!
$\begin{vmatrix} x + 2y + 3z = 0 \\ 4x + 5y + 6z = 3 \\ 7x + 8y + 9z = 0 \end{vmatrix} -4r_1$ $\begin{vmatrix} x + 2y + 3z = 0 \\ -3y - 6z = 3 \end{vmatrix}$ divide by -3	$\begin{vmatrix} x + 2y + 3z = 0 \\ y + 2z = -1 \\ 0 = 1 \end{vmatrix}$ Say "What?!?" This system of equations is said to be <i>inconsistent</i> , and no solutions exist.
$\begin{vmatrix} -5y & -6z & -5 \\ -6y & -12z & = 0 \end{vmatrix}$ divide by -5	End-of-Problem
$\begin{vmatrix} x &+ 2y &+ 3z &= 0 \\ y &+ 2z &= -1 \\ y &+ 2z &= 0 \end{vmatrix} -r_2$	However: It is still possible to find the pair-wise intersections of the planes. Since the first 2 equations are the same as in the previous ∞ -many solutions example; one such line intersection is $(x, y, z) = (2, -1, 0) + t(1, -2, 1), t \in [-\infty, \infty]$.

San Dilgo State University

 Peter Blomgren (blomgren@sdsu.edu)
 1.1.
 Linear Equations

SAN DIEGO STATE UNIVERSITY

Linear Equations Suggested Problems A Case with Infinitely Many Solutions A Case with No Solution	Linear Equations Suggested Problems A Case with Infinitely Many Solutions A Case with No Solution
Finding More Pair-Wise Intersections (#2)	Finding More Pair-Wise Intersections (#3)
Equations $\#1$ and $\#3$	Equations $#2$ and $#3$
$\begin{vmatrix} x + 2y + 3z = 0 \\ 7x + 8y + 9z = 0 \end{vmatrix} -7r_1$ $\begin{vmatrix} x + 2y + 3z = 0 \\ - 6y - 12z = 0 \end{vmatrix} \text{ divide by } -6$ $\begin{vmatrix} x + 2y + 3z = 0 \\ y + 2z = 0 \end{vmatrix} -2r_2$ $\begin{vmatrix} x - z = 0 \\ y + 2z = 0 \end{vmatrix}$ Giving the line $(x, y, z) = (0, 0, 0) + t(1, -2, 1), t \in [-\infty, \infty].$	$\begin{vmatrix} 4x + 5y + 6z = 3 \\ 7x + 8y + 9z = 0 \end{vmatrix} = \begin{vmatrix} \frac{1}{4} \\ \frac{1}{7} \\ x + \frac{5}{4}y + \frac{6}{4}z = \frac{3}{4} \\ x + \frac{8}{7}y + \frac{9}{7}z = 0 \end{vmatrix} -r_1$ $\begin{vmatrix} x + \frac{5}{4}y + \frac{6}{4}z = \frac{3}{4} \\ -\frac{3}{28}y - \frac{3}{14}z = -\frac{3}{4} \end{vmatrix}$
Peter Blomgren (blomgren@sdsu.edu) 1.1. Linear Equations	Peter Blomgren (blomgren@sdsu.edu) 1.1. Linear Equations
Linear Equations Suggested Problems A Case with Infinitely Many Solution A Case with No Solution	Linear Equations Suggested Problems A Case with Infinitely Many Solution A Case with No Solution
Finding More Pair-Wise Intersections (#3)	Pair-Wise Intersections — Visualized
$\begin{vmatrix} x & - & z &= -8 \\ - & \frac{3}{28}y & - & \frac{3}{14}z &= -\frac{3}{4} \\ x & - & z &= -8 \\ y &+ & 2z &= & 7 \end{vmatrix}$ Giving the line $(x, y, z) = (-8, 7, 0) + t (1, -2, 1), t \in [-\infty, \infty]$. Leaving us with 3 lines in space	$\begin{bmatrix} x, y, z \\ y, z \\ z \\ z \\ y - xis \end{bmatrix}_{20}^{5} \begin{bmatrix} x, y, z \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ y \\ z \\ y - xis \end{bmatrix}_{20}^{10} \begin{bmatrix} x, y, z \\ y \\ z \\ z$

SAN DIEGO STAT UNIVERSITY

— (31/46)

SAN DIEGO ST/ UNIVERSITY

Suggested Problems 1.1

1.1. Linear Equations

Problem Statements 1.1

Metacognitive Exercise — Thinking About Thinking & Learning

Available on "Learning Glass" videos:

Suggested Problems 1.1

(1.1.1) Find all solutions to a 2-by-2 linear system using elimination.

Linear Equations

Suggested Problems

- (1.1.3) Find all solutions to a 2-by-2 linear system using elimination.
- (1.1.7) Find all solutions to a 3-by-3 linear system using elimination.
- (1.1.14) Find all solutions to a 3-by-3 linear system using elimination.
- (1.1.19) Find all solutions to a 3-by-3 linear system with a parameter k using elimination. For what value(s) of k do we have one / no / infinitely many solutions?
- (1.1.21) Find three numbers, given then sums of all the pairs,
- (1.1.42) Solve upper and lower triangular linear systems.

Supplemental Material

Peter Blomgren (blomgren@sdsu.edu)

Online Labs — Python / Jupyter Notebooks

(1.1.1), (1.1.3)

(1.1.7), (1.1.14)

(1.1.1) Find all solutions of the linear system using elimination; check your solution.

 $\left| \begin{array}{rrrrr} x & + & 2y & = & 1 \\ 2x & + & 3y & = & 1 \end{array} \right|$

(1.1.3) Find all solutions of the linear system using elimination; check your solution.

$$\begin{vmatrix} 2x &+ 4y &= 3 \\ 3x &+ 6y &= 2 \end{vmatrix}$$

(1.1.7) Find all solutions of the linear system using elimination; check your solution.

 $\begin{vmatrix} x &+ & 2y &+ & 3z &= & 1 \\ x &+ & 3y &+ & 4z &= & 3 \\ x &+ & 4y &+ & 5z &= & 4 \end{vmatrix}$

(1.1.14) Find all solutions of the linear system.

$$\begin{vmatrix} x &+ & 4y &+ & z &= & 0 \\ 4x &+ & 13y &+ & 7z &= & 0 \\ 7x &+ & 22y &+ & 13z &= & 1 \end{vmatrix}$$

Peter Blomgren (blomgren@sdsu.edu)

Ê

SAN DIEG

(35/46)

Ê

Problem Statements 1.1

(1.1.19) Consider the linear system

X	+	У	_	Ζ	=	-2
3 <i>x</i>	—	5 <i>y</i>	+	13 <i>z</i>	=	18
x	—	2 <i>y</i>	+	5 <i>z</i>	=	k

where k is an arbitrary number.

- **a.** For which values of k does this system have one. or infinitely many solutions?
- **b.** For each value of k you found in part a, how many solutions does the system have.
- **c.** Find all solutions for each value of *k*.

(1.1.21) The sums of any two of three real numbers are 24, 28, and 30. Find these numbers.

Problem Statements 1.1

(1.1.42)

(1.1.42) Linear systems are particularly easy to solve when they are in triangular form (i.e. all entries above or below the diagonal are zero).

a. Solve the lower triangular system

x_1							=	-3
$-3x_{1}$	+	<i>x</i> ₂					=	14
x_1	+	$2x_{2}$	+	<i>x</i> 3			=	9
$-x_1$	+	8 <i>x</i> ₂	_	5 <i>x</i> 3	+	<i>x</i> ₄	=	33

b. Solve the upper triangular system

 $\begin{vmatrix} x_1 &+ & 2x_2 &- & x_3 &+ & 4x_4 &= & -3 \\ & & x_2 &+ & 3x_3 &+ & 7x_4 &= & 5 \\ & & & & x_3 &+ & 2x_4 &= & 2 \\ & & & & & x_4 &= & 0 \end{vmatrix}$

Feler bioingrei (bioingreinesasu.eau)	1.1. Linear Equations $-(37/40)$	Feter Bioingreit (blomgrenesdsuledu)	1.1. Linear Equations $-(30/40)$
Supplemental Material Online Labs — Python / Jupyter Notebooks	Metacognitive Reflection Problem Statements 1.1 Row-Reduction Redux	Supplemental Material Online Labs — Python / Jupyter Notebooks	Metacognitive Reflection Problem Statements 1.1 Row-Reduction Redux
Row-Reductions Revisited	"Forward elimination" ↔ Upper Triangular System	Row-Reductions Revisited	"Forward elimination" \rightsquigarrow Upper Triangular System
"Forward elimination" stage: $\begin{vmatrix} x + 2y + 3z \\ x + 3y + 2z \\ 3x + 2y + z \end{vmatrix}$	$= 39 = 34 = 26 subtract r_1subtract 3r_1$	After elimination of x from r_2 an $\begin{vmatrix} x + 2y + 3z \\ y - z \\ - 4y - 8z \end{vmatrix}$	d r_3 , we have: = 39 = -5 = -91 add $4r_2$

Ê

Ê

SAN DIEGO

(39/46)

SAN DIEGO S

Details (subtracting r_1 from r_2):

=			у	_	Ζ	=	-5	new r ₂
(+1)	x	+	3 <i>y</i>	+	2 <i>z</i>	=	34	
(-1)	x	+	2 <i>y</i>	+	3 <i>z</i>	=	39	

Details (subtracting $3r_1$ from r_3):

Peter Blomgren (blomgren@sdsu.edu)

1.1. Linear Equations

Details (adding $4r_2$ to r_3):

new r₃

A

Ê

Supplemental Material Online Labs — Python / Jupyter Notebooks	Metacognitive Reflection Problem Statements 1.1 Row-Reduction Redux	Supplemental Material Metacognitive Reflection Online Labs — Python / Jupyter Notebooks Problem Statements 1.1 Row-Reduction Redux Row-Reduction Redux
Row-Reductions Revisited	"Forward elimination" ↔ Upper Triangular System	Row-Reductions Revisited "Back-substitution" The Answer
The system is now in "upper tri coefficient of z (in r_3) one (1): x + 2y + 3z =	angular" form; next we make the	"Backward elimination" or "Back-substitution" starts $\begin{vmatrix} x + 2y + 3z = 39 \\ y - z = -5 \\ z = 9.25 \end{vmatrix}$ subtract $3r_3$ add r_3
y = 2 = -12z =	-111 divide by (-12)	Details (adding r_3 to r_2):
Details (dividing r_3 by (-12)): $\frac{(\times \frac{1}{12}) - 12z}{= z}$ and $\frac{111}{12} = 9.25$.	$r = -111$ $= \frac{111}{12} \text{ new } r_3$	$\begin{array}{ c c c c c c c } \hline (+1) & y & - & z & = & -5 \\ \hline (+1) & z & = & 9.25 \\ \hline = & y & = & 4.25 & \text{new } r_2 \end{array}$ Details (subtracting $3r_3$ from r_1): $\begin{array}{c c c c c c c c c c c c c c c c c c c $
Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	1.1. Linear Equations — (41/46)	Peter Blomgren (blomgren@sdsu.edu) 1.1. Linear Equations
Supplemental Material Online Labs — Python / Jupyter Notebooks	Metacognitive Reflection Problem Statements 1.1 Row-Reduction Redux	Supplemental Material Online Labs — Python / Jupyter Notebooks Interactive Labs : Installing and Running
Row-Reductions Revisited	"Back-substitution" 🛶 The Answer	Online Labs — $\langle whine \rangle$ Why??? $\langle /whine \rangle$ [New Fall 2019]
Lastly, we eliminate y from r ₁ : $\begin{vmatrix} x + 2y & = \\ y & = \\ z & z = \end{vmatrix}$	11.25 4.25 9.25	In an effort to give you another point of view of the material, the development of online "labs" and/or "demonstrations" has started. Since python is the computer language <i>du jour</i> , that is the choice. Everything is presented in terms of jupyter notebooks .
Details (subtracting $2r_2$ from r_1):	How Much is THIS going to cost??? — the Python language itself, and the Jupyter notebook environment can be downloaded and installed for the staggering cost of \$0 (with a full money-back guarantee).
$\begin{array}{c ccc} (+1) & x & + & 2y \\ \hline (-2) & & y \\ \hline & = & x \end{array}$	$= 11.25 = 4.25 = 2.75 new r_1$	All the necessary components: Python , Pip , Anaconda , and Jupyter are available for {Linux, Windows, MacOSX} Wait What? I have to download and install stuff?!? <i>Cimon maaaaaan</i>
We arrive at:	$ \begin{array}{rcl} = & 2.75 \\ = & 4.25 \\ z & = & 9.25 \end{array} $	<i>this is a MATH class</i> !!! — R.E.L.A.X., there are multiple options for viewing and running the notebooks online, aka "in the cloud" (aka "on somebody elses hardware") without installing anything.
Peter Blomgren (blomgren@sdsu.edu)	1.1. Linear Equations — (43/46)	Peter Blomgren (blomgren@sdsu.edu) 1.1. Linear Equations — (44/46)

Supplemental Material Online Labs — Python / Jupyter Notebooks	Rationale Interactive Labs : Installing and Running	Supplemental Material Online Labs — Python / Jupyter Notebooks	Rationale Interactive Labs : Installing and Running
Lab 1.1, Getting Started	[c'mon. give it a go!]	Ask "Uncle Google"!	
All lab materials can be found at http://terminus.SDSU.EDU/SDSU/Math254/?r=labs At the start of Fall 2019, there are only two labs — 1.1, and 1.2. There are two "modes" to view the labs:		 There are (probably) other free services that will allow you to run Jupyter notebooks "in the cloud." As these services change/are updated often, it is not worth trying to document HOW to use them here. The best thing to do it is just give it a try; read the help/instructions available on <i>e.g.</i> mybinder.org or colab.research.google.com. You favorite uncle — "Uncle Google" — is always ready to help: 	
 Non-Interactive Just click the lab you want to view under the heading "Static Views"; the lab will open up using nbviewer.jupyter.org — no need to install anything. 			
Interactive		"how do I run jupyter notebook on mybinder"	
 0 If you want to "play" with the lab (change the numbers, test other things) 1 First download (right-click + save) the lab under the heading "Source Link" 		 "how do I run jupyter notebook on colab" "how do I install X on Y", 	
 2 Then you can upload/view/inte a https://colab.research a https://mybinder.org/ a Your local Python / Jupy 	eract with the lab on <i>e.g.:</i> google.com/ /ter notebook installation	 where X∈{python, jupyter Y∈{Windows, MacOS, Fe 	r,}, and edora, Ubuntu, Debian,}
Peter Blomgren (blomgren@sdsu.edu)	1.1. Linear Equations — (45/46)	Peter Blomgren (blomgren@sdsu.edu)	1.1. Linear Equations — (46/46)