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Student Learning Objectives SLOs: Matrices, Vectors, ...

SLOs 1.2 Matrices, Vectors, ...

After this lecture you should:

Know basic language and concepts:

Matrices, vectors, and their components
Matrix types: square, diagonal, triangular, zero, identity
The collection of all n-vectors, denoted R

n is a vector space

Vector addition

Know the difference between the Coefficient matrix, and the
Augmented matrix; their uses in the solution of linear systems

Know how to use elimination to identify leading and non-leading
(a.k.a. free variables), and when necessary introduce parameters to
express all solutions of linear systems.

Know what Reduced–Row–Echelon–Form (RREF) of a Matrix is,
and how to achieve it using elementary row operations.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Equation Manipulation to Isolate Variables

Our current “business” is manipulating linear systems, of the form

∣
∣
∣
∣
∣
∣

3x + 21y − 3z = 0
−6x − 2y − z = 62
2x − 3y + 8z = 32

∣
∣
∣
∣
∣
∣

into a form which reveals the values of x , y , and z :

∣
∣
∣
∣
∣
∣

x = −3574/281
y = 844/281

z = 2334/281

∣
∣
∣
∣
∣
∣

.

We achieve this by cleverly adding/subtracting rows (equations)
from each other.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Matrix Notation — “Encoding” the Information

We realize that all the important information is in the coefficients
(numbers), and that the variables (x , y , z) just get carried around.
We can “encode” all the information about the linear system

∣
∣
∣
∣
∣
∣

3x + 21y − 3z = 0
−6x − 2y − z = 62
2x − 3y + 8z = 32

∣
∣
∣
∣
∣
∣

in a matrix





3 21 −3 0
−6 −2 −1 62
2 −3 8 32





︸ ︷︷ ︸

Augmented Matrix

, or, sometimes:





3 21 −3 0
−6 −2 −1 62
2 −3 8 32





︸ ︷︷ ︸

Augmented Matrix with
Coefficient Matrix and
right-hand-side ”sepa-
rated.”

.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Row – Column Indexing

Ponder the matrix “A” with 3 rows, and 4 columns:

A =





3 21 −3 0
−6 −2 −1 62
2 −3 8 32



 =





a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34





that is, usually we refer to the entries of a matrix A (upper-case),
using double subscripts aij (lower-case); the subscripts i , and j are
“standard” but r (row) and c (column) would be more intuitive.

Sometimes you see the notation A ∈ R
3×4 to denote a 3-by-4

(always [Rows-by-Columns]) matrix where the entries are real
(R) numbers.

Note: The entries can be other mathematical objects, e.g. complex numbers, C, poly-
nomials, etc... but we will work with R for quite while.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

[Focus :: CS] What is a Matrix?

From a computer science point-of-view a matrix can be viewed as
data structure, and depending on your mood (and/or preference of
programming paradigm) you can think of it as e.g. a

C—C++ style 2-dimensional array,

:: double A[3][3]; /* A is a 3-by-3 matrix */

:: A[0][0] = 1; /* Assigning 1 to a11 */

:: A[2][2] = 14; /* Assigning 14 to a33 */

:: Yes, some languages count from 0 to (n-1); others from 1 to n.

or an abstract container class.

Python

:: uses (...) for immutable “tuples” and [...] for “lists”...
:: a matrix is a lists-of-lists: [ [...], ..., [...] ]
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Types of Matrices

When A ∈ R
n×n, i.e. the matrix has the same number of rows

and columns, it is a square matrix

A matrix is diagonal if all entries aij = 0
for all i 6= j . (Only entries of the type aii
are non-zero. nz = 10
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A square matrix is upper triangular if all
entries aij = 0 for all i > j .

nz = 55
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Types of Matrices

A square matrix is strictly upper trian-
gular if all entries aij = 0 for all i ≥ j .

nz = 45
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A square matrix is lower triangular if all
entries aij = 0 for all i < j .

nz = 55
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A square matrix is strictly lower trian-
gular if all entries aij = 0 for all i ≤ j .

nz = 45
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Types of Matrices

A matrix where all entries are zero is (surprisingly?) called a zero
matrix.

A square matrix where all diagonal entries are ones, and the
off-diagonal entries are zeros

In =










1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1










is called an identity matrix. “ · · · ” and “
... ” denote padding with

0-entries, and “
. . . “ diagonal 1-entries; filling the matrix out to its

full size (whatever that may be).
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Matrices of size n × 1 and 1× n ⇒ “Vectors”

A “matrix” with only one column is called a column vector:

~v =








v1
v2
...
vn








A “matrix” with only one row is called a row vector:

~wT =
[
w1 w2 · · · wn

]

By mathematical convention a vector is a column vector; so ~v
and ~w are (column) vectors. The notation ~wT is the transpose of
the vector ~w , which is a row vector.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Vector “Language”

The entries of a vector are called its components; vk is the
k th component of the vector ~v .

The set (collection) of all (column) vectors with n components
is denoted by R

n; we refer to R
n as a vector space.

It is easy to visualize vectors in R
2; we can

think of the vector ~v as an arrow from the
origin (0, 0) to the point (x , y) = (v1, v2):

0 1 2 3
0

0.5

1

1.5

2

2.5

3

In the figure we have

~u =

[
1
2

]

, ~v =

[
1
3

]

, ~w =

[
2
2

]

,

Without confusion, we can just let the terminal points
(x , y) = (v1, v2) represent the vectors.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Adding Vectors

With:

~u =

[
1
2

]

, ~v =

[
1
3

]

, ~w =

[
2
2

]

,

We can graphically show how to add vectors:
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0

1

2

3

4

5

6

7

8

That is

~u + ~v =

[
2
5

]

, ~u + ~v + ~w =

[
4
7

]

.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Making Use of our Matrix – Vector Notation

Now, given a linear system:
∣
∣
∣
∣
∣
∣

2x + 8y + 4z = 2
2x + 5y + z = 5
4x + 10y − z = 1

∣
∣
∣
∣
∣
∣

We can extract the Coefficient Matrix (containing the coefficients of
the unknown variables in the system)





2 8 4
2 5 1
4 10 −1



 ,

or the augmented matrix




2 8 4 2
2 5 1 5
4 10 −1 1



 ,

which captures all the information in the linear system.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

The Augmented Matrix

Often, we separate the coefficients from the right-hand-side
information in the Augmented Matrix:





2 8 4 2
2 5 1 5
4 10 −1 1




 





2 8 4 2
2 5 1 5
4 10 −1 1




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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Solving Linear Systems Using the Augmented Matrix

We can solve the linear system by manipulating the Augmented
Matrix: 



2 8 4 2
2 5 1 5
4 10 −1 1





/ 2





1 4 2 1
2 5 1 5
4 10 −1 1



 −2r1
−4r1





1 4 2 1
0 −3 −3 3
0 −6 −9 −3



 / (−3)
/ (−3)
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Solving Linear Systems Using the Augmented Matrix





1 4 2 1
0 1 1 −1
0 2 3 1





−2r2




1 4 2 1
0 1 1 −1
0 0 1 3





−2r3
−r3





1 4 0 −5
0 1 0 −4
0 0 1 3





−4r2





1 0 0 11
0 1 0 −4
0 0 1 3



 ,





x

y

z



 =





11
−4
3




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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

The (Math) World is not limited to 2, or 3 Variables (Dimensions)

We can (easily?) imagine a system of 4 linear equations with 7 unknowns:

∣
∣
∣
∣
∣
∣
∣
∣

x1 − x2 + 4x5 7777x7 = 1
x3 + 2x5 − 777x7 = 2

x4 77x7 = 3
x6 − 7x7 = 4

∣
∣
∣
∣
∣
∣
∣
∣

,

so that solving for the leading variables∗ gives:

∣
∣
∣
∣
∣
∣
∣
∣

x1 = 1 + x2 − 4x5 − 7777x7
x3 = 2− 2x5 + 777x7
x4 = 3− 77x7
x6 = 4 + 7x7

∣
∣
∣
∣
∣
∣
∣
∣

∗ Leading variables are the first ones to appear in each equation
(after elimination); here x1, x3, x4, and x6.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Infinitely Many Solutions

If we parameterize (the non-leading, or “free” variables): x2 = s,
x5 = t, and x7 = u, we can write the infinitely many solutions:



















x1
x2
x3
x4
x5
x6
x7



















=



















1 + s − 4t − 7777u
s

2 − 2t + 777u
3 − 77u

t
4 + 7u

u



















=



















1
0
2
3
0
4
0



















+s



















1
1
0
0
0
0
0



















+t



















−4
0

−2
0
1
0
0



















+u



















−7777
0

777
−77

0
7
1



















If we plug that into the original system of linear equations we see
that it indeed is the (collection of) solution(s)!

Note that s, t, and u are allowed to take any values in R

(independent of each other)...
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

What Makes a System “Easy” to Solve?

Three properties make a system “easy” to solve:

P1 The leading coefficient in each equation is 1.

P2 The leading variable in each equation does not appear in any
other equation.

P3 The leading variables appear in “natural order,” with
increasing indices as we go down the system: x1, x3, x4, and
x6 as opposed to any other ordering.

If/when the system does not satisfy these properties, we use
elimination to get there...
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Another Example... Keeping P1, P2, P3 in mind...

We go straight to the Augmented Matrix:







2 4 −2 2 4 2
1 2 −1 2 0 4
3 6 −2 1 9 1
5 10 −4 5 9 9







(/2)







1 2 −1 1 2 1
1 2 −1 2 0 4
3 6 −2 1 9 1
5 10 −4 5 9 9







−r1
−3r1
−5r1







1 2 −1 1 2 1
0 0 0 1 −2 3
0 0 1 −2 3 −2
0 0 1 0 −1 4







−r2

+2r2
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Another Example... Keeping P1, P2, P3 in mind...







1 2 −1 0 4 −2
0 0 0 1 −2 3
0 0 1 0 −1 4
0 0 1 0 −1 4







+r3

−r3






1 2 0 0 3 2
0 0 0 1 −2 3
0 0 1 0 −1 4
0 0 0 0 0 0







 r3
 r2







1 2 0 0 3 2
1 0 −1 4

1 −2 3







leading zeros

suppressed

for clarity
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

... Identifying the Solutions









x1 x2 x3 x4 x5 value
1 2 3 2

1 −1 4
1 −2 3









So that:
∣

∣

∣

∣

∣

∣

x1 = 2− 2x2 − 3x5
x3 = 4 + x5
x4 = 3 + 2x5

∣

∣

∣

∣

∣

∣

, or











x1
x2
x3
x4
x5











=











2− 2s − 3t
s

4 + t

3 + 2t
t











=











2
0
4
3
0











+ s











−2
1
0
0
0











+ t











−3
0
1
2
1











.

Parameters: x2 = s, x5 = t
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Solving a System of Linear Equations

“Elimination Strategy”

We go equation-by-equation from top to bottom (i runs from 1 to n):

For the i th equation: if the leading variable is xj with non-zero coefficient c;
divide the equation by c to make the leading coefficient 1.

Eliminate xj from all other equations.

Go to the next equation.

“Exit Strategy”

If we get zero = nonzero at any point; then there are no solutions. [STOP]

If we complete without inconsistencies:

rearrange the equations so that the leading variables are in
“natural order”

Solve each equation for the leading variable
Choose parameters for the non-leading variables [if there are
any] (appropriate “alphabet soup”)
Express leading variables using parameters.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Reduced Row Echelon Form

After elimination according to this strategy, the matrix is in:

Reduced Row Echelon Form

A Matrix is said to be in Reduced Row Echelon Form if it satisfies
the following conditions:

1 If a row has non-zero entries, then the first non-zero entry is a
1, called the leading 1 (or pivot) of this row.

2 If a column contains a leading 1, then all other entries in that
column are 0. [Elimination is Complete]

3 If a row contains a leading 1, then each row above it contains
a leading 1 further to the left. [Sorting of Rows]

The last condition implies that rows of 0’s, if any, must appear at
the bottom of the matrix.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Matrix – Vector Notation
Back to Solving Linear Systems
Summarizing

Getting to Reduced Row Echelon Form Elementary Row Operations

We get to Reduced Row Echelon Form by performing

Elementary Row Operations

Divide a row by a non-zero scalar

Subtract a multiple of a row from another row

Swap two rows

This strategy of solving linear systems by reduction to Reduced Row
Echelon Form is referred to as Gaussian Elimination, or Gauss-Jordan
Elimination.

Gauss (1777–1855), Jordan (1842–1899); but the Chinese used it looooong before
that.

“Gauss-Jordan Elimination”  RREF
“Gaussian Elimination”  REF (leading variables NOT 1’s; LU-factorization)
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Suggested Problems
Lecture –Book Roadmap

Suggested Problems 1.2

Available on “Learning Glass” videos:

(1.2.1) Find all solutions to a 2-by-3 linear system using elimination.

(1.2.3) Find all solutions to a 1-by-3 linear system using elimination.

(1.2.9) Find all solutions to a 3-by-6 linear system using elimination.

(1.2.11) Find all solutions to a 4-by-4 linear system using elimination.

(1.2.18) Determine which matrices are in RREF.

(1.2.21) Find values of matrix entries so that the resulting matrix is in
RREF.
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Matrices, Vectors; Gauss-Jordan Elimination
Suggested Problems

Suggested Problems
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

1.1 §2.2
1.2 §1.1, §1.3, §2.1, §2.3
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Supplemental Material
Metacognitive Reflection
Problem Statements 1.2
Piazza Setup and Use

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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(1.2.1), (1.2.3)

(1.2.1) Find all solutions to the linear system using elimination:

∣
∣
∣
∣

x + y − 2z = 5
2x + 3y + 4z = 2

∣
∣
∣
∣

(1.2.3) Find all solutions to the linear system using elimination:

∣
∣ x + 2y + 3z = 4

∣
∣
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(1.2.9), (1.2.11)

(1.2.9) Find all solutions to the linear system using elimination:

∣
∣
∣
∣
∣
∣

x4 + 2x5 − x6 = 2
x1 + 2x2 + x5 − x6 = 0
x1 + 2x2 + 2x3 − x5 + x6 = 2

∣
∣
∣
∣
∣
∣

(1.2.11) Find all solutions to the linear system using elimination:

∣
∣
∣
∣
∣
∣
∣
∣

x1 + 2x3 + 4x4 = −8
x2 − 3x3 − x4 = 6

3x1 + 4x2 − 6x3 + 8x4 = 0
− x2 + 3x3 + 4x4 = −12

∣
∣
∣
∣
∣
∣
∣
∣
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(1.2.18)

(1.2.18) Determine which of the matrices are in Reduced Row
Echelon Form:

a.







1 2 0 2 0
0 0 1 3 0
0 0 1 4 0
0 0 0 0 1







b.





0 1 2 0 3
0 0 0 1 4
0 0 0 0 0





c.





1 2 0 3
0 0 0 0
0 0 1 2



 d.
[
0 1 2 3 4

]
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(1.2.21)

(1.2.21) For which values of a, b, c , d , and e is the following
matrix in reduced-row-echelon-form?





1 a b 3 0 −2
0 0 c 1 d 3
0 e 0 0 1 1




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Piazza Setup and Use, 1 of 3 Does not apply Fall 2021 [Tech::Setup]

Two Separate Websites

https://piazza.com/

Piazza Account

Mini-Quizzes
Access using app, or
web interface

https://Canvas.SDSU.edu/

GRADEBOOK
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Piazza Setup and Use, 2 of 3 Does not apply Fall 2021 [Tech::Setup]

Goal: Your Points in the GRADEBOOK!

How do we get there?

1 Set up a Piazza Account

You should have gotten an inviatation sent to your
[...]@sdsu.edu email address; or go to
https://piazza.com/sdsu/fall2021/math254blomgren

It is FREE
Download the app from the iOS App Store, or Google Play

2 If you want credit: You can register multiple email addresses
to a piazza account — one of them must match your email
address in Canvas.

In Piazza go to Account/Email Settings
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Piazza Setup and Use, 3 of 3 Does not apply Fall 2021 [Tech::Setup]

Goal: Your Points in the GRADEBOOK!

How do we get there?
3 Scores will be transferred after EACH LECTURE

The transfer is manual, so there may be a bit of a delay.

4 If something is not right, please let me know! — Email me!

If you cannot participate in the use of Piazza (due to lack of a
suitable device) — let me know, and we’ll figure something out.
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