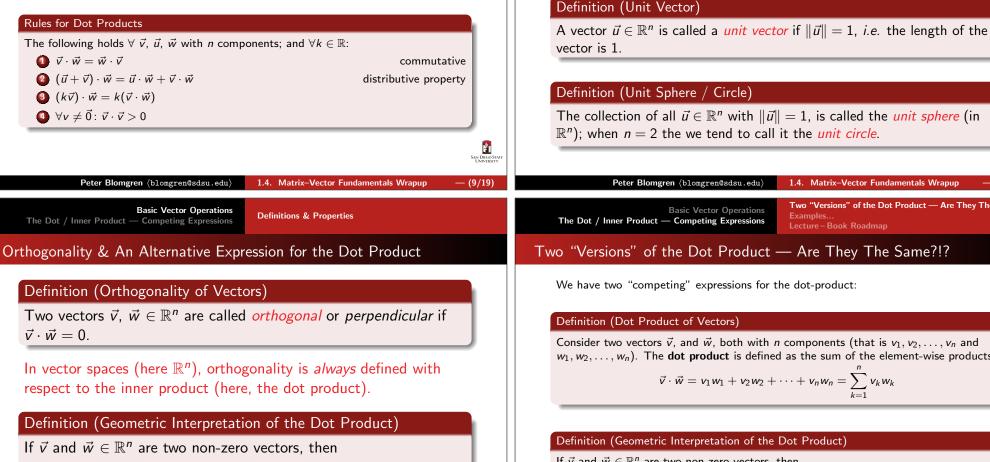

	Outline
Math 254: Introduction to Linear Algebra Notes #1.4 — Matrix–Vector Fundamentals Wrapup	 Student Learning Objectives SLOs: 1.4 Fundamentals Wrapup
Peter Blomgren (blomgren@sdsu.edu) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/ Dpring 2022 (Revised: January 18, 2022)	 2 Basic Vector Operations Definitions & Properties 3 The Dot / Inner Product — Competing Expressions Two "Versions" of the Dot Product — Are They The Same?!? Examples Lecture – Book Roadmap 4 Supplemental Material Metacognitive Reflection
Peter Blomgren (blomgren@sdsu.edu) 1.4. Matrix-Vector Fundamentals Wrapup — (1/19)	Peter Blomgren (blomgren@sdsu.edu) 1.4. Matrix-Vector Fundamentals Wrapup (2/19)
Student Learning Objectives SLOs: 1.4 Fundamentals Wrapup	Basic Vector Operations The Dot / Inner Product — Competing Expressions
SLOs 1.4	Vectors
 After this lecture you should: Know the functional definitions of the fundamental vector algebra operations Know the two ways to compute (inner) <i>dot products</i> of vectors Be able to compute the <i>norm</i> (length) of a vector Know what <i>unit vectors</i> are Understand <i>Ortogonality of Vectors</i>, and the relation to the dot product 	Previously, we have defined vectors as matrices with only one column: $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n \equiv \mathbb{R}^{n \times 1};$ where the scalars v_k , $k = 1, \dots, n$ are the components of the vector. Vector- and matrix-algebra is essentially the "same." However, there is some "language" (properties) which only apply to vectors (matrices).

Definitions & Properties

Thinking in Geometrical Terms...


Definition (Length / Norm)

Rules for Dot Products

Rewind (Dot product of vectors)

Consider two vectors \vec{v} , and \vec{w} , both with *n* components (that is v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_n). The **dot product** is defined as the sum of the element-wise products:

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{k=1}^n v_k w_k$$

Definition (Unit Sphere / Circle) The collection of all $\vec{u} \in \mathbb{R}^n$ with $\|\vec{u}\| = 1$, is called the *unit sphere* (in \mathbb{R}^n); when n = 2 the we tend to call it the *unit circle*.

The *length* (or *norm*), of a vector $\vec{x} \in \mathbb{R}^n$ is denoted $||\vec{x}||$, and defined by

 $\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$

Basic Vector Operations The Dot / Inner Product — Competing Expressions

Peter Blomgren (blomgren@sdsu.edu)

Two "Versions" of the Dot Product — Are They The Same?!? Examples. Lecture – Book Roadman

1.4. Matrix–Vector Fundamentals Wrapup

(2-norm, $\|\vec{x}\|$

Ê

Êı

SAN DIEGO UNIVERS

· (10/19)

Two "Versions" of the Dot Product — Are They The Same?!?

We have two "competing" expressions for the dot-product:

Definition (Dot Product of Vectors)

Consider two vectors \vec{v} , and \vec{w} , both with *n* components (that is v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_n). The **dot product** is defined as the sum of the element-wise products:

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{k=1}^n v_k w_k$$

Definition (Geometric Interpretation of the Dot Product)

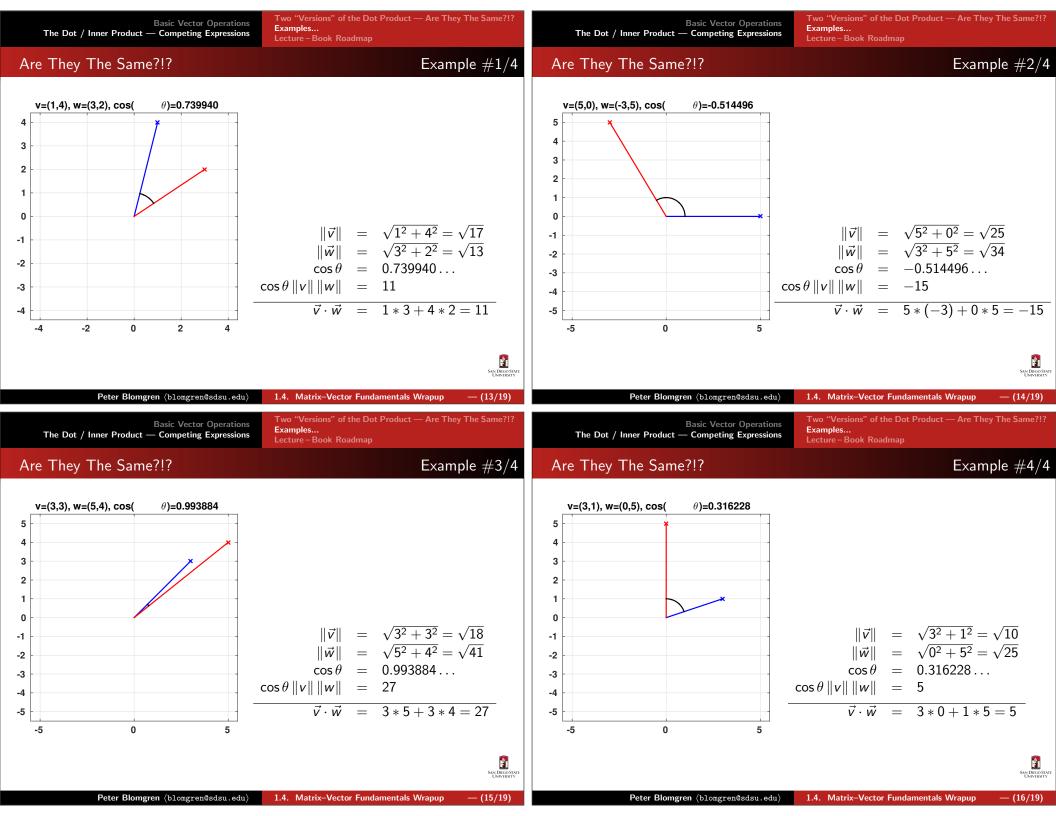
If \vec{v} and $\vec{w} \in \mathbb{R}^n$ are two non-zero vectors, then

 $\vec{v} \cdot \vec{w} = \cos \theta \, \|\vec{v}\| \, \|\vec{w}\|,$

where θ is the angle between the vectors \vec{v} and \vec{w} .

It is NOT obvious that these give the same values...

Ê


SAN DIEG

(11/19)

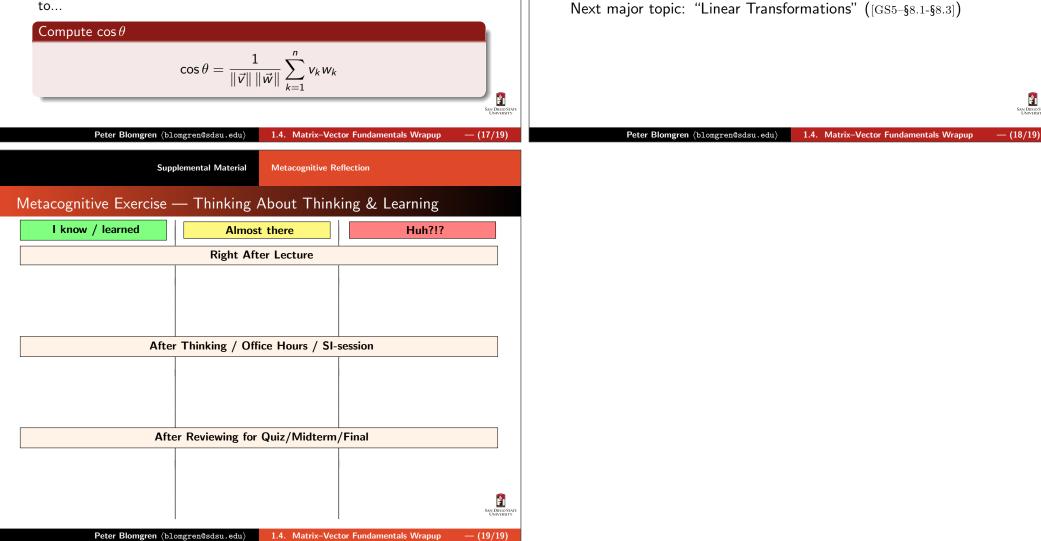
We need some figures and examples...

where θ is the angle between the vectors \vec{v} and \vec{w} .

 $\vec{v} \cdot \vec{w} = \cos \theta \| \vec{v} \| \| \vec{w} \|$

Basic Vector Operations The Dot / Inner Product — Competing Expressions

Two "Versions" of the Dot Product — Are They The Same?!? Examples... Lecture – Book Roadmap


OK, We Feel Better Now...

Whereas examples are NOT proof; it certainly seems like the two expressions agree.

Most of the time the first definition (using sums-of-products) is the most natural to work with.

However, we can use the equivalence of the two expressions

$$\sum_{k=1}^{n} v_k w_k = \vec{v} \cdot \vec{w} = \cos \theta \|\vec{v}\| \|\vec{w}\|$$

Lecture – Book Roadmap

Lecture	Book, [GS5–]
1.1	§2.2
1.2	§1.1, §1.3, §2.1, §2.3
1.3	$\S1.1, \S1.2, \S1.3, \S2.1, \S2.3$
1.4	§1.1–§1.3, §2.1–§2.3

Next major topic: "Linear Transformations" ([GS5-§8.1-§8.3])