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Student Learning Objectives SLOs: 1.4 Fundamentals Wrapup

SLOs 1.4

After this lecture you should:

Know the functional definitions of the fundamental vector
algebra operations

Know the two ways to compute (inner) dot products of vectors

Be able to compute the norm (length) of a vector

Know what unit vectors are

Understand Ortogonality of Vectors, and the relation to the
dot product

Mostly a “formal review” of what we have done; with some new
language added.
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Definitions & Properties

Vectors

Previously, we have defined vectors as matrices with only one
column:

~v =




v1
v2
...
vn


 ∈ Rn ≡ Rn×1;

where the scalars vk , k = 1, . . . , n are the components of the
vector.

Vector- and matrix-algebra is essentially the “same.” However,
there is some “language” (properties) which only apply to vectors
(matrices).

Here, we quickly go over some basic vector definitions and
properties.
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Definitions & Properties

Vector Operations Addition, Scaling

Definition (Vector Addition)

The sum of ~v ∈ Rn and ~w ∈ Rn is defined component-wise, i.e. if

~z = ~v + ~w ,

then ~z ∈ Rn, and zk = vk + wk , k ∈ {1, . . . , n}.

Definition (Scalar-Vector Multiplication)

Let ~v ∈ Rn and ρ ∈ R, then

~z = ρ~v

gives ~z ∈ Rn, and zk = ρ vk , k ∈ {1, . . . , n}.
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Definitions & Properties

Vector Operations Negative, Difference

Definition (The Negative (Opposite) of a Vector (also “Additive Inverse”))

Using previous definitions:

−~v ≡ (−1)~v

Definition (Vector Difference)

For ~v ∈ Rn and ~w ∈ Rn:

~z = ~v − ~w ≡ ~v + (−~w),

so that ~z ∈ Rn, and zk = vk − wk , k ∈ {1, . . . , n}

Definition (The Zero vector)

~0 ∈ Rn is the vector with n components; all of which are 0.

Peter Blomgren 〈blomgren@sdsu.edu〉 1.4. Matrix–Vector Fundamentals Wrapup — (6/19)

Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Definitions & Properties

Summary of Vector Algebra Rules

Fundamental Rules of Vector Algebra — (these make Rn a “Vector Space”)

The following formulas hold ∀ ~u, ~v , ~w ∈ Rn and ∀ c, k ∈ R:
1 Addition is associative†: (~u + ~v) + ~w = ~u + (~v + ~w)

2 Addition is commutative‡: ~u + ~v = ~v + ~u

3 ~v + ~0 = ~v ~0 is the “Additive Identity”

4 ∀~v ∈ Rn, ∃ a unique ~x ∈ Rn: ~v + ~x = ~0; ~x = −~v . (−v) is the “Additive Inverse”

5 k(~v + ~w) = k~v + k ~w . distributive property

6 (c + k)~v = c~v + k~v distributive property

7 c(k~v) = (ck)~v

8 1~v = ~v 1 is the “Multiplicative Identity”

These rules “follow directly” from the propertial of real numbers (scalars), and the
component-by-component definition of addition (and subtraction) of vectors.

† Grouping does not matter.
‡ Order does not matter.
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Definitions & Properties

Geometric Interpretation: Parallel Vectors

Definition (Parallel Vectors)

We say that two vectors ~v and ~w are parallel if one of them is a
scalar multiple of the other.

Recall: By definition, all our vectors go through the origin, so they
cannot be parallel and not intersect.

By this definition the zero-vector is parallel to every vector, since

~0 = 0~v .

Note: Linear-Algebra-Parallel is slightly different from (a special case of)
Geometric-Parallel.
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Definitions & Properties

Rules for Dot Products

Rewind (Dot product of vectors)

Consider two vectors ~v , and ~w , both with n components (that is v1, v2, . . . , vn and
w1,w2, . . . ,wn). The dot product is defined as the sum of the element-wise products:

~v · ~w = v1w1 + v2w2 + · · ·+ vnwn =
n∑

k=1

vkwk

Rules for Dot Products

The following holds ∀ ~v , ~u, ~w with n components; and ∀k ∈ R:
1 ~v · ~w = ~w · ~v commutative

2 (~u + ~v) · ~w = ~u · ~w + ~v · ~w distributive property

3 (k~v) · ~w = k(~v · ~w)

4 ∀v 6= ~0 : ~v · ~v > 0
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Definitions & Properties

Thinking in Geometrical Terms...

Definition (Length / Norm) (2-norm, ‖~x‖2)
The length (or norm), of a vector ~x ∈ Rn is denoted ‖~x‖, and defined by

‖~x‖ =
√
~x · ~x =

√
x21 + x22 + · · ·+ x2n .

Definition (Unit Vector)

A vector ~u ∈ Rn is called a unit vector if ‖~u‖ = 1, i.e. the length of the
vector is 1.

Definition (Unit Sphere / Circle)

The collection of all ~u ∈ Rn with ‖~u‖ = 1, is called the unit sphere (in
Rn); when n = 2 the we tend to call it the unit circle.
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Definitions & Properties

Orthogonality & An Alternative Expression for the Dot Product

Definition (Orthogonality of Vectors)

Two vectors ~v , ~w ∈ Rn are called orthogonal or perpendicular if
~v · ~w = 0.

In vector spaces (here Rn), orthogonality is always defined with
respect to the inner product (here, the dot product).

Definition (Geometric Interpretation of the Dot Product)

If ~v and ~w ∈ Rn are two non-zero vectors, then

~v · ~w = cos θ ‖~v‖ ‖~w‖

where θ is the angle between the vectors ~v and ~w .

We need some figures and examples...
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Two “Versions” of the Dot Product — Are They The Same?!?
Examples...
Lecture –Book Roadmap

Two “Versions” of the Dot Product — Are They The Same?!?

We have two “competing” expressions for the dot-product:

Definition (Dot Product of Vectors)

Consider two vectors ~v , and ~w , both with n components (that is v1, v2, . . . , vn and
w1,w2, . . . ,wn). The dot product is defined as the sum of the element-wise products:

~v · ~w = v1w1 + v2w2 + · · ·+ vnwn =
n∑

k=1

vkwk

Definition (Geometric Interpretation of the Dot Product)

If ~v and ~w ∈ Rn are two non-zero vectors, then

~v · ~w = cos θ ‖~v‖ ‖~w‖,

where θ is the angle between the vectors ~v and ~w .

It is NOT obvious that these give the same values...
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Two “Versions” of the Dot Product — Are They The Same?!?
Examples...
Lecture –Book Roadmap

Are They The Same?!? Example #1/4

-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

v=(1,4), w=(3,2), cos( θ)=0.739940

‖~v‖ =
√
12 + 42 =

√
17

‖~w‖ =
√
32 + 22 =

√
13

cos θ = 0.739940 . . .
cos θ ‖v‖ ‖w‖ = 11

~v · ~w = 1 ∗ 3 + 4 ∗ 2 = 11
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Two “Versions” of the Dot Product — Are They The Same?!?
Examples...
Lecture –Book Roadmap

Are They The Same?!? Example #2/4

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

v=(5,0), w=(-3,5), cos( θ)=-0.514496

‖~v‖ =
√
52 + 02 =

√
25

‖~w‖ =
√
32 + 52 =

√
34

cos θ = −0.514496 . . .
cos θ ‖v‖ ‖w‖ = −15

~v · ~w = 5 ∗ (−3) + 0 ∗ 5 = −15
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Two “Versions” of the Dot Product — Are They The Same?!?
Examples...
Lecture –Book Roadmap

Are They The Same?!? Example #3/4

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

v=(3,3), w=(5,4), cos( θ)=0.993884

‖~v‖ =
√
32 + 32 =

√
18

‖~w‖ =
√
52 + 42 =

√
41

cos θ = 0.993884 . . .
cos θ ‖v‖ ‖w‖ = 27

~v · ~w = 3 ∗ 5 + 3 ∗ 4 = 27
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Two “Versions” of the Dot Product — Are They The Same?!?
Examples...
Lecture –Book Roadmap

Are They The Same?!? Example #4/4

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

v=(3,1), w=(0,5), cos( θ)=0.316228

‖~v‖ =
√
32 + 12 =

√
10

‖~w‖ =
√
02 + 52 =

√
25

cos θ = 0.316228 . . .
cos θ ‖v‖ ‖w‖ = 5

~v · ~w = 3 ∗ 0 + 1 ∗ 5 = 5
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Two “Versions” of the Dot Product — Are They The Same?!?
Examples...
Lecture –Book Roadmap

OK, We Feel Better Now...

Whereas examples are NOT proof; it certainly seems like the two
expressions agree.

Most of the time the first definition (using sums-of-products) is the most
natural to work with.

However, we can use the equivalence of the two expressions

n∑

k=1

vkwk = ~v · ~w = cos θ ‖~v‖ ‖~w‖

to...

Compute cos θ

cos θ =
1

‖~v‖ ‖~w‖
n∑

k=1

vkwk
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Basic Vector Operations
The Dot / Inner Product — Competing Expressions

Two “Versions” of the Dot Product — Are They The Same?!?
Examples...
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

1.1 §2.2
1.2 §1.1, §1.3, §2.1, §2.3
1.3 §1.1, §1.2, §1.3, §2.1, §2.3
1.4 §1.1–§1.3, §2.1–§2.3

Next major topic: “Linear Transformations” ([GS5–§8.1-§8.3])
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Supplemental Material Metacognitive Reflection

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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