Math 254: Introduction to Linear Algebra Notes #1.4 — Matrix–Vector Fundamentals Wrapup

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2022

(Revised: January 18, 2022)

-(1/19)

Peter Blomgren (blomgren@sdsu.edu) 1.4. Matrix-Vector Fundamentals Wrapup

Outline

- Student Learning Objectives
 SLOs: 1.4 Fundamentals Wrapup
- Basic Vector Operations
 Definitions & Properties
- 3 The Dot / Inner Product Competing Expressions
 - Two "Versions" of the Dot Product Are They The Same?!?
 - Examples...
 - Lecture Book Roadmap
- 4 Supplemental Material
 - Metacognitive Reflection

SLOs 1.4

After this lecture you should:

- Know the functional definitions of the fundamental vector algebra operations
- Know the two ways to compute (inner) *dot products* of vectors
- Be able to compute the *norm* (length) of a vector
- Know what *unit vectors* are
- Understand *Ortogonality of Vectors*, and the relation to the dot product

Mostly a "formal review" of what we have done; with some new language added.

Vectors

Previously, we have defined vectors as matrices with only one column:

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n \equiv \mathbb{R}^{n \times 1};$$

where the scalars v_k , k = 1, ..., n are the *components of the vector*.

Vector- and matrix-algebra is essentially the "same." However, there is some "language" (properties) which only apply to vectors (matrices).

Here, we quickly go over some basic vector definitions and properties.

Vector Operations

Definition (Vector Addition)

The sum of $\vec{v} \in \mathbb{R}^n$ and $\vec{w} \in \mathbb{R}^n$ is defined component-wise, *i.e.* if

$$\vec{z}=\vec{v}+\vec{w},$$

then $\vec{z} \in \mathbb{R}^n$, and $z_k = v_k + w_k$, $k \in \{1, \ldots, n\}$.

Definition (Scalar-Vector Multiplication) Let $\vec{v} \in \mathbb{R}^n$ and $\rho \in \mathbb{R}$, then

$$\vec{z} = \rho \vec{v}$$

gives $\vec{z} \in \mathbb{R}^n$, and $z_k = \rho v_k$, $k \in \{1, \ldots, n\}$.

Peter Blomgren (blomgren@sdsu.edu) 1.4. Matrix-Vector Fundamentals Wrapup

— (5/19)

Vector Operations

Negative, Difference

Definition (The *Negative (Opposite)* of a Vector (also "Additive Inverse")) Using previous definitions:

$$-ec{v}\equiv (-1)ec{v}$$

Definition (Vector Difference) For $\vec{v} \in \mathbb{R}^n$ and $\vec{w} \in \mathbb{R}^n$: $\vec{z} = \vec{v} - \vec{w} \equiv \vec{v} + (-\vec{w}),$ so that $\vec{z} \in \mathbb{R}^n$, and $z_k = v_k - w_k$, $k \in \{1, \dots, n\}$

Definition (The Zero vector)

 $\vec{0} \in \mathbb{R}^n$ is the vector with *n* components; all of which are 0.

- (6/19)

Summary of Vector Algebra Rules

Fundamental Rules of Vector Algebra	—	(these make \mathbb{R}^n a "Vector Space")	
The following formulas hold $\forall \ ec{u}, \ ec{v}, \ ec{w} \in \mathbb{R}^n$ and $\forall \ c, \ k \in \mathbb{R}$:			
1 Addition is associative [†] : $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$			
2 Addition is <i>commutative</i> [‡] : $\vec{u} + \vec{v} = \vec{v} + \vec{u}$			
$\vec{3} \vec{\mathbf{v}} + \vec{0} = \vec{\mathbf{v}}$		$\vec{0}$ is the "Additive Identity"	
④ $\forall ec{v} \in \mathbb{R}^n$, \exists a unique $ec{x} \in \mathbb{R}^n$: $ec{v}$ +	$\vec{x} = \vec{0}; \ \vec{x} = -\vec{v}.$	(-v) is the "Additive Inverse"	
		distributive property	
$\mathbf{6} \ (c+k)\vec{v}=c\vec{v}+k\vec{v}$		distributive property	
$\bigcirc c(kec v)=(ck)ec v$			
$8 \ 1 \vec{\mathbf{v}} = \vec{\mathbf{v}}$		1 is the "Multiplicative Identity"	

These rules "follow directly" from the propertial of real numbers (scalars), and the component-by-component definition of addition (and subtraction) of vectors.

- (7/19)

[†] Grouping does not matter.

[‡] Order does not matter.

Geometric Interpretation: Parallel Vectors

Definition (Parallel Vectors)

We say that two vectors \vec{v} and \vec{w} are **parallel** if one of them is a scalar multiple of the other.

Recall: By definition, all our vectors go through the origin, so they cannot be parallel and not intersect.

By this definition the zero-vector is parallel to every vector, since

$$\vec{0} = 0\vec{v}$$
.

Note: Linear-Algebra-Parallel is slightly different from (a special case of) Geometric-Parallel.

Rules for Dot Products

Rewind (Dot product of vectors)

1

Consider two vectors \vec{v} , and \vec{w} , both with *n* components (that is v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_n). The **dot product** is defined as the sum of the element-wise products:

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{k=1}^n v_k w_k$$

Rules for Dot Products

The following holds $\forall \vec{v}, \vec{u}, \vec{w}$ with *n* components; and $\forall k \in \mathbb{R}$:

1
$$\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$$
commutative2 $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$ distributive property3 $(k\vec{v}) \cdot \vec{w} = k(\vec{v} \cdot \vec{w})$ 4 $\forall v \neq \vec{0} : \vec{v} \cdot \vec{v} > 0$

Thinking in Geometrical Terms...

Definition (Length / Norm) (2-norm, $\|\vec{x}\|_2$) The *length* (or *norm*), of a vector $\vec{x} \in \mathbb{R}^n$ is denoted $\|\vec{x}\|$, and defined by

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Definition (Unit Vector)

A vector $\vec{u} \in \mathbb{R}^n$ is called a *unit vector* if $\|\vec{u}\| = 1$, *i.e.* the length of the vector is 1.

Definition (Unit Sphere / Circle) The collection of all $\vec{u} \in \mathbb{R}^n$ with $||\vec{u}|| = 1$, is called the *unit sphere* (in \mathbb{R}^n); when n = 2 the we tend to call it the *unit circle*.

Peter Blomgren (blomgren@sdsu.edu) 1.4. Matrix-Vector Fundamentals Wrapup — (10/19)

SAN DIEGO STATE

Orthogonality & An Alternative Expression for the Dot Product

Definition (Orthogonality of Vectors)

Two vectors \vec{v} , $\vec{w} \in \mathbb{R}^n$ are called *orthogonal* or *perpendicular* if $\vec{v} \cdot \vec{w} = 0$.

In vector spaces (here \mathbb{R}^n), orthogonality is *always* defined with respect to the inner product (here, the dot product).

Definition (Geometric Interpretation of the Dot Product) If \vec{v} and $\vec{w} \in \mathbb{R}^n$ are two non-zero vectors, then

$$\vec{v} \cdot \vec{w} = \cos \theta \| \vec{v} \| \| \vec{w} \|$$

where θ is the angle between the vectors \vec{v} and \vec{w} .

We need some figures and examples...

Two "Versions" of the Dot Product — Are They The Same?!? Examples... Lecture – Book Roadmap

Two "Versions" of the Dot Product — Are They The Same?!?

We have two "competing" expressions for the dot-product:

Definition (Dot Product of Vectors)

Consider two vectors \vec{v} , and \vec{w} , both with *n* components (that is v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_n). The **dot product** is defined as the sum of the element-wise products:

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{k=1}^n v_k w_k$$

Definition (Geometric Interpretation of the Dot Product)

If \vec{v} and $\vec{w} \in \mathbb{R}^n$ are two non-zero vectors, then

$$\vec{\mathbf{v}}\cdot\vec{\mathbf{w}}=\cos\theta\,\|\vec{\mathbf{v}}\|\,\|\vec{\mathbf{w}}\|,$$

where θ is the angle between the vectors \vec{v} and \vec{w} .

It is NOT obvious that these give the same values...

Two "Versions" of the Dot Product — Are They The Same?!? Examples... Lecture – Book Roadmap

Are They The Same?!?

SAN DIEGO STATE UNIVERSITY

Two "Versions" of the Dot Product — Are They The Same?!? Examples... Lecture – Book Roadmap

Are They The Same?!?

Two "Versions" of the Dot Product — Are They The Same?!? Examples... Lecture – Book Roadmap

Are They The Same?!?

SAN DIEGO STATE UNIVERSITY

Two "Versions" of the Dot Product — Are They The Same?!? Examples... Lecture – Book Roadmap

Are They The Same?!?

- (16/19)

Two "Versions" of the Dot Product — Are They The Same?!? Examples... Lecture – Book Roadmap

OK, We Feel Better Now ...

Whereas examples are NOT proof; it certainly seems like the two expressions agree.

Most of the time the first definition (using sums-of-products) is the most natural to work with.

However, we can use the equivalence of the two expressions

$$\sum_{k=1}^{n} v_k w_k = \vec{v} \cdot \vec{w} = \cos \theta \|\vec{v}\| \|\vec{w}\|$$

to...

Compute $\cos \theta$

$$\cos\theta = \frac{1}{\|\vec{v}\| \|\vec{w}\|} \sum_{k=1}^{n} v_k w_k$$

SAN DIEGO STATE UNIVERSITY

Two "Versions" of the Dot Product — Are They The Same?!? Examples... Lecture – Book Roadmap

Lecture – Book Roadmap

Lecture	Book, [GS5-]
1.1	§2.2
1.2	$\S1.1,\ \S1.3,\ \S2.1,\ \S2.3$
1.3	§1.1, §1.2, §1.3, §2.1, §2.3
1.4	${1.1-51.3}, {2.1-52.3}$

Next major topic: "Linear Transformations" ([GS5-§8.1-§8.3])

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned	Almost there	Huh?!?	
Right After Lecture			
A.C		•	
After Thinking / Office Hours / SI-session			
After Reviewing for Quiz/Midterm/Final			