Math 254：Introduction to Linear Algebra

Notes \＃1．4－Matrix－Vector Fundamentals Wrapup

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

Spring 2022
（Revised：January 18，2022）

Outline
(1) Student Learning Objectives

- SLOs: 1.4 Fundamentals Wrapup
(2) Basic Vector Operations
- Definitions \& Properties
(3) The Dot / Inner Product - Competing Expressions
- Two "Versions" of the Dot Product - Are They The Same?!?
- Examples...
- Lecture-Book Roadmap
(4) Supplemental Material
- Metacognitive Reflection

SLOs 1.4

After this lecture you should:

- Know the functional definitions of the fundamental vector algebra operations
- Know the two ways to compute (inner) dot products of vectors
- Be able to compute the norm (length) of a vector
- Know what unit vectors are
- Understand Ortogonality of Vectors, and the relation to the dot product

Mostly a "formal review" of what we have done; with some new language added.

Vectors

Previously, we have defined vectors as matrices with only one column:

$$
\vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \in \mathbb{R}^{n} \equiv \mathbb{R}^{n \times 1}
$$

where the scalars $v_{k}, k=1, \ldots, n$ are the components of the vector.

Vector- and matrix-algebra is essentially the "same." However, there is some "language" (properties) which only apply to vectors (matrices).
Here, we quickly go over some basic vector definitions and properties.

Vector Operations

Definition (Vector Addition)

The sum of $\vec{v} \in \mathbb{R}^{n}$ and $\vec{w} \in \mathbb{R}^{n}$ is defined component-wise, i.e. if

$$
\vec{z}=\vec{v}+\vec{w},
$$

then $\vec{z} \in \mathbb{R}^{n}$, and $z_{k}=v_{k}+w_{k}, k \in\{1, \ldots, n\}$.

Definition (Scalar-Vector Multiplication)
Let $\vec{v} \in \mathbb{R}^{n}$ and $\rho \in \mathbb{R}$, then

$$
\begin{aligned}
\vec{z} & =\rho \vec{v} \\
\text { gives } \vec{z} \in \mathbb{R}^{n} \text {, and } z_{k}=\rho v_{k}, k & \in\{1, \ldots, n\} .
\end{aligned}
$$

Vector Operations

Definition (The Negative (Opposite) of a Vector (also "Additive Inverse"))
Using previous definitions:

$$
-\vec{v} \equiv(-1) \vec{v}
$$

Definition (Vector Difference)
For $\vec{v} \in \mathbb{R}^{n}$ and $\vec{w} \in \mathbb{R}^{n}$:

$$
\vec{z}=\vec{v}-\vec{w} \equiv \vec{v}+(-\vec{w}),
$$

so that $\vec{z} \in \mathbb{R}^{n}$, and $z_{k}=v_{k}-w_{k}, k \in\{1, \ldots, n\}$

Definition (The Zero vector)
$\overrightarrow{0} \in \mathbb{R}^{n}$ is the vector with n components; all of which are 0 .

Summary of Vector Algebra Rules

Fundamental Rules of Vector Algebra - (these make \mathbb{R}^{n} a "Vector Space")
The following formulas hold $\forall \vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$ and $\forall c, k \in \mathbb{R}$:
(1) Addition is associative ${ }^{\dagger}:(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(2) Addition is commutative ${ }^{\ddagger}: \vec{u}+\vec{v}=\vec{v}+\vec{u}$
(3) $\vec{v}+\overrightarrow{0}=\vec{v} \overrightarrow{0}$ is the "Additive Identity"
(4) $\forall \vec{v} \in \mathbb{R}^{n}$, \exists a unique $\vec{x} \in \mathbb{R}^{n}: \vec{v}+\vec{x}=\overrightarrow{0} ; \vec{x}=-\vec{v} . \quad(-v)$ is the "Additive Inverse"
(5) $k(\vec{v}+\vec{w})=k \vec{v}+k \vec{w}$. distributive property
(6) $(c+k) \vec{v}=c \vec{v}+k \vec{v}$ distributive property
(7) $c(k \vec{v})=(c k) \vec{v}$
(8) $1 \vec{v}=\vec{v}$

1 is the "Multiplicative Identity"

These rules "follow directly" from the propertial of real numbers (scalars), and the component-by-component definition of addition (and subtraction) of vectors.
\dagger Grouping does not matter.
\ddagger Order does not matter.

Geometric Interpretation: Parallel Vectors

Definition (Parallel Vectors)
We say that two vectors \vec{v} and \vec{w} are parallel if one of them is a scalar multiple of the other.

Recall: By definition, all our vectors go through the origin, so they cannot be parallel and not intersect.

By this definition the zero-vector is parallel to every vector, since

$$
\overrightarrow{0}=0 \vec{v} .
$$

Note: Linear-Algebra-Parallel is slightly different from (a special case of) Geometric-Parallel.

The Dot / Inner Product - Competing Expressions

Rules for Dot Products

Rewind (Dot product of vectors)
Consider two vectors \vec{v}, and \vec{w}, both with n components (that is $v_{1}, v_{2}, \ldots, v_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$). The dot product is defined as the sum of the element-wise products:

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}=\sum_{k=1}^{n} v_{k} w_{k}
$$

Rules for Dot Products

The following holds $\forall \vec{v}, \vec{u}, \vec{w}$ with n components; and $\forall k \in \mathbb{R}$:
(1) $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$
commutative distributive property
(3) $(k \vec{v}) \cdot \vec{w}=k(\vec{v} \cdot \vec{w})$
(4) $\forall v \neq \overrightarrow{0}: \vec{v} \cdot \vec{v}>0$

Thinking in Geometrical Terms...

Definition (Length / Norm)
(2-norm, $\|\vec{x}\|_{2}$)
The length (or norm), of a vector $\vec{x} \in \mathbb{R}^{n}$ is denoted $\|\vec{x}\|$, and defined by

$$
\|\vec{x}\|=\sqrt{\vec{x} \cdot \vec{x}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}} .
$$

Definition (Unit Vector)
A vector $\vec{u} \in \mathbb{R}^{n}$ is called a unit vector if $\|\vec{u}\|=1$, i.e. the length of the vector is 1 .

Definition (Unit Sphere / Circle)
The collection of all $\vec{u} \in \mathbb{R}^{n}$ with $\|\vec{u}\|=1$, is called the unit sphere (in \mathbb{R}^{n}); when $n=2$ the we tend to call it the unit circle.

Orthogonality \& An Alternative Expression for the Dot Product
Definition (Orthogonality of Vectors)
Two vectors $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ are called orthogonal or perpendicular if $\vec{v} \cdot \vec{w}=0$.

In vector spaces (here \mathbb{R}^{n}), orthogonality is always defined with respect to the inner product (here, the dot product).

Definition (Geometric Interpretation of the Dot Product) If \vec{v} and $\vec{w} \in \mathbb{R}^{n}$ are two non-zero vectors, then

$$
\vec{v} \cdot \vec{w}=\cos \theta\|\vec{v}\|\|\vec{w}\|
$$

where θ is the angle between the vectors \vec{v} and \vec{w}.
We need some figures and examples...

Two "Versions" of the Dot Product - Are They The Same?!?

We have two "competing" expressions for the dot-product:

Definition (Dot Product of Vectors)
Consider two vectors \vec{v}, and \vec{w}, both with n components (that is $v_{1}, v_{2}, \ldots, v_{n}$ and $\left.w_{1}, w_{2}, \ldots, w_{n}\right)$. The dot product is defined as the sum of the element-wise products:

$$
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}=\sum_{k=1}^{n} v_{k} w_{k}
$$

Definition (Geometric Interpretation of the Dot Product)
If \vec{v} and $\vec{w} \in \mathbb{R}^{n}$ are two non-zero vectors, then

$$
\vec{v} \cdot \vec{w}=\cos \theta\|\vec{v}\|\|\vec{w}\|
$$

where θ is the angle between the vectors \vec{v} and \vec{w}.

It is NOT obvious that these give the same values...

SAN DIIGO Stati
UNIVERSITY

Two "Versions" of the Dot Product - Are They The Same?!? Examples...
Lecture-Book Roadmap

Are They The Same?!?

Example \#1/4

$$
\begin{aligned}
\|\vec{v}\| & =\sqrt{1^{2}+4^{2}}=\sqrt{17} \\
\|\vec{w}\| & =\sqrt{3^{2}+2^{2}}=\sqrt{13} \\
\cos \theta & =0.739940 \ldots \\
\cos \theta\|v\|\|w\| & =11 \\
\vec{v} \cdot \vec{w} & =1 * 3+4 * 2=11
\end{aligned}
$$

Two "Versions" of the Dot Product - Are They The Same?!? Examples...
Lecture - Book Roadmap

Are They The Same?!?

Example \#2/4

San Difgo State
UNIVERSITY

Two "Versions" of the Dot Product - Are They The Same?!? Examples...
Lecture-Book Roadmap

Are They The Same?!?

Example \#3/4

$$
\begin{aligned}
\|\vec{v}\| & =\sqrt{3^{2}+3^{2}}=\sqrt{18} \\
\|\vec{w}\| & =\sqrt{5^{2}+4^{2}}=\sqrt{41} \\
\cos \theta & =0.993884 \ldots \\
\cos \theta\|v\|\|w\| & =27 \\
\qquad \vec{v} \cdot \vec{w} & =3 * 5+3 * 4=27
\end{aligned}
$$

Are They The Same?!?

Two "Versions" of the Dot Product - Are They The Same?!? Examples...
Lecture-Book Roadmap
Example \#4/4

$$
\begin{aligned}
\|\vec{v}\| & =\sqrt{3^{2}+1^{2}}=\sqrt{10} \\
\|\vec{w}\| & =\sqrt{0^{2}+5^{2}}=\sqrt{25} \\
\cos \theta & =0.316228 \ldots \\
\cos \theta\|v\|\|w\| & =5 \\
\qquad \vec{v} \cdot \vec{w} & =3 * 0+1 * 5=5
\end{aligned}
$$

OK, We Feel Better Now...

Whereas examples are NOT proof; it certainly seems like the two expressions agree.

Most of the time the first definition (using sums-of-products) is the most natural to work with.

However, we can use the equivalence of the two expressions

$$
\sum_{k=1}^{n} v_{k} w_{k}=\vec{v} \cdot \vec{w}=\cos \theta\|\vec{v}\|\|\vec{w}\|
$$

to...
Compute $\cos \theta$

$$
\cos \theta=\frac{1}{\|\vec{v}\|\|\vec{w}\|} \sum_{k=1}^{n} v_{k} w_{k}
$$

Two "Versions" of the Dot Product - Are They The Same?!?

Lecture-Book Roadmap

Lecture	Book, $[$ GS5-]
1.1	$\S 2.2$
1.2	$\S 1.1, \S 1.3, \S 2.1, \S 2.3$
1.3	$\S 1.1, \S 1.2, \S 1.3, \S 2.1, \S 2.3$
1.4	$\S 1.1-\S 1.3, \S 2.1-\S 2.3$

Next major topic: "Linear Transformations" ([GS5-§8.1-§8.3])

Metacognitive Exercise - Thinking About Thinking \& Learning

