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SLOs: Linear Transformations in Geometry

Student Learning Objectives Challenge Questions :: ing Deeper

SLOs 2.2 Linear Transformations in Geometry

After this lecture you should:

@ Know and be able to recognize the Matrix Forms for:
@ scaling,
e rotation,
o reflection,
o shear.
@ Be the Inter-Galactic Grand Emperor® of Orthogonal
Projections —
@ know the formula for projection onto a line, and the geometric
interpretation

@ Be able to perform Reflections Across a Line

o be able to derive the reflection formula using the orthogonal
projection formula

* Yes, it is important! DR
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Student Learning Objectives

MATH| Challenge Question Just for “fun”

Last time we defined

Theorem (Linear Transforms)

A transformation T : R™ +— R" is linear if and only if
@ Vector Addition —
T(V+w)=T(V)+ T(w), VV,weR™ and
@ Scalar Multiplication —
T(kV) = kT(V), VvV E€R™, andVk € R.

by it is not necessary to restrict this definition to vectors. We can say:

Theorem (Linear Transforms (Generalized))

A transformation T : V +— W s linear if and only if
@ Addition —
T(vi+w)=T(wx1)+ T(v), Vvi,w €V, and
@ Scalar Multiplication —
T(kv)=kT(v), VveV,andVkeR.

SAN DIEGO STATE
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Student Learning Objectives

: MATH| Challenge Question Just for “fun”

Challenge Question
Keeping the generalized linear transform in mind, can you think of
an example where V and W are NOT vector spaces (R”, R™)?

What is a “Challenge Question?”
It is a question which stretches beyond what we “know” at
this stage in the class. Some challenge questions will be “an-
swered” later in the semester, and some in future class(es), e.g.
Math 524 and Math 543.

Will “Challenge Questions” show up on the tests/homework?
No... Well, if a question is answered later in the semester, it is
fair game. (but not until then)
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Linear Transformations in Geometry InerodnctionIbYIFiares

Collecting and Formalizing

The Geometry of Linear Transforms Rotations

We have seen [NOTES#2.1; ASSOCIATED MOVIES| that the matrix
1| . . . .
[(1) 0] gives a counter-clockwise rotation by /2 (90°); in

general, a matrix of the form A(6) € R?:

A9) = [cos@ —sinﬁ] A [x] _ [xcosﬁ—ysin@]

sinf  cosf y xsinf + y cos 8

defines a counter-clockwise rotation by 6:

15 15 Rotating with A(1  #/8) 15 Rotating with A(3  #/8) 15 Rotating with A(5  /8)
1 1 1 1

05 i g /g E 05 W 05 w 05
0 0 0 0

0.5 0.5 05 0.5
1 1 1 1

8 1 0 1 s 1 0 1 8 1 0 1 8 1 0
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Linear Transformations in Geometry

Introduction by Figures
Collecting and Formalizing

The Geometry of Linear Transforms Scaling
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When A is a multiple of the identity matrix, « Ll) ﬂ then all

vectors are scaled by the factor a
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nsformations in Geometry

Introduction by Figures
Collecting and Formalizing

The Geometry of Linear Transforms Projection
is . 1=(o 1) . 1=(5Y)
1 1 1
0.5 0.5 05
0 0 _— [
-0.5 0.5 0.5
-1 - -1

When A € R™", and rank(A) < n; the linear transformation AxX is a
projection onto a subspace of R”. Here n =2 and rank(A) = 1:

— (i) 10 rojects onto the x-axis: L0 X xt,
o of P 1o of |y| T |o|’

— (ii) 00 projects onto the y-axis: 0 0pix) _ 10
0 1 10 1) |y y|
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Linear Transformations in Geometry et by A

Collecting and Formalizing

The Geometry of Linear Transforms Reflection

-(31) G e(nd)

4 [ 1 o 4 [) 1 Bl [) 1 : 4 0 1
Here we see examples of reflections;

— (i) _(1) ﬂ reflects about the y-axis; and

— (i) 0 _ﬂ reflects about the x-axis; and

— (iii) | 4 _(1)} reflects about the line y = —x.
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Linear Transformations in Geometry

Introduction by Figures
Collecting and Formalizing

The Geometry of Linear Transforms
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Here we see examples of shear;

— (i) Ll) Oﬂ gives horizontal shear; and

.. 1 0| . .
— (ii) {0.4 1} gives vertical shear.
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Linear Transformations in Geometry et by A

Collecting and Formalizing

The Geometry of Linear Transforms Combinations

All these operations (+ clock-wise rotation) can be combined in a
multitude of ways; the most commonly appearing combination
being scaling+rotation, e.g.

cosf® —sind| |0.5 0| |05 0| [cos@ —sinf| [0.5cosf —0.5sin6
sin 6 cos 6 0 05| | 0 0.5]|sind cos 6 0.5sin6 0.5cosf

In this case, order does not matter; we can rotate-then-scale, or
scale-then-rotate, or scale-and-rotate-at-the-same-time

The scaling and rotation matrices commute.

SAN DIEGO STATE
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Linear Transformations in Geometry el Gy Fcs

Collecting and Formalizing

Scaling

0 k

_,_kOXl_kxl_Xl__,
= o W [a] = ] =+ (3] =
We call this a dilation (enlargement) when k > 1, and a
contraction when 0 < k < 1; when kK = 0 you get a contraction to

a point 0; when k <0 you get a reflection in each coordinate plane
followed by a scaling by |k|.

Vk > 0, the matrix M = [k O] defines a scaling by k:

Scaling generalizes to R” in the most straight-forward way; scaling
matrices are of the form k /,, where I, is the identity matrix of size n.
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Linear Transformations in Geometry el Gy Fcs
g

Collecting and Formalizing

Rotations

Theorem (Rotations)

The matrix of a counter-clockwise rotation in R? through an angle
0 is

sind cos @

[cos 6 —sin «9]

b
Conversely, any matrix of this form represents a rotation.

Note that this is a matrix of the form [a _Z] , where a° + b = 1.

For clock-wise rotations, change 8 — —0.
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Linear Transformations in Geometry el Gy Fcs
g

Collecting and Formalizing

Combined Rotations and Scaling

Theorem (Rotation Combined with a Scali

. a . .
A matrix of the form [ b a] represents a rotation combined

with a scaling, with r = v/a? + b2, and tan 0 = b/a we can write
the matrix in the equivalent form(s)

a —b| |rcosf® —rsinf|  |cosf) —sind
b a|l” |rsin® rcosf| " "|sin@ cosf|

SAN DIEGO STATE
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Linear Transformations in Geometry el Gy Fcs
g

Collecting and Formalizing

Theorem (Horizontal and Vertical Shears)

The matrix of a horizontal shear is of the form [(1) ﬂ , and the
. . . 10 .
matrix of a vertical shear is of the form K1l where k is any

constant.

“[Mechanical shear is] a strain in the structure of a substance
produced by pressure, when its layers are laterally shifted in
relation to each other.” — Google.

More info: — Math, Engineering, Physics, Geology (Earthquakes), Aviation...
https://en.wikipedia.org/wiki/Shear
https://en.wikipedia.org/wiki/Shear matrix
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Orthogonal Projections

Orthogonal Projections, and Reflections Reflections

Orthogonal Projections

Ponder a line L = {c1x1 + coxo = 0 : x1, x2 € R} in the plane (R?);
any vector X € R? can we written uniquely as

% =xl + %t

where Xl is parallel to the line L, and Xt is orthogonal
(perpendicular) to L.

The transformation T(X) = X!l from R? to R? is called the orthog-
onal projection of X onto L; sometimes denoted by proj; (X).

The projection is essentially the shadow X casts on L if we shine a
light on L (where are the light-rays are perfectly orthogonal to L).
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Orthogonal Projections

Orthogonal Projections, and Reflections Reflections

Orthogonal Projections

-5 0 5
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Orthogonal Projections

Orthogonal Projections, and Reflections Reflections

Orthogonal Projections Formulas

We can describe the Orthogonal Projection using the dot product...

First, let w # 0 be any vector parallel to L. We must have

=

< = kw,

for some k € R. The “leftovers” are

)—(»L

Xy

— %% =% kw,

but X~ must be perpendicular to L; so that [Deriition oF

ORTHOGONALITY]
(X — kw)-w = 0.

Let's digest that for 10719 seconds...

SAN DIEGO STATE
UNIviRSITY
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I . th | Projecti
Orthogonal Projections, and Reflections @i ogonal Frojections
Reflections

Orthogonal Projections

Formulas
Using the [DistriButive Property] Of the dot product:

(X—kw) - w=0 < x-w—k(w-w)=0,
which leads to an expression for k:

=
x|
s

1
S

We conclude with the

onto a line, L

X-w\ . :
—— | w, where w is any point on L.
W W

SAN DIEGO STATE
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Orthogonal Projections

Orthogonal Projections, and Reflections Reflections

Orthogonal Projections Formulas

Note that w - W is [DeriNITION OF VECTOR LENGTH] just ||VT/’||2

If we build the projection with a vector of length 1 (unit vector,
||d|| = 1), the projection formula simplifies to

Xl = proj, (X) = ki = (- &) &.

You can always “make” a unit vector for this purpose, by re-scaling

w to be length 1:
1

U= —=

—

3!

SAN DIEGO STATE
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Orthogonal Projections

Orthogonal Projections, and Reflections Reflections

Orthogonal Projections Yeah, it's Linear! Formulas

Il
x
<y

_ C D o o u
<= proj, (X) =(X-0)ud= (au + xoup) [Uj

X1 uf + Xxourun| u% uius | | X1
X1Uils + Xo u% Uy U u% X2 |
N —— N~
A X

We can express the projection as a matrix-vector multiplication;
therefore it is a linear transformation.
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Orthogonal Projections, and Reflections (i o] (Pl e

Reflections

Orthogonal Projections

Full Definition

Consider a line L = {c1x1 + cox2 = 0 : x1,x2 € R} in the plane (R?); any vector
X € R? can we written uniquely as

% =xl 4+ =t
where 3!l is parallel to the line L, and X+ is orthogonal (perpendicular) to L.

The transformation T(X) = X/l from R? to R? is called the orthogonal projection of X
onto L; sometimes denoted by proj, (X). If w # 0 is any vector parallel to L, then

[ —

w - w

7l = proj, () = kw = (X'W>w

The transformation is linear, with matrix

1

2
_ wi  w Wg
Wi+ wi [wiwe w3

AN DIEGO STATE
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Orthogonal Projections

Orthogonal Projections, and Reflections Reflections

Reflection across L
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P . Ortt al Projecti
Orthogonal Projections, and Reflections OB QISCEONS
Reflections

Hey, Reflections are “Easy” if we know Projections!

We realize that
x=xl+xt & HM=x-xt & —xt=xl-x

where
o Xl is the part of X in the direction of L, — proj, ().

@ X is the part of X in the direction orthogonal to L.

X reflected in L must be the same distance “on the other size” of
L, that is

ref,(x) = xl-xt = x-2¢t = 28 -x

SAN DIEGO STATE
UNIviRSITY
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Orthogonal Projections

Orthogonal Projections, and Reflections Reflections

Reflections Full Definition

Definition (Reflections)

Consider a line L = {c1x1 + coxo = 0 : x1,xo0 € R} in the plane (R?), and let
% = %Il + %L be a vector in R2. The linear transformation T(x) = XIl — g+
the reflection of X about L, denoted by

is called

ref; (%) = =l — =L,

We can relate ref; (X) to proj,(X): (here 7€ L: ||d]| = 1)
ref; (X) = 2proj; (X) — X = 2(X - 0)id — X.

The Reflection matrix
2u% -1 2uiup
S = 5
2uiup 2u5 —1

b
represents a reflection about a line.

is of the form [a 72], where a2 + b2 = 1. Conversely, any matrix of this form

SAN DIEGO STATE
UNIviRSITY
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Orthogonal Projections

Orthogonal Projections, and Reflections Reflections

Projections and Reflections in 3D, and Beyond... in B3 we can “fake” it..

Nothing strange happens when you go to higher dimensions...
Let L be a line in R3, and let & be a unit vector parallel to L; again we

can write X = xll + L and
proj,(x) = & = (% d)a
Now, V = Lt is the plane thru the origin which is orthogonal to L.

Writing down the projections to, and reflections across V is fairly
straight-forward

projy(%) = % proj,() = % — (- 1)
ref; (X) = proj(X) — projy(X) = 2proj,;(X) — X =2(X- §)i — X
refy(X) = projy(X) —proj,(X) = —ref (X) = X — 2(X - )i

Projections and reflections in higher dimensions relate to each other just like they do o
in 2 dimensions — that should save some brain-space... &\\DW

UNIviRSITY
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Suggested Problems 2.2

Suggested Problems Lecture —Book Roadmap

Suggested Problems 2.2

Available on Learning Glass videos:
22—1,6,7,9, 12,13, 17, 26

SAN DIEGO STATE
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Suggested Problems 2.2

Suggested Problems esine={506s (ReEEImED

Lecture—Book Roadmap

Lecture Book, [GS5-]

1.1 §2.2

1.2 §1.1, §1.3, §2.1, §2.3

13 §1.1, §1.2, §1.3, §2.1, §2.3
1.4 §1.1-51.3, §2.1-§2.3

2.1 §8.1, §8.2%, 52.57

2.2 §8.1, §8.2*, §4.2%, §4.4*

§2.5* (p.86-88) “Calculating A~! by Gauss-Jordan Elimination”

§4.2° (p.207) “Projection Onto a Line" — (p.210) end of
“Example 2"

§4.4* Example 1, Example 3

§8.2" We will talk about “Basis” / “Bases” soon... don't worry
about those concepts... yet. )

\\\\\\\
\\\\\\\\\\\
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Metacognitive Reflection

Supplemental Material Problem Statements 2.2

Metacognitive Exercise — Thinking About Thinking & Learning

‘ | know / learned ‘

Almost there Huh?!? ‘

‘ Right After Lecture ‘

After Thinking / Office Hours / Sl-session

After Reviewing for Quiz/Midterm/Final ‘

SAN DIEGO STATE
UNIvERSITY
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Metacognitive Reflection
Problem Statements 2.2

Supplemental Material

(2.2.1) Sketch the image of the “L,” described by the two vectors

1 0
0’ 20
under the linear transformation

T(%) = E’ ﬂ %

SAN DIEGO STATE
UNIvERSITY
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Metacognitive Reflection

Supplemental Material Problem Statements 2.2

(2.2.6), (2.2.7)

(2.2.6) Let L be the line in R3 that consists of all scalar multiples of the

2 1
vector |1]| . Find the orthogonal projection of the vector |1| . onto L.
2 1

(2.2.7) Let L be the line in R® that consists of all scalar multiples of the

2 1
vector |1]| . Find the reflection of the vector [1| . about the line L.
2 1
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Metacognitive Reflection

Supplemental Material Problem Statements 2.2

(2.2.9), (2.2.12)

(2.2.9) Interpret the following linear transformation geometrically:

T(%) = B ﬂ %,

(2.2.12) Consider a reflection matrix A and a vector X in R2. We define v = X + AX,
and w = X — AX.
a. Using the definition of a reflection, express A(AX) in terms of X
b. Express AV in terms of V
Express Aw in terms of w
If the vectors V and w are both non-zero, what it the angle between them?

e. If the vector V is non-zero, what is the relation between v and the line L of
reflection?

Draw a sketch showing X, AX, A(AX), V, w, and the line L.

SAN DIEGO STATE
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Metacognitive Reflection

Supplemental Material Problem Statements 2.2

(2.2.13), (2.2.17)

(2.2.13) Suppose a line L in R? contains the unit vector

i= {"1} .
u
Find the matrix A of the linear transformation T(X) = ref;(X). Give the

entries of A in terms of u; and u>. Show that A is of the form Z _g],

where a2 + b2 = 1.

a b

, where a2 + b2 = 1.
b —a
Find two non-zero perpendicular vectors v and w such that AV = v, and
AW = —Ww — write the entries of V and w in terms of a and b) Conclude

that T(X) = AX represents a reflection about the line L spanned by V.

(2.2.17) Consider a matrix A of the form
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Metacognitive Reflection
Problem Statements 2.2

Supplemental Material

(2.2.26) Find the...

a. scaling matrix A that transforms {_ﬂ into [_Z]
. . 2] . 2
b. orthogonal projection matrix B that transforms 3 into 0
. . 0] . 3
c. rotation matrix C that transforms 5 into 4
. 1] . 7
d. shear matrix D that transforms 3 into 3

e. reflection matrix E that transforms [ﬂ into {_g}
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