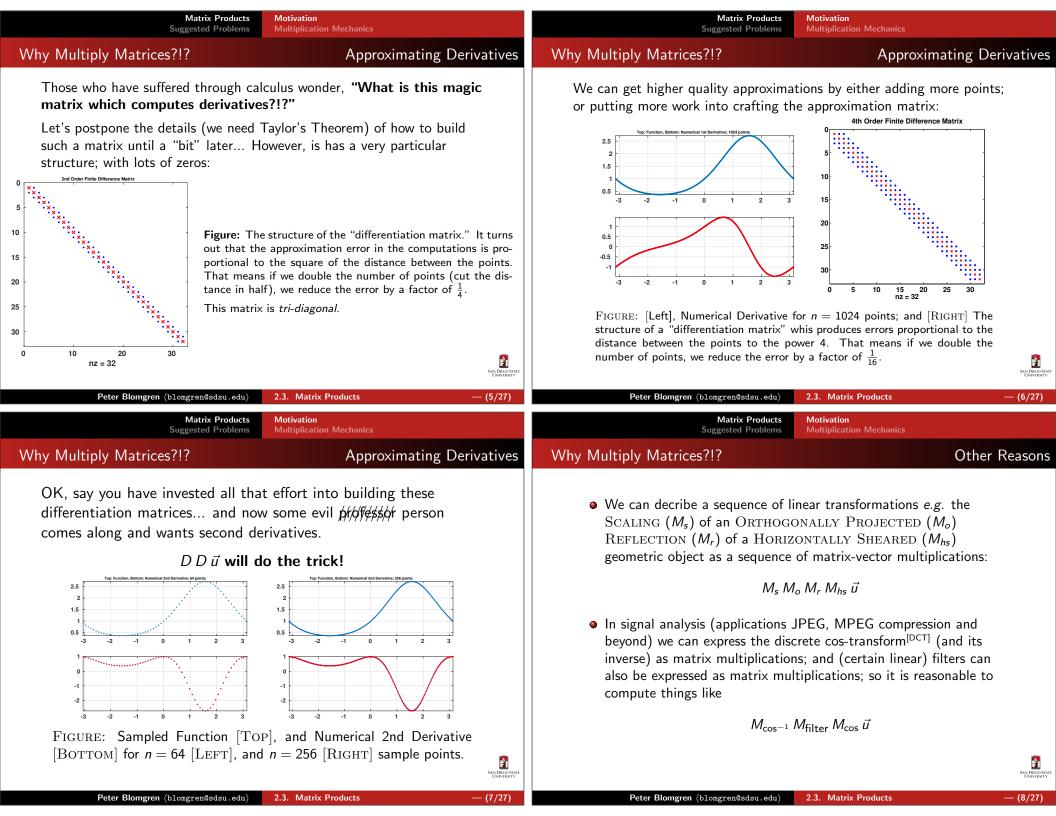
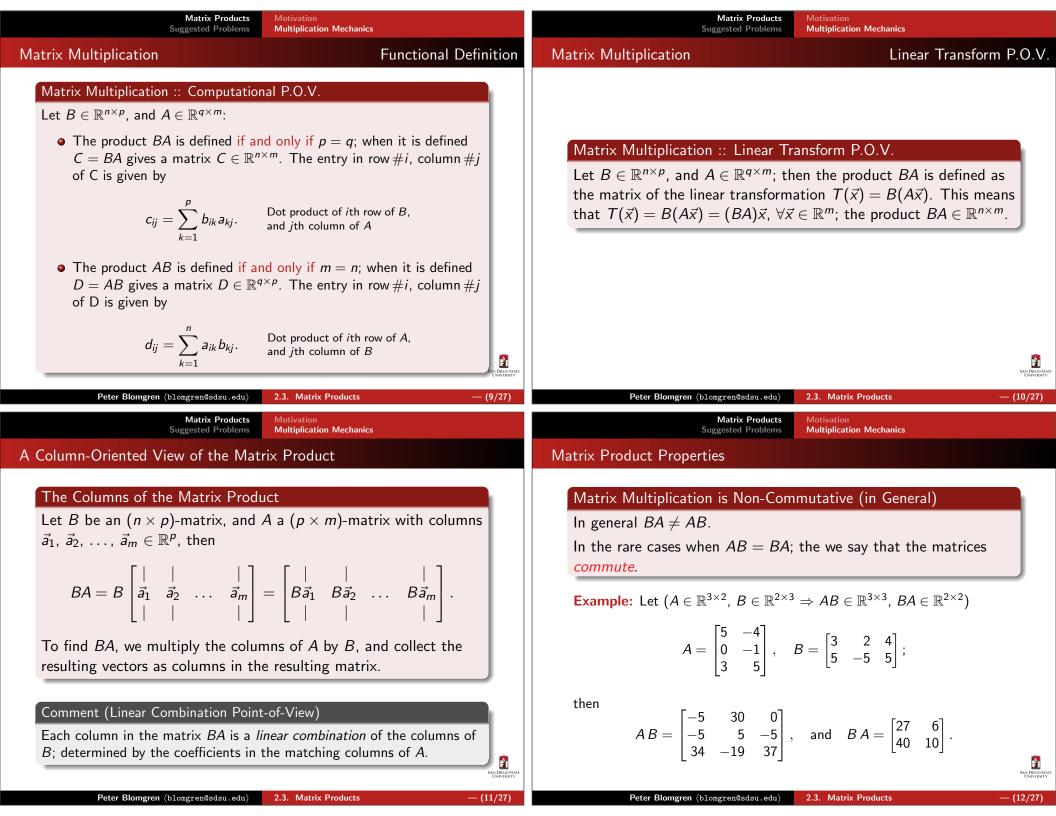
	Outline
Math 254: Introduction to Linear Algebra Notes #2.3 — Matrix Products	 Student Learning Objectives SLOs: Matrix Products
Peter Blomgren (blomgren@sdsu.edu) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/ Bpring 2022 (Revised: January 18, 2022)	 Matrix Products Motivation Multiplication Mechanics Suggested Problems Suggested Problems 2.3 Lecture – Book Roadmap Supplemental Material Metacognitive Reflection Problem Statements 2.3
Swb Direct Start Deter Blomgren (blomgren@sdsu.edu) 2.3. Matrix Products	Peter Blomgren (blomgren@sdsu.edu) 2.3. Matrix Products — (2/27)
Student Learning Objectives SLOs: Matrix Products	Matrix Products Motivation Suggested Problems Multiplication Mechanics
SLOs 2.3	Why Multiply Matrices?!? Approximating Derivatives
 After this lecture you should: Understand the Computational, and Linear Transformation Points-Of-View of Matrix Products Know that Matrix Multiplication is <i>Non-Commutative</i> Know that it is <i>not</i> always possible to multiply two matrices 	It is possible to express the numerical computation of (approximate) derivatives of a sampled function as a matrix-vector product $D\vec{u}$ where \vec{u} is the function computed (sampled) at some number of points:





Matrix Products Suggested Problems Motivation Multiplication Mechanics Another Demonstration of the Non-Commutative Property	Matrix Products Suggested Problems Motivation Multiplication Mechanics Multiplying by the Identity Matrix			
Example: Let $(A, B \in \mathbb{R}^{3 \times 3} \Rightarrow AB, BA \in \mathbb{R}^{3 \times 3})$ $A = \begin{bmatrix} 2 & -1 & 2 \\ 3 & 2 & -5 \\ 3 & -4 & -2 \end{bmatrix}, B = \begin{bmatrix} -5 & 2 & -5 \\ -4 & -2 & -1 \\ 4 & 5 & -1 \end{bmatrix};$ then $AB = \begin{bmatrix} 2 & 16 & -11 \\ -43 & -23 & -12 \\ -7 & 4 & -9 \end{bmatrix}, \text{and} BA = \begin{bmatrix} -19 & 29 & -10 \\ -17 & 4 & 4 \\ 20 & 10 & -15 \end{bmatrix}.$	Multiplying by the Identity Matrix If $A \in \mathbb{R}^{m \times n}$, then $I_m A = A$, and $A I_n = A$ where I_m is the $m \times m$ identity matrix, and I_n the $n \times n$ identity matrix.			
Peter Blomgren (blomgren@sdsu.edu) 2.3. Matrix Products — (13/27)	Peter Blomgren (blomgren@sdsu.edu) 2.3. Matrix Products			
Peter Blomgren (blomgren@sdsu.edu) 2.3. Matrix Products — (13/27) Matrix Products Motivation Suggested Problems Multiplication Mechanics	Peter Blomgren (blomgren@sdsu.edu) 2.3. Matrix Products — (14/27) Matrix Products Motivation Suggested Problems Multiplication Mechanics			
Matrix Multiplication is Associative	Matrix Multiplication is Associative Linear Transformation P.O.V.			
 Let A ∈ ℝ^{n×p}, B ∈ ℝ^{p×q}, and C ∈ ℝ^{q×m}; then clearly The products A B ∈ ℝ^{n×q} and B C ∈ ℝ^{p×m} make sense. Given the resulting sizes, we can take the results and compute (AB)C ∈ ℝ^{n×m}, and A(BC) ∈ ℝ^{n×m}. So, yeah, they are the same sizes but A(BC) ^{???} = (AB)C Indeed, they are and the Linear Transformation P.O.V. of the 	and using the Linear Transformation P.O.V. of the matrix product gives: $T_1(\vec{x}) = ((AB)C)\vec{x} = (AB)(C\vec{x}) = A(B(C\vec{x}))$ and $T_2(\vec{x}) = (A(BC))\vec{x} = A((BC)\vec{x}) = A(B(C\vec{x}))$			
matrix product helps: — we have $T_1(ec x) = ((AB)C)ec x, ext{ and } T_2(ec x) = (A(BC))ec x$	If that makes you unhappy, you can use the computational P.O.V.			

Matrix Products Motivation Suggested Problems Multiplication Mechanics	Matrix Products Motivation Suggested Problems Multiplication Mechanics
Matrix Multiplication is Associative Computational P.O.V.	Distributive Property
Let $A \in \mathbb{R}^{n imes p}$, $B \in \mathbb{R}^{p imes q}$, and $C \in \mathbb{R}^{q imes m}$, then	
$(AB)_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}, (BC)_{k\ell} = \sum_{j=1}^{q} b_{kj} c_{j\ell}$ $((AB)C)_{i\ell} = \sum_{j=1}^{q} (AB)_{ij} c_{j\ell} = \sum_{j=1}^{q} \left[\sum_{k=1}^{p} a_{ik} b_{kj} \right] c_{j\ell} = \sum_{j=1}^{q} \sum_{k=1}^{p} a_{ik} b_{kj} c_{j\ell}$	Distributive Property for Matrices If $A, B \in \mathbb{R}^{n \times p}$ and $C, D \in \mathbb{R}^{p \times m}$, then A(C + D) = AC + AD, and (A + B)C = AC + BC.
$A(BC)_{i\ell} = \sum_{k=1}^{p} a_{ik}(BC)_{k\ell} = \sum_{k=1}^{p} a_{ik} \left[\sum_{j=1}^{q} b_{kj} c_{j\ell} \right] = \sum_{k=1}^{p} \sum_{j=1}^{q} a_{ik} b_{kj} c_{j\ell}$	This can be shown either using the Linear Transform, or the Computational P.O.V. (have "fun!")
and since order of summation does not matter, they are equal.	
Now we're all smiles(?!)	SND DUCO STOT UNIVERSITY
Peter Blomgren (blomgren@sdsu.edu) 2.3. Matrix Products - (17/27)	Peter Blomgren (blomgren@sdsu.edu) 2.3. Matrix Products (18/27)
Matrix Products Motivation	
Suggested Problems Multiplication Mechanics	Matrix Products Suggested Problems 2.3 Suggested Problems Lecture – Book Roadmap
Suggested Problems Multiplication Mechanics	Suggested Problems Lecture – Book Roadmap
Suggested Problems Multiplication Mechanics Scaling If $A \in \mathbb{R}^{n \times p}$, $B \in \mathbb{R}^{p \times m}$, $k \in \mathbb{R}$, then	Suggested Problems Lecture – Book Roadmap Suggested Problems 2.3 Available on Learning Glass videos:

Matrix Products Suggested Problems 2.3 Suggested Problems Lecture – Book Roadmap		Su	Supplemental Material Metacognitive Reflection Problem Statements 2.3		
Lecture–Book Roadmap		Metacognitive Exercise	— Thinking About Th	hinking & Learning	
Lecture Book, [GS5–]		I know / learned	Almost there Right After Lecture	Huh?!?	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	§2.3				
2.1 §8.1, §8.2*, §2.5* 2.2 §8.1, §8.2*, §4.2*, §4.4 2.3 §2.4		Aft	er Thinking / Office Hours /	/ SI-session	
$\S2.5^*$ (p.86–88) "Calculating A^{-1} by Gauss $\S4.2^*$ (p.207) "Projection Onto a Line" – ($\S4.4^*$ Example 1, Example 3 $\S8.2^*$ We will talk about "Basis" / "Bases"	p.210) end of "Example 2"	Af	After Reviewing for Quiz/Midterm/Final		
concepts yet.				See Direo UNIVERS	
Peter Blomgren (blomgren@sdsu.edu)		21/27) Peter Blomgren (1	olomgren@sdsu.edu) 2.3. Matrix		
Supplemental Material	Metacognitive Reflection Problem Statements 2.3	Su		ive Reflection atements 2.3	
(2.3.1), (2.3.3)		(2.3.5), (2.3.7)			
(2.3.1) Compute (if possible) the column-by-column, and <i>(ii)</i> entry-			f possible) the matrix p and <i>(ii)</i> entry-by-entry.		
$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$		$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$		
(2.3.3) Compute (if possible) the column-by-column, and <i>(ii)</i> entry-			(2.3.7) Compute (if possible) the matrix product (i) column-by-column, and (ii) entry-by-entry.		
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$		$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 2 & 1 \end{bmatrix}$	3 1 3	
		See Direction		See Dirac	

Problem Statements 2.3 (2.3.19), (2.3.27), (2.3.28) (2.3.13), (2.3.17)(2.3.13) Compute (if possible) the matrix product (i) column-by-column, and (ii) entry-by-entry.

$$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

(2.3.17) Find all matrices that commute with

Peter Blomgren (blomgren@sdsu.edu)

Supplemental Material

Supplemental Material

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

2.3. Matrix Products

Metacognitive Reflection Problem Statements 2.3

Supplemental Material

Problem Statements 2.3

£

SAN DIEGO

(26/27)

(2.3.19) Find all matrices that commute with

$$A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$$

(2.3.27) Prove the *distributive laws* for matrices:

Peter Blomgren (blomgren@sdsu.edu)

$$A(C+D) = AC + AD$$
, and $(A+B)C = AC + BC$.

(2.3.28) Consider an $n \times p$ matrix A, a $p \times m$ matrix B, and a scalar k. Show that

(kA)B = A(kB) = k(AB)

2.3. Matrix Products

(2.3.33), (2.3.37)

(2.3.33) For the given matrix A, compute $A^2 = AA$, $A^3 = AAA$, and A^4 . Describe the emerging pattern, and use it to find A^{1001} . - Interpret in terms of rotations, reflections, shears, and orthogonal projections.

$$A = egin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}$$

(2.3.37) For the given matrix A, compute $A^2 = AA$, $A^3 = AAA$, and A^4 . Describe the emerging pattern, and use it to find A^{1001} . - Interpret in terms of rotations, reflections, shears, and orthogonal projections.

$$A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Ê SAN DIEG

Ê

SAN DIEGO UNIVERS