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Student Learning Objectives SLOs: Matrix Products

SLOs 2.3

After this lecture you should:

Understand the Computational, and Linear Transformation
Points-Of-View of Matrix Products

Know that Matrix Multiplication is Non-Commutative

Know that it is not always possible to multiply two matrices
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Why Multiply Matrices?!? Approximating Derivatives

It is possible to express the numerical computation of
(approximate) derivatives of a sampled function as a matrix-vector
product D~u where ~u is the function computed (sampled) at some
number of points:
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Top: Function, Bottom: Numerical 1st Derivative; 16 points
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Top: Function, Bottom: Numerical 1st Derivative; 64 points
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Figure: Sampled Function [Top], and Numerical Derivative
[Bottom] for n = 16 [Left], and n = 64 [Right] sample points.
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Why Multiply Matrices?!? Approximating Derivatives

Those who have suffered through calculus wonder, “What is this magic
matrix which computes derivatives?!?”

Let’s postpone the details (we need Taylor’s Theorem) of how to build
such a matrix until a “bit” later... However, is has a very particular
structure; with lots of zeros:

nz = 32
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Figure: The structure of the “differentiation matrix.” It turns
out that the approximation error in the computations is pro-
portional to the square of the distance between the points.
That means if we double the number of points (cut the dis-
tance in half), we reduce the error by a factor of 1

4
.

This matrix is tri-diagonal.
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Why Multiply Matrices?!? Approximating Derivatives

We can get higher quality approximations by either adding more points;
or putting more work into crafting the approximation matrix:
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Top: Function, Bottom: Numerical 1st Derivative; 1024 points
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Figure: [Left], Numerical Derivative for n = 1024 points; and [Right] The
structure of a “differentiation matrix” whis produces errors proportional to the
distance between the points to the power 4. That means if we double the
number of points, we reduce the error by a factor of 1

16
.
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Why Multiply Matrices?!? Approximating Derivatives

OK, say you have invested all that effort into building these
differentiation matrices... and now some evil //////////professor person
comes along and wants second derivatives.

D D ~u will do the trick!
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Top: Function, Bottom: Numerical 2nd Derivative; 64 points
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Top: Function, Bottom: Numerical 2nd Derivative; 256 points
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Figure: Sampled Function [Top], and Numerical 2nd Derivative
[Bottom] for n = 64 [Left], and n = 256 [Right] sample points.
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Why Multiply Matrices?!? Other Reasons

We can decribe a sequence of linear transformations e.g. the
Scaling (Ms) of an Orthogonally Projected (Mo)
Reflection (Mr ) of a Horizontally Sheared (Mhs)
geometric object as a sequence of matrix-vector multiplications:

Ms Mo Mr Mhs ~u

In signal analysis (applications JPEG, MPEG compression and
beyond) we can express the discrete cos-transform[DCT] (and its
inverse) as matrix multiplications; and (certain linear) filters can
also be expressed as matrix multiplications; so it is reasonable to
compute things like

Mcos−1 MfilterMcos ~u
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Matrix Multiplication Functional Definition

Matrix Multiplication :: Computational P.O.V.

Let B ∈ Rn×p, and A ∈ Rq×m:

The product BA is defined if and only if p = q; when it is defined
C = BA gives a matrix C ∈ Rn×m. The entry in row#i , column#j
of C is given by

cij =

p∑

k=1

bikakj .
Dot product of ith row of B,
and jth column of A

The product AB is defined if and only if m = n; when it is defined
D = AB gives a matrix D ∈ Rq×p. The entry in row#i , column#j
of D is given by

dij =
n∑

k=1

aikbkj .
Dot product of ith row of A,
and jth column of B
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Matrix Multiplication Linear Transform P.O.V.

Matrix Multiplication :: Linear Transform P.O.V.

Let B ∈ Rn×p, and A ∈ Rq×m; then the product BA is defined as
the matrix of the linear transformation T (~x) = B(A~x). This means
that T (~x) = B(A~x) = (BA)~x , ∀~x ∈ Rm; the product BA ∈ Rn×m.
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

A Column-Oriented View of the Matrix Product

The Columns of the Matrix Product

Let B be an (n × p)-matrix, and A a (p ×m)-matrix with columns
~a1, ~a2, . . . , ~am ∈ Rp, then

BA = B



| | |
~a1 ~a2 . . . ~am
| | |


 =




| | |
B~a1 B~a2 . . . B~am
| | |


 .

To find BA, we multiply the columns of A by B , and collect the
resulting vectors as columns in the resulting matrix.

Comment (Linear Combination Point-of-View)

Each column in the matrix BA is a linear combination of the columns of
B ; determined by the coefficients in the matching columns of A.
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Matrix Product Properties

Matrix Multiplication is Non-Commutative (in General)

In general BA 6= AB .

In the rare cases when AB = BA; the we say that the matrices
commute.

Example: Let (A ∈ R3×2, B ∈ R2×3 ⇒ AB ∈ R3×3, BA ∈ R2×2)

A =



5 −4
0 −1
3 5


 , B =

[
3 2 4
5 −5 5

]
;

then

AB =



−5 30 0
−5 5 −5
34 −19 37


 , and B A =

[
27 6
40 10

]
.

Peter Blomgren 〈blomgren@sdsu.edu〉 2.3. Matrix Products — (12/27)



Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Another Demonstration of the Non-Commutative Property

Example: Let (A,B ∈ R3×3 ⇒ AB ,BA ∈ R3×3)

A =



2 −1 2
3 2 −5
3 −4 −2


 , B =



−5 2 −5
−4 −2 −1
4 5 −1


 ;

then

AB =




2 16 −11
−43 −23 −12
−7 4 −9


 , and B A =



−19 29 −10
−17 4 4
20 10 −15


 .
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Multiplying by the Identity Matrix

Multiplying by the Identity Matrix

If A ∈ Rm×n, then

Im A = A, and A In = A

where Im is the m ×m identity matrix, and In the n × n identity
matrix.
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Matrix Multiplication is Associative

Let A ∈ Rn×p, B ∈ Rp×q, and C ∈ Rq×m; then clearly

The products AB ∈ Rn×q and B C ∈ Rp×m make sense.

Given the resulting sizes, we can take the results and compute
(AB)C ∈ Rn×m, and A(BC ) ∈ Rn×m.

So, yeah, they are the same sizes... but A(BC )
???
= (AB)C

Indeed, they are... and the Linear Transformation P.O.V. of the
matrix product helps: — we have

T1(~x) = ((AB)C )~x , and T2(~x) = (A(BC ))~x
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Matrix Multiplication is Associative Linear Transformation P.O.V.

... and using the Linear Transformation P.O.V. of the matrix
product gives:

T1(~x) = ((AB)C )~x = (AB)(C~x) = A(B(C~x))

and
T2(~x) = (A(BC ))~x = A((BC )~x) = A(B(C~x))

If that makes you unhappy, you can use the computational P.O.V.
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Matrix Multiplication is Associative Computational P.O.V.

Let A ∈ Rn×p, B ∈ Rp×q, and C ∈ Rq×m, then

(AB)ij =

p∑

k=1

aikbkj , (BC )kℓ =

q∑

j=1

bkjcjℓ

((AB)C )iℓ =

q∑

j=1

(AB)ijcjℓ =

q∑

j=1

[
p∑

k=1

aikbkj

]
cjℓ =

q∑

j=1

p∑

k=1

aikbkjcjℓ

A(BC )iℓ =

p∑

k=1

aik(BC )kℓ =

p∑

k=1

aik




q∑

j=1

bkjcjℓ


 =

p∑

k=1

q∑

j=1

aikbkjcjℓ

... and since order of summation does not matter, they are equal.

Now we’re all smiles(?!)
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Distributive Property

Distributive Property for Matrices

If A,B ∈ Rn×p and C ,D ∈ Rp×m, then

A(C + D) = AC + AD, and

(A+ B)C = AC + BC .

This can be shown either using the Linear Transform, or the
Computational P.O.V. (have “fun!”)
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Matrix Products
Suggested Problems

Motivation
Multiplication Mechanics

Scaling

Scaling

If A ∈ Rn×p, B ∈ Rp×m, k ∈ R, then

(kA)B = A(kB) = k(AB)
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Matrix Products
Suggested Problems

Suggested Problems 2.3
Lecture –Book Roadmap

Suggested Problems 2.3

Available on Learning Glass videos:
2.3 — 1, 3, 5, 7, 13, 17, 19, 27, 28, 33, 37
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Matrix Products
Suggested Problems

Suggested Problems 2.3
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

1.1 §2.2
1.2 §1.1, §1.3, §2.1, §2.3
1.3 §1.1, §1.2, §1.3, §2.1, §2.3
1.4 §1.1–§1.3, §2.1–§2.3
2.1 §8.1, §8.2∗, §2.5∗
2.2 §8.1, §8.2∗, §4.2∗, §4.4∗
2.3 §2.4

§2.5∗ (p.86–88) “Calculating A−1 by Gauss-Jordan Elimination”

§4.2∗ (p.207) “Projection Onto a Line” – (p.210) end of “Example 2”

§4.4∗ Example 1, Example 3

§8.2∗ We will talk about “Basis” / “Bases” soon... don’t worry about those
concepts... yet.
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Supplemental Material
Metacognitive Reflection
Problem Statements 2.3

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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Supplemental Material
Metacognitive Reflection
Problem Statements 2.3

(2.3.1), (2.3.3)

(2.3.1) Compute (if possible) the matrix product (i)
column-by-column, and (ii) entry-by-entry.

[
1 1
0 1

] [
1 2
3 4

]

(2.3.3) Compute (if possible) the matrix product (i)
column-by-column, and (ii) entry-by-entry.

[
1 2 3
4 5 6

] [
1 2
3 4

]
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Supplemental Material
Metacognitive Reflection
Problem Statements 2.3

(2.3.5), (2.3.7)

(2.3.5) Compute (if possible) the matrix product (i)
column-by-column, and (ii) entry-by-entry.



1 0
0 1
0 0



[
a b
c d

]

(2.3.7) Compute (if possible) the matrix product (i)
column-by-column, and (ii) entry-by-entry.



1 0 −1
0 1 1
1 −1 −2





1 2 3
3 2 1
2 1 3
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Supplemental Material
Metacognitive Reflection
Problem Statements 2.3

(2.3.13), (2.3.17)

(2.3.13) Compute (if possible) the matrix product (i)
column-by-column, and (ii) entry-by-entry.

[
0 0 1

]


a b c
d e f
g h k





0
1
0




(2.3.17) Find all matrices that commute with

A =

[
1 0
0 2

]
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Supplemental Material
Metacognitive Reflection
Problem Statements 2.3

(2.3.19), (2.3.27), (2.3.28)

(2.3.19) Find all matrices that commute with

A =

[
0 −2
2 0

]

(2.3.27) Prove the distributive laws for matrices:

A(C + D) = AC + AD, and (A+ B)C = AC + BC .

(2.3.28) Consider an n × p matrix A, a p ×m matrix B , and a
scalar k . Show that

(kA)B = A(kB) = k(AB)
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Supplemental Material
Metacognitive Reflection
Problem Statements 2.3

(2.3.33), (2.3.37)

(2.3.33) For the given matrix A, compute A2 = AA, A3 = AAA,
and A4. Describe the emerging pattern, and use it to find A1001.
— Interpret in terms of rotations, reflections, shears, and
orthogonal projections.

A =

[
−1 0
0 −1

]

(2.3.37) For the given matrix A, compute A2 = AA, A3 = AAA,
and A4. Describe the emerging pattern, and use it to find A1001.
— Interpret in terms of rotations, reflections, shears, and
orthogonal projections.

A =

[
1 0

−1 1

]
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