Math 254：Introduction to Linear Algebra
 Notes \＃3．1－Image \＆Kernel of a Linear Transform

Peter Blomgren

〈blomgren＠sdsu．edu〉Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Spring 2022
（Revised：February 23，2022）

3．1．Image \＆Kernel of a Linear Transform

	Peter Blomgren 〈blomgrenबsdsu．edu〉	3．1．Image \＆Kernel of a Linear Transform	$-(1 / 36)$
	Student Learning Objectives	sLOs：Image \＆Kernel of a Linear Transform	
SLOs 3．1		Image \＆Kernel of a Linear Transform	

After this lecture you should：
－Be able to identify the image of a linear transformation（and its associated matrix）－ $\operatorname{im}(A)$
－Be able to identify the kernel of a linear transformation（and its associated matrix）$-\operatorname{ker}(A)$
－Know what the span of a set of vectors is．
－Know when $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ ？— and the implications［THE Characteristics of Invertible Matrices］

，mum

Things get quite＂math－y＂starting now．Student Learning Objectives
－SLOs：Image \＆Kernel of a Linear TransformSubspaces of \mathbb{R}^{n} and Their Dimensions －Image \＆Kernel of a Linear Transformation
（3）Suggested Problems
－Suggested Problems 3.1
－Lecture－Book Roadmap
4 Supplemental Material
－Metacognitive Reflection
－Problem Statements 3.1

Definition（Image of a Function（Linear Transformation））

The image of a function consists of all the values the function takes in its target space．If $f: X \mapsto Y$ ，then

$$
\begin{aligned}
\operatorname{image}(f) & =\{f(x): x \in X\} \\
& =\{b \in Y: b=f(x), \text { for some } x \in X\}
\end{aligned}
$$

Figure：X is the domain of $f ; Y$ the target space of f ；and the shaded subset of Y is the image of f ．

Subspaces of \mathbb{R}^{n} and Their Dimensions Suggested Problems

Figure：The image of $f(x)=e^{x}$ from \mathbb{R} to \mathbb{R} consists of \mathbb{R}^{+}（all positive real numbers）．Every positive number $b \in \mathbb{R}^{+}$can be written as $b=e^{\ln (b)}=f(\ln (b))$ ．
［Figure：Copyright（c） 2019 Peter Blomgren］

Figure：The image of $f(t)=\left[\begin{array}{r}\cos (t) \\ \sin (t) \\ \cos (2 t)\end{array}\right]$ from \mathbb{R} to \mathbb{R}^{3} consists of the figure above．（Here projected from 3D to 2D for your viewing pleasure！）
［Figure：Copyright © 2019 Peter Blomgren］

Consider $T: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ that projects a vector \vec{v} orthogonally onto the $x-y$－plane：

Image of an Invertible Function

－If the function $f: X \mapsto Y$ is invertible，then the image of f is （all of）$Y . " \forall b \in Y \exists x \in X: b=f(x)$ ．＂
－In this case $x=f^{-1}(b)$ ：

$$
b=f\left(f^{-1}(b)\right)
$$

See also［Notes\＃2．4］．

$$
\mathbf{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}
$$

\square Figure：The image of T is the x－y－plane in \mathbb{R}^{3} ，consist－ ing of all vectors of the form
［Figure：Copyright © 2019 Peter Blomgren］

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] \quad \Leftrightarrow \quad T(\vec{x})=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
0
\end{array}\right]
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉
Subspaces of \mathbb{R}^{n} and Their Dimensions Suggested Problems

Image \＆Kernel of a Linear Transformation
$T(\vec{x})=A \vec{x}$
Consider $T(\vec{x})=A \vec{x}$ ，with $\vec{x} \in \mathbb{R}^{2}$ ，and $A \in \mathbb{R}^{2 \times 2}$ ，where

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]
$$

The image is described by

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
6
\end{array}\right]=\left(x_{1}+3 x_{2}\right)\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

which is the line of all scalings of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ ．

Figure：The unit circle in domain space $X=\mathbb{R}^{2}$ ，and the image of the unit circle in target space $Y=\mathbb{R}^{2}$ ．Note：we can fill $X=\mathbb{R}^{2}$ with circles of radii $r \in[0, \infty)$ ，so the image of T can be described by all scalings of the image of the unit circle；since $T(k \vec{x})=A k \vec{x}=k A \vec{x}=k T(\vec{x})$ ．
［Figure：Copyright © 2019 Peter Blomgren］

Definition（The Span）

Consider the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ ．The set of all linear combinations

$$
c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{m} \vec{v}_{m}, \quad c_{1}, \ldots, c_{m} \in \mathbb{R}
$$

of the vectors is called their span：
$\operatorname{span}\left(\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \vec{v}_{m}\right)=\left\{c_{1} \overrightarrow{v_{1}}+c_{2} \vec{v}_{2}+\cdots+c_{m} \vec{v}_{m}: c_{1}, c_{2}, \ldots, c_{m} \in \mathbb{R}\right\}$.

Theorem（Image of a Linear Transformation）

The image of a linear transformation $T(\vec{x})=A \vec{x}$ is the span of the column vectors of A ．We denote the image of T by $\mathrm{im}(T)$ or $\operatorname{im}(A)$ ．

，minw

Since $\operatorname{im}(A)$ is the span of the columns of A ，it is sometimes referred to as the Column Space of A ，denoted $C(A)$［GS5－3．1］．

Subspaces of \mathbb{R}^{n}| and Their Dimensions |
| :---: |
| Suggested Problems |\quad Image \＆Kernel of a Linear Transformation

The theorem pretty much proves itself；it follows directly from how we multiply vectors and matrices：

$$
T(\vec{x})=A \vec{x}=\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{v}_{1} & \ldots & \vec{v}_{m} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=x_{1} \vec{v}_{1}+\cdots+x_{m} \vec{v}_{m}
$$

The vertical bars are there to illustrate that we are expressing the matrix column－wise，using the \vec{v}－vectors．

Properties of the Image．

a． $\overrightarrow{0}=A \overrightarrow{0}=T(\overrightarrow{0})$ ．
b．$\exists \vec{w}_{1}, \vec{w}_{2} \in \mathbb{R}^{m}: \vec{v}_{1}=T\left(\vec{w}_{1}\right), \overrightarrow{v_{2}}=T\left(\vec{w}_{2}\right)$ ．Then
$\vec{v}_{1}+\vec{v}_{2}=T\left(\vec{w}_{1}\right)+T\left(\vec{w}_{2}\right) \stackrel{\text { L．T．}}{=} T\left(\vec{w}_{1}+\vec{w}_{2}\right) \Rightarrow$
$\left(\vec{v}_{1}+\vec{v}_{2}\right) \in \operatorname{im}(T)$ ．
c．If $\vec{v}=T(\vec{w})$ ，then $k \vec{v}=k T(\vec{w}) \stackrel{\text { L．T．}}{=} T(k \vec{w}) . \Rightarrow k \vec{v} \in \operatorname{im}(T)$ ．
$[\mathbf{b}]+.[\mathbf{c}.] \Rightarrow \operatorname{im}(T)$ is closed under linear combinations．

Peter Blomgren 〈blomgren＠sdsu．edu〉 3．1．Image \＆Kernel of a Linear Transform－（17／36）
Subspaces of \mathbb{R}^{n} and Their Dimensions Suggested Problems

Image \＆Kernel of a Linear Transformation
［Parsing the Proof］Properties of $\operatorname{im}(T)$
［Focus ：：MATH］

Properties of the Image．

c．If $\vec{v}=T(\vec{w})$ ，then $k \vec{v}=k T(\vec{w}) \stackrel{\text { L．T．}}{=} T(k \vec{w}) . \Rightarrow k \vec{v} \in \operatorname{im}(T)$ ．
－This is very similar to part ．，given a vector \vec{v} in the image；there must be a vector｜vecw in the domain，so that $\vec{v}=T(\vec{w})$
－We want to show that $k \vec{v}$ is in the image；so we use $k \vec{v}=k T(\vec{w})$ ，
－then the fact that T is a linear transformation：$k T(\vec{w})=T(k \vec{w})$ ；
－and conclude as in part b．

Properties of the Image．
a． $\overrightarrow{0}=A \overrightarrow{0}=T(\overrightarrow{0})$ ．
－This follows straight from how we compute matrix－vector products；given $A \in \mathbb{R}^{n \times m}$ ，and $T(\vec{x})=A \vec{x}$ ，we immediately get $A \overrightarrow{0}_{m}=\overrightarrow{0}_{n}$ ，where the subscript on the $\overrightarrow{0}$－vector indicates its number of components．
b．$\exists \vec{w}_{1}, \vec{w}_{2} \in \mathbb{R}^{m}: \vec{v}_{1}=T\left(\vec{w}_{1}\right), \vec{v}_{2}=T\left(\vec{w}_{2}\right)$ ．
－Since \vec{v}_{1} and \vec{v}_{2} are in the image；there must exist（＂\exists＂）vectors \vec{w}_{1} ，and \vec{w}_{2} so that $\vec{v}_{1}=T\left(\vec{w}_{1}\right), \vec{v}_{2}=T\left(\vec{w}_{2}\right)$ \｛some input must generate the output！\}
Then $\left(\vec{v}_{1}+\vec{v}_{2}\right) \stackrel{1}{=} T\left(\vec{w}_{1}\right)+T\left(\vec{w}_{2}\right) \stackrel{\text { L．T．}}{=} T\left(\vec{w}_{1}+\vec{w}_{2}\right) \Rightarrow\left(\vec{v}_{1}+\vec{v}_{2}\right) \in \operatorname{im}(T)$ ．
－First we write the vector we want to show is in the image（ $\vec{v}_{1}+\vec{v}_{2}$ ）；then
－（＂ 1 ＂）we use the fact that each vector is in the image；followed by
－（＂L．T．＂）the fact that T is a linear transformation；and we can conclude
－（＂\Rightarrow＂）that we wrote（ $\vec{v}_{1}+\vec{v}_{2}$ ）as the linear transformation of some vector $\vec{w}^{*}=\left(\vec{w}_{1}+\vec{w}_{2}\right)$ ，which makes $\vec{v}^{*}=\left(\vec{v}_{1}+\vec{v}_{2}\right)$ a member of the image．

Peter Blomgren 〈blomgren＠sdsu．edu〉
3．1．Image \＆Kemel of a Linear Transform

The Kernel of a Linear Transformation

Definition（Kernel／Null Space）

The kernel（aka＂null space＂）of a linear transformation $T(\vec{x})=A \vec{x}$ from \mathbb{R}^{m} to \mathbb{R}^{n} consists of all zeros of the transformation；that is，the solutions of the equation $T(\vec{x})=A \vec{x}=\overrightarrow{0}$ ．
In other words，the kernel of T is the solution of the set of linear equations

$$
A \vec{x}=\overrightarrow{0}
$$

We denote the kernel of T by $\operatorname{ker}(T)$ or $\operatorname{ker}(A)$ ．

Figure： $\operatorname{ker}(T)$ are the elements in the domain that are transformed to 0 in the output space； the rest of the domain＂paints＂ $\operatorname{im}(T)$ ．Notice that there may be element of the output space that are NOT part of $\operatorname{im}(T)$ ．
［Figure：Copyright © 2019 Peter Blomgren］

For the linear transformation $T: \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ ，
－ $\operatorname{im}(T)=\left\{T(\vec{x}): \vec{x} \in \mathbb{R}^{m}\right\}$ is a subset of the target space \mathbb{R}^{n} of T ；
－ $\operatorname{ker}(T)=\left\{\vec{x} \in \mathbb{R}^{m}: T(\vec{x})=\overrightarrow{0}\right\}$ is a subset of the domain．

，minw Notational Hazard（Language）

［GS5－3．2］uses the notation $N(A)$ for the null space（and［GS5－3．1］ $C(A)$ for the image／column space）．We will use $\operatorname{ker}(A)$ and $\operatorname{im}(A)$ exclusively．
A more common notational variant for the kernel is $\operatorname{null}(A)$ ．

Subspaces of \mathbb{R}^{n} and Their Dimensions Suggested Problems

Consider，again，the linear transformation：

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
x \\
y \\
0
\end{array}\right] \Leftrightarrow T(\vec{x})=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]
$$

Clearly，

$$
T\left(\left[\begin{array}{l}
0 \\
0 \\
z
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad \forall z \in \mathbb{R} .
$$

Therefore，

$$
\operatorname{ker}(T)=\left\{\left[\begin{array}{l}
0 \\
0 \\
z
\end{array}\right]: \forall z \in \mathbb{R}\right\}, \quad \text { also } \operatorname{im}(T)=\left\{\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right]: \forall x, y \in \mathbb{R}\right\} .
$$

Consider $T(\vec{x})=A \vec{x}$ ，where

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 2 & -5 & 6 \\
-1 & -2 & -1 & 1 & -1 \\
4 & 8 & 5 & -8 & 9 \\
3 & 6 & 1 & 5 & -7
\end{array}\right]
$$

Let＇s find the kernel（solve $A \vec{x}=\overrightarrow{0}$ ）

$$
\left[\begin{array}{rrrrr|r}
1 & 2 & 2 & -5 & 6 & 0 \\
-1 & -2 & -1 & 1 & -1 & 0 \\
4 & 8 & 5 & -8 & 9 & 0 \\
3 & 6 & 1 & 5 & -7 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrr|r}
1 & 2 & 2 & -5 & 6 & 0 \\
-1 & -2 & -1 & 1 & -1 & 0 \\
4 & 8 & 5 & -8 & 9 & 0 \\
3 & 6 & 1 & 5 & -7 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrr|r}
1 & 2 & 2 & -5 & 6 & 0 \\
0 & 0 & 1 & -4 & 5 & 0 \\
0 & 0 & -3 & 12 & -15 & 0 \\
0 & 0 & -5 & 20 & -25 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{rrrrr|r}
1 & 2 & 0 & 3 & -4 & 0 \\
0 & 0 & 1 & -4 & 5 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\left[\begin{array}{rrrrr|r}11 & 2 & 0 & 3 & -4 & 0 \\ 0 & 0 & 1 & -4 & 5 & 0 \\ \hdashline 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

$\operatorname{rank}(A)$	$=2$
number－of－leading－variables	$=2$
number－of－free－variables	$=3$

Now，the equations

$$
\left\{\begin{array}{l}
x_{1}=-2 x_{2}-3 x_{4}+4 x_{5} \\
x_{3}=4 x_{4}-5 x_{5}
\end{array}\right.
$$

describe the kernel．As usual we let $\left\{x_{2}=s, x_{4}=t, x_{5}=u\right\}$ ，and write：
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{r}-2 s-3 t+4 u \\ s \\ 4 t-5 u \\ t \\ u\end{array}\right]=s\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{r}-3 \\ 0 \\ 4 \\ 1 \\ 0\end{array}\right]+u\left[\begin{array}{r}4 \\ 0 \\ -5 \\ 0 \\ 1\end{array}\right]$

Peter Blomgren 〈blomgren＠sdsu．edu〉
3．1．Image \＆Kernel of a Linear Transform
Subspaces of \mathbb{R}^{n} and Their Dimensions \quad Image \＆Kernel of a Linear Transformation
Properties of the Kernel

Theorem（Some Properties of the Kernel）

Consider the linear transform $T: \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ ，
a．The zero vector $\overrightarrow{0}$ in \mathbb{R}^{m} is in $\operatorname{ker}(T)$ ．
b．The kernel is closed under addition．
c．The kernel is closed under scalar multiplication．

The proofs for these properties are small modifications of the proofs of the analogous properties for the Image（SEE THE Extended Notes）．．．and are left as an exercise．

Given that the parameters，$\{s, t, u\}$ are allowed to independently vary over $(-\infty, \infty)$ ，we are interested in all combinations of the 3 vectors．．．

Using the previously defined concept of span，we write

$$
\operatorname{ker}(T)=\operatorname{span}\left\{\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
0 \\
4 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
4 \\
0 \\
-5 \\
0 \\
1
\end{array}\right]\right\}
$$

Theorem（When is $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ ？）

a．Consider an $(n \times m)$ matrix A ．Then $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ if and only if $\operatorname{rank}(A)=m$ ．
b．Consider an $(n \times m)$ matrix A ．If $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ ，then $m \leq n$ ． Equivalently，if $m>n$ ，then there are non－zero vectors in the kernel of A ．
c．For a square matrix A ，we have $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ if and only if A is invertible．

Equivalent Statements：Invertible Matrices

For an（ $n \times n$ ）matrix A ，the following statements are equivalent； that is for a given A ，they are either all true or all false：
i．A is invertible（ $\exists A^{-1}$ ）
ii．The linear system $A \vec{x}=\vec{b}$ has a unique solution $\vec{x}, \forall \vec{b} \in \mathbb{R}^{n}$
ii． $\operatorname{rref}(A)=I_{n}$
iv． $\operatorname{rank}(A)=n$
v． $\operatorname{im}(A)=\mathbb{R}^{n}$
vi． $\operatorname{ker}(A)=\{\overrightarrow{0}\}$

We will add to this list throughout the semester：［Notes\＃2．4］$\sqrt{\sqrt{ }}$ ， ［Notes\＃3．3］，and［Notes\＃7．1］．

Available on Learning Glass videos：

3.1 －1，7，11，14，15，17，23，24，29， 39

（3．1．1）Find vectors that span the kernel of

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

（3．1．7）Find vectors that span the kernel of

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right]
$$

（3．1．11）Find vectors that span the kernel of

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 4
\end{array}\right]
$$

3．1．Image \＆Kernel of a Linear Transform

（3．1．23），（3．1．24）

（3．1．23）Describe the image and kernel of the transformation $T(\vec{x})=A \vec{x}$ geometrically，where

$$
T(\vec{x})=\left\{\begin{array}{c}
\text { Reflection about The Line } \\
\{y=x / 3\} \text { IN } \mathbb{R}^{2}
\end{array}\right\} .
$$

（3．1．24）Describe the image and kernel of the transformation $T(\vec{x})=A \vec{x}$ geometrically，where

$$
T(\vec{x})=\left\{\begin{array}{c}
\text { ORTHOGONAL PROJECTION ONTO } \\
\text { THE PLANE }\{x+2 y+3 z=0\} \text { In } \mathbb{R}^{3}
\end{array}\right\} .
$$

（3．1．14），（3．1．15），（3．1．17）
（3．1．14）Find vectors that span the image of

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right]
$$

（3．1．15）Find vectors that span the image of

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

（3．1．17）Describe the image of the transformation $T(\vec{x})=A \vec{x}$ geometrically（e．g．as a line，a plane，etc．in \mathbb{R}^{2} or \mathbb{R}^{3} ．）

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉
3．1．Image \＆Kernel of a Linear Transform

Supplemental Material

```
Metacognitive Reflectio
```


（3．1．29），（3．1．39）

（3．1．29）Give an example of a function whose image is the unit sphere

$$
\mathbb{S}^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\} \text { in } \mathbb{R}^{3}
$$

（3．1．39）Consider a square matrix A ：

a．What is the relationship among $\operatorname{ker}(A)$ and $\operatorname{ker}\left(A^{2}\right)$ ？Are they necessarily equal？？Is one of them necessarily contained in the other？More generally what can you say about ker (A) ， $\operatorname{ker}\left(A^{2}\right), \operatorname{ker}\left(A^{3}\right), \ldots$ ？
b．What can you say about $\operatorname{im}(A), \operatorname{im}\left(A^{2}\right), \operatorname{im}\left(A^{3}\right), \ldots$ ？

