Math 254：Introduction to Linear Algebra
 Notes \＃3．2－Bases and Linear Independence

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Spring 2022
（Revised：January 18， 2022

Peter Blomgren〈blomgren＠sdsu．edu〉
3．2．Bases and Linear Independence

Student Learning Objectives
SLOs：Bases and Linear Independence

After this lecture you should：
－Know the definition of SUbSPaCES；be comfortable with the concepts of the Image and Kernel of a linear transformation（and／or its associated matrix A ）．
－Know how（i）the Span，（ii）Linear Independence，and （iii）the Basis of a Subspace are inter－related．
－Be familiar with the Equivalent properties of Linearly Independent Vectors．

Equivalent Language［GS5－3．1－3．2］

－Image：＂Column Space（of a Matrix）．＂
－Kernel：＂Null Space（of a Matrix）．＂Student Learning Objectives
－SLOs：Bases and Linear Independence
（2）Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
－Subspaces of \mathbb{R}^{n}
－Bases and Linear IndependenceSuggested Problems
－Suggested Problems 3.2
－Lecture－Book Roadmap
（4）Supplemental Material
－Metacognitive Reflection
－Problem Statements 3.2

Peter Blomgren〈blomgren＠sdsu．edu〉 3．2．Bases and Linear Independence

Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Suggested Problems
Subspaces of \mathbb{R}^{n}
Subspaces of \mathbb{R}^{n}
Bases and Linear Independence
Subspaces of \mathbb{R}^{n}
In a previous episode of＂Adventures in Linear Algebra＂we encountered the image and kernel of a linear transform．It turns out both have three particular properties that fit into a more general classification：

Definition（Subspaces of \mathbb{R}^{n} ）
A subset W of the vector space \mathbb{R}^{n} is called a（linear）subspace of \mathbb{R}^{n} if it has the following three properties：
（1）W contains the zero vector．
（2）W is closed under addition＊1．
（3）W is closed under scalar multiplication＊2．
${ }^{* 1}$－if $\vec{w}_{1}, \vec{w}_{2} \in W$ ，then $\vec{w}_{1}+\vec{w}_{2} \in W$ ；and
${ }^{* 2}$－if $\vec{w} \in W$ and $\alpha \in \mathbb{R}$ ，then $\alpha \vec{w} \in W$ ．

Subspaces of \mathbb{R}^{n}

Theorem（Image and Kernel of a Linear Transform are Subspaces）
If $T(\vec{x})=A \vec{x}$ is a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n} ，then
－ $\operatorname{ker}(T)=\operatorname{ker}(A)$ is a subspace of \mathbb{R}^{m} ，and
－ $\operatorname{im}(T)=\operatorname{im}(A)$ is a subspace of \mathbb{R}^{n} ．
The proof for the image， $\operatorname{im}(A)$ ，is in［Notes\＃3．1］；we left the（very similar）proof for $\operatorname{ker}(A)$ as an exercise for a dark and stormy night．
However，recall the＂cartoon＂illustration

Peter Blomgren〈blomgren＠sdsu．edu〉
3．2．Bases and Linear Independence
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Suggested Problems

Subspaces of \mathbb{R}^{n}

Bases and Linear Independence

Example：Subspaces of \mathbb{R}^{3}

Example（Subspaces of \mathbb{R}^{3} ）

There are infinitely many subspaces of \mathbb{R}^{3} ；they fall into one of four categories：
－$W_{0}=\{\overrightarrow{0}\}$ ．
－$W_{1}=\{k \vec{v}: \forall k \in \mathbb{R}\}$ ，where $\vec{v} \in \mathbb{R}^{3}$－Lines through $\overrightarrow{0}$
－$W_{2}=\{k \vec{v}+\ell \vec{w}: \forall k, \ell \in \mathbb{R}\}$ ，where $\vec{v}, \vec{w} \in \mathbb{R}^{3}$ ，and \vec{v} and \vec{w} are not parallel－Planes through $\overrightarrow{0}$ ，
－$W_{3}=\mathbb{R}^{3}$ ．

Note that the planes of type W_{2} are not necessarily parallel to any（standard）coordinate axis．
Figure：In the game＂labyrinth，＂we tilt（part）of a plane in \mathbb{R}^{3} to move a marble from start－to－finish．
License：CC BY－SA 2．0，https：／／commons．wikimedia．org／w／index．php？curid＝95651

Example：Subspaces of \mathbb{R}^{2}

Example（Subspaces of \mathbb{R}^{2} ）

There are infinitely many subspaces of \mathbb{R}^{2} ；they fall into one of three categories：
－$W_{0}=\{\overrightarrow{0}\}$ ．
－$W_{1}=\{k \vec{v}: \forall k \in \mathbb{R}\}$ ，where $\vec{v} \in \mathbb{R}^{2}$ and $\vec{v} \neq \overrightarrow{0}$ ．
－$W_{2}=\mathbb{R}^{2}$ ．
W_{0} is quite straight－forward．
W_{1} Once we have one non－zero vector \vec{v} we must add all scalings and additions of copies of \vec{v} to the space which gives the infinite line going through the origin parallel to \vec{v} ．
W_{2} If we have two non－parallel vectors \vec{v} and \vec{w} we must include all scalings of the parallelogram described by $\overrightarrow{0}-\vec{v}-\vec{w}-(\vec{v}+\vec{w}) \ldots$ which fills all of \mathbb{R}^{2} ．

Peter Blomgren 〈blomgren＠sdsu．edu〉 3．2．Bases and Linear Independence

Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Suggested Problems

Subspaces of \mathbb{R}^{n}

Bases and Linear Independence
Describing a Plane in 3D．．．
Kernel version

Example（Kernel and Image of V ）

Consider the plane $V \in \mathbb{R}^{3}$ given by the equation $x_{1}+2 x_{2}+3 x_{3}=0$ ．
Express V as the kernel of a matrix；and the image of（another）matrix．
a．First we find a matrix A so that $V=\operatorname{ker}(A)$ ：
－We can write the equation as

$$
\underbrace{\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0}
$$

and clearly，we are looking for $\operatorname{ker}(A)$ ．
［Useful Point of View］If we are thinking about $A \vec{x}$ in terms of dot－product（ \langle Row－of－ A），\vec{x} ）；we can interpret this situation as finding all $\vec{x} \perp$ all rows of A ．

Example（Kernel and Image of V

Consider the plane $V \in \mathbb{R}^{3}$ given by the equation $x_{1}+2 x_{2}+3 x_{3}=0$ ．Express V as the kernel of a matrix；and the image of（another）matrix．
b．Second，we find a matrix B so that $V=\operatorname{im}(B)$ ：
－We need two non－parallel vectors in the plane in order to describe it First，let $x_{3}=0$ ，giving $x_{1}=-2 x_{2}$ as a possibility；then let $x_{2}=0$ ，giving $x_{1}=-3 x_{3}$ as a possibility．Alternatively，we can parameterize in the usual way $\left\{x_{2}=s, x_{3}=t\right\}$ and get the（same）two vectors as：

$$
s\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right], \quad t\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right]
$$

Since V consists of all linear combinations of these vectors，

$$
V=\operatorname{im}\left(\left[\begin{array}{rr}
-2 & -3 \\
1 & 0 \\
0 & 1
\end{array}\right]\right) \equiv \operatorname{span}\left(\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
0 \\
1
\end{array}\right]\right)
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉
3．2．Bases and Linear Independence
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Subspaces of \mathbb{R}^{n}
Bases and Linear Independence
Linear Independence；Basis
Key Concept！

Definition（Linear Independence；Basis）
Consider non－zero vectors $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ ．
－We say that a vector \vec{v}_{i} is linearly dependent if it is a linear combination of the preceding vectors，$\vec{v}_{1}, \ldots, \vec{v}_{i-1}$
－The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent if none of them can be written as a linear combination of the others．
－We say that the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in a subspace V of \mathbb{R}^{n} form a basis of V if they span V and are linearly independent．

Informally，a basis is a minimal description of a（sub）space．

How Many Column Vectors Do We Need to Describe the Image／Span？
Next，consider

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
1 & 2 & 2 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]=\left[\begin{array}{llll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \vec{v}_{4}
\end{array}\right]
$$

Since $A \in \mathbb{R}^{3 \times 4}$ its image＂lives in＂（is a subspace of） \mathbb{R}^{3}－ $\operatorname{im}(A) \subset \mathbb{R}^{3}$ ，and kernel $\operatorname{ker}(A) \subset \mathbb{R}^{4}$ ．
We notice that $\overrightarrow{v_{2}}=2 \overrightarrow{v_{1}}$ ，and $\overrightarrow{v_{4}}=\overrightarrow{v_{1}}+\overrightarrow{v_{3}}$ ；that is the vectors $\overrightarrow{v_{2}}$ and $\overrightarrow{v_{4}}$ are＂redundant＂as far as describing the image is concerned（we can describe them using other columns in the matrix）：

$$
\operatorname{im}\left(\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4}
\end{array}\right]\right)=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right)=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{3}\right)
$$

If we have a vector $\vec{v} \in \mathbb{R}^{3}$ ：

$$
\begin{aligned}
\vec{v} & =\alpha_{1} \overrightarrow{v_{1}}+\alpha_{2} \overrightarrow{v_{2}}+\alpha_{3} \overrightarrow{v_{3}}+\alpha_{4} \overrightarrow{v_{4}} \\
& =\left(\alpha_{1}+2 \alpha_{2}+\alpha_{4}\right) \overrightarrow{v_{1}}+\left(\alpha_{3}+\alpha_{4}\right) \overrightarrow{v_{3}}
\end{aligned}
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉 3．2．Bases and Linear Independence
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Subspaces of \mathbb{R}
Bases and Linear Independence
A Basis for the Image

In the context of the previously considered matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
1 & 2 & 2 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

we have established that

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \text { and } \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

give us a（linearly independent）basis of $V=\operatorname{im}(A)$ ．

Theorem（Basis of the Image）
To construct a basis of $\mathrm{im}(A)$ ，list all the column vectors of A ，and omit the linearly dependent vectors from the list．

Figure：Hauling vectors，to build a basis？

Image License：CC BY－SA 2．0，https：／／commons．wikimedia．org／w／index．php？curid＝724545
Peter Blomgren 〈blomgren＠sdsu．edu〉 3．2．Bases and Linear Independence
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Subspaces of \mathbb{R}^{n}
Suggested Problems
Bases and Linear Independence
Quick－Check for Linear Independence

The previous example gives us a quick－check for linear independence：

Theorem（Linear Independence and Zero Components）
Consider non－zero vectors $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ ．
If each of the vectors \vec{v}_{i} has a non－zero entry in a component where all the preceding vectors $\vec{v}_{1}, \ldots, \vec{v}_{i-1}$ have a 0 ，then the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent．

Note that the theorem applies to any ordering of the vectors；that is，if it is possible to sort them so that the theorem applies，then the vectors are linearly independent．

Linear Independence or Dependence？
Are the following vectors in \mathbb{R}^{7} linearly independent？

Since it is＂very difficult＂to write
－ 1 as a linear combination of 0
－ 7 as a linear combination of 0 and 0
－ 5 as a linear combination of 0,0 ，and 0
finding solutions to $\overrightarrow{v_{2}}=\alpha \overrightarrow{v_{1}} ; \overrightarrow{v_{3}}=\beta_{1} \overrightarrow{v_{1}}+\beta_{2} \overrightarrow{v_{2}}$ ；and $\overrightarrow{v_{4}}=\gamma_{1} \overrightarrow{v_{1}}+\gamma_{2} \overrightarrow{v_{2}}+\gamma_{3} \overrightarrow{v_{3}}$ ，may prove slightly problematic？
We can conclude that these four vector are linearly independent．
Peter Blomgren 〈blomgren＠sdsu．edu〉 3．2．Bases and Linear Independence
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Subspaces of \mathbb{R}^{R}
Bases and Linear Independence
More Generally．．．
The previous theorem does not help for the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

Nothing obvious pops out－clearly \vec{v}_{2} is not a scaling of $\vec{v}_{1} \ldots$ Now，if \vec{v}_{3} is a linear combination of \vec{v}_{1} and \vec{v}_{2} ，then converting the augmented matrix

$$
M=\left[\begin{array}{lll|l}
1 & 4 & 7 & 0 \\
2 & 5 & 8 & 0 \\
3 & 6 & 9 & 0
\end{array}\right]
$$

into reduced－row－echelon－form， $\operatorname{rref}(M)$ ，will reveal those combinations！

$$
M=\left[\begin{array}{lll|l}
1 & 4 & 7 & 0 \\
2 & 5 & 8 & 0 \\
3 & 6 & 9 & 0
\end{array}\right] \quad \Longrightarrow \quad \operatorname{rref}(M)=\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

which means that $x_{3}=t$（free variable），$x_{1}=x_{3}$ ，and $x_{2}=-2 x_{3}$ ；i．e．the vectors are NOT linearly independent；$M \vec{x}=\overrightarrow{0}$ has infinitely many solutions of the form

$$
\vec{x}=t\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

We can write this as the expression（linear relation），

$$
\vec{v}_{1}-2 \vec{v}_{2}+\overrightarrow{v_{3}}=\overrightarrow{0}
$$

where \vec{v}_{1}, \vec{v}_{2} and $\overrightarrow{v_{3}}$ are the columns of M ．

Peter Blomgren 〈blomgren＠sdsu．edu〉
3．2．Bases and Linear Independence
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Subspaces of \mathbb{R}^{n}
Bases and Linear Independence

Relations and Linear Dependence

Proof ：：Relations and Linear Dependence

［Fundamental Concept］．
－Suppose vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly dependent，and $\vec{v}_{i}=c_{1} \vec{v}_{1}+\cdots+c_{i-1} \vec{v}_{i-1}$ ．Then we can generate a nontrivial relation by

$$
c_{1} \vec{v}_{1}+\cdots+c_{i-1} \vec{v}_{i-1}+(-1) \vec{v}_{i}=\overrightarrow{0}
$$

－Conversely，if there is a non－trivial relation $c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}$ ， where i is the highest index such that $c_{i} \neq 0$ ，then we can solve for \vec{v}_{i} and this express

$$
\vec{v}_{i}=-\frac{c_{1}}{c_{i}} \vec{v}_{1}-\cdots-\frac{c_{i-1}}{c_{i}} \vec{v}_{i-1}
$$

this shows that \vec{v}_{i} is a linear combination of the preceding vectors， and hence $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly dependent．

Subspaces of \mathbb{R}^{n}
Bases and Linear Independence

More Math Language

Definition（Linear Relations）
Consider vectors $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ ．An equation of the form

$$
c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}=\overrightarrow{0}
$$

is called a（linear）relation among the vectors．There is always the trivial relation，with $c_{1}=\cdots=c_{m}=0$ ．Non－trivial relations－ where at least one c_{k} is non－zero－may or may not exist among the vectors．

Theorem（Relations and Linear Dependence）

The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ are linearly dependent if and only if there are non－trivial relations among them．

> Peter Blomgren 〈blomgren@sdsu.edu〉 3.2. Bases and Linear Independence
$-(18 / 35)$
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Suggested Problems $\quad \begin{aligned} & \text { Sases and Linear Independence }\end{aligned}$

Example

Example（Find the Kernel）

Suppose the column vectors of an $(n \times m)$ matrix A are linearly independent．Find $\operatorname{ker}(A)$ ．

Solution：We are looking for

$$
A \vec{x}=0 \Leftrightarrow\left[\begin{array}{lll}
\vec{v}_{1} & \cdots & \vec{v}_{m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]=\overrightarrow{0} \Leftrightarrow x_{1} \vec{v}_{1}+\cdots+x_{m} \vec{v}_{m}=\overrightarrow{0}
$$

now，since the columns are linearly independent，the trivial solution is the only solution $\left(x_{1}=\cdots=x_{m}=0\right)$ ．Therefore $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ ．

Subspaces of \mathbb{R}^{\prime}
Bases and Linear Independence
Collecting All the Pieces in One Place

Theorem（Kernel and Relations）

The vectors in the kernel of an $(n \times m)$ matrix A correspond to the linear relations among the column vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ of A ：the equation

$$
A \vec{x}=\overrightarrow{0} \quad \text { means that } x_{1} \vec{v}_{1}+\cdots+x_{m} \vec{v}_{m}=\overrightarrow{0} .
$$

In particular，the column vectors of A are linearly independent if and only if $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ ，or equivalently，if and only if $\operatorname{rank}(A)=m$ ．This condition implies that $m \leq n$ ．
We can find at most n linearly independent vectors in \mathbb{R}^{n} ．

Peter Blomgren 〈blomgren＠sdsu．edu〉
3．2．Bases and Linear Independence
Subspaces of \mathbb{R}^{n}
Bases and Linear Independence
Linear Independence
Important Summary

Equivalent Properties：Linear Independence
For a list $\vec{v}_{1}, \ldots, \vec{v}_{m} \in \mathbb{R}^{n}$ of vectors，the following statements are equivalent［all TRUE，or all FALSE］：
i．The vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly independent
ii．None of the vectors in the list can be written as a linear combination of preceding vectors．
iii．None of the vectors can be written as a linear combination of the others．
iv．There is only the trivial solution to $c_{1} \vec{v}_{1}+\cdots+c_{m} \overrightarrow{v_{m}}=\overrightarrow{0}$ ，i．e． $c_{1}=\cdots=c_{m}=0$
v． $\operatorname{ker}\left(\left[\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v}_{m}\end{array}\right]\right)=\{\overrightarrow{0}\}$
vi． $\operatorname{rank}\left(\left[\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v}_{m}\end{array}\right]\right)=m$

Example（Revisited）

$$
A=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

We have previously established that
\vec{v}_{3} is redundant linearly dependent
\exists non－trivial linear relation
Collecting in matrix－vector form：

$$
\Leftrightarrow\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]=\overrightarrow{0} \Rightarrow \underbrace{\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] \in \operatorname{ker}(\mathbf{A}) .}_{\text {non-trivial kernel }}
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉 3．2．Bases and Linear Independence
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence
Subspaces of \mathbb{R}
Bases and Linear Independence
Basis and Unique Representation

Theorem（Basis and Unique Representation）
Consider the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in a subspace V of \mathbb{R}^{n} ．

The vectors form a basis if and only if every vector \vec{v} in V can be expressed uniquely as a linear combination

$$
\vec{v}=c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}
$$

The coefficients c_{1}, \ldots, c_{m} are called the coordinates of \vec{v} with respect to the basis $\vec{v}_{1}, \ldots, \vec{v}_{m}$ ．

We will discuss coordinates in more details in［Notes\＃3．4］．

Let $\vec{v}_{1}, \ldots, \vec{v}_{m}$ be a basis of V ．
Assume：we have two representations of some $\vec{v} \in V$ ：

$$
\begin{aligned}
\vec{v} & =c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m} \\
& =d_{1} \vec{v}_{1}+\cdots+d_{m} \vec{v}_{m} .
\end{aligned}
$$

Subtracting gives

$$
\overrightarrow{0}=(\vec{v}-\vec{v})=\left(c_{1}-d_{1}\right) \vec{v}_{1}+\cdots+\left(c_{m}-d_{m}\right) \vec{v}_{m} .
$$

Since $\vec{v}_{1}, \ldots, \vec{v}_{m}$ form a basis，they are（by definition）linearly independent，so $\left(c_{k}-d_{k}\right)=0, \forall k \in\{1, \ldots, m\}$ ；which shows that the two representation must be the same．

Peter Blomgren 〈blomgren＠sdsu．edu〉
3．2．Bases and Linear Independence
$-(25 / 35)$
Subspaces of \mathbb{R}^{n} ；Bases and Linear Independence

Suggested Problems 3.2

Lecture－Book Roadmap

Suggested Problems 3.2

Available on Learning Glass videos：

$3.2-1,3,7,11,17,25,27,32,34$
ubspaces of \mathbb{R}^{n}
Basis and Unique Representation

Proof：UniQUENESS \Rightarrow BASIS
［Fundamental Concept］．
Consider the subspace V of \mathbb{R}^{n} spanned by the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ ． Given that the representation

$$
\vec{v}=c_{1} \vec{v}_{1}+\cdots+c_{m} \vec{v}_{m}
$$

is unique；let $\vec{v}=\overrightarrow{0}$ ，this forces $c_{k}=0 \forall k \in\{1, \ldots, m\}$ ，which shows that the vectors are linearly independent；so we have a basis．

Metacognitive Exercise — Thinking About Thinking \＆Learning

Peter Blomgren 〈blomgren＠sdsu．edu〉
3．2．Bases and Linear Independence

Metacognitive Reflection Problem Statements 3.2
（3．2．7），（3．2．11）
（3．2．7）Consider a nonempty subset \mathcal{W} of \mathbb{R}^{n} that is closed under addition and under scalar multiplication．Is \mathcal{W} necessarily a subspace of \mathbb{R}^{n} ？Explain．
（3．2．11）Determine whether the given vectors are linearly independent：

$$
\left[\begin{array}{r}
7 \\
11
\end{array}\right], \quad\left[\begin{array}{r}
11 \\
7
\end{array}\right] .
$$

（3．2．1），（3．2．3）
（3．2．1）Check whether or not the subset \mathcal{W} of \mathbb{R}^{n} is subspace：

$$
\mathcal{W}=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x+y+z=1\right\}
$$

（3．2．3）Check whether or not the subset \mathcal{W} of \mathbb{R}^{n} is subspace：

$$
\mathcal{W}=\left\{\left[\begin{array}{r}
x+2 y+3 z \\
4 x+5 y+6 z \\
7 x+8 y+9 z
\end{array}\right]: x, y, z \in \mathbb{R}\right\}
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉 3．2．Bases and Linear Independence
（3．2．17），（3．2．25）
（3．2．17）Determine whether the given vectors are linearly independent：

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right] .
$$

（3．2．25）Find a linearly dependent（or＂redundant＂）column of the given matrix A ，and write it as a linear combination of the preceding columns．Use this representation to write a non－trivial relation among the columns，and thus find a non－zero vector in the kernel of A ：

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

（3．2．27）Find a basis for the image of the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]
$$

（3．2．32）Find a basis for the image of the matrix

$$
A=\left[\begin{array}{llllll}
0 & 1 & 2 & 0 & 0 & 3 \\
0 & 0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

3．2．Bases and Linear Independence
－（33／35）

Metacognitive Reflection

Supplemental Material

$$
\text { Problem Statements } 3.2
$$

Spring 2019 ＂Live Math＂Debugged
A＂2＂yuent missing．．．

$$
A=\left[\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 2 & 0 & 0 & 4 \\
0 & 0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline \overrightarrow{\vec{v}_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \overrightarrow{v_{4}} & \overrightarrow{v_{5}} & \overrightarrow{v_{6}}
\end{array}\right], \quad A \in \mathbb{R}^{5 \times 6}, \operatorname{rank}(A)=3
$$

\vec{v}_{2}, \vec{v}_{4} ，and \vec{v}_{5} are linearly independent． $\operatorname{Basis}(\operatorname{im}(A))=\left\{\vec{v}_{2}, \vec{v}_{4}, \vec{v}_{5}\right\}$ ．
\vec{v}_{1}, \vec{v}_{3} ，and \vec{v}_{6} are linearly dependent：the zero－vector is always＂dependent，＂and $\vec{v}_{3}=2 \vec{v}_{2}, \vec{v}_{6}=4 \vec{v}_{2}+3 \vec{v}_{4}+2 \vec{v}_{5}$
If we parameterize the free variables as usual $\left(x_{1}, x_{3}, x_{6}\right)=(s, t, u)$ ；then $A \vec{x}=0$ has solutions：

$$
s\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+u\left[\begin{array}{r}
0 \\
-4 \\
0 \\
-3 \\
-2 \\
1
\end{array}\right], \quad \operatorname{BaSis}(\operatorname{ker}(A))=\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
-4 \\
0 \\
-3 \\
-2 \\
1
\end{array}\right]\right\}
$$

（3．2．34）Consider the (5×4) matrix

$$
A=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\overrightarrow{v_{1}} & \overrightarrow{v_{2}} & \overrightarrow{v_{3}} & \overrightarrow{v_{4}} \\
\mid & \mid & \mid & \mid
\end{array}\right],
$$

we are told that the vector

$$
\vec{n}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

is in the kernel of A ．Write \vec{v}_{4} as a linear combination of $\vec{v}_{1}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}$ ．

