			Outline			
	tion to Linear Algebra and Linear Independence		 Student Learning SLOs: Bases at Subspaces of Rⁿ; 	nd Linear Ind		
<pre></pre>	Blomgren @sdsu.edu> eematics and Statistics Systems Group inces Research Center tate University CA 92182-7720 inus.sdsu.edu/ g 2022 iuary 18, 2022)	Sku Buck Start Lindvikstry	 Subspaces of R Subspaces of R Subspaces of R Bases and Line Suggested Proble Suggested Proble Lecture – Book Supplemental Ma Metacognitive Problem Stater 	ear Independe ems blems 3.2 Roadmap aterial Reflection		Sand Derico Start University
Peter Blomgren $\langle blomgren@sdsu.edu \rangle$	3.2. Bases and Linear Independence	— (1/35)	Peter Blomgren (b)	lomgren@sdsu.edu	3.2. Bases and Linear Independence	— (2/35)
Student Learning Objectives	SLOs: Bases and Linear Independence		Subspaces of \mathbb{R}^n ; Bases and L S	inear Independence Suggested Problems	Subspaces of \mathbb{R}^n Bases and Linear Independence	
SLOs 3.2	mage & Bases and Linear Inde	ependence	Subspaces of \mathbb{R}^n			
After this lecture you should: • Know the definition of SUBS concepts of the IMAGE and transformation (and/or its a	KERNEL of a linear	he	encountered the ima	age and <i>kerne</i> particular pro	<i>ures in Linear Algebra"</i> we I of a linear transform. It th operties that fit into a more	
 Know how (i) the SPAN, (ii) 	,	nd	Definition (Subspace	es of \mathbb{R}^n)		1
(iii) the BASIS OF A SUBSP				-	ℝ ⁿ is called a (linear) subsp	pace of
 Be familiar with the Equival- INDEPENDENT Vectors. 	ent properties of LINEARLY		\mathbb{R}^n if it has the follo ① <i>W</i> contains the		operties:	
			 W is closed und 		L	
Equivalent Language [GS5-3.1-3.2]			 W is closed und 			
• IMAGE: "Column Space (of a	,					
• KERNEL: "Null Space (of a M	atrix)."		$\overset{*1}{\sim}$ — if $ec{w_1}, ec{w_2} \in W$			
		SAN DIEGO STATE UNIVERSITY	*2 — if $ec{w} \in W$ and	$\alpha \in \mathbb{R}$, then	$\alpha \vec{w} \in W.$	SAN DIGO STATE UNIVERSITY
Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	3.2. Bases and Linear Independence	— (3/35)	Peter Blomgren (bl	lomgrenQsdsu.edu	3.2. Bases and Linear Independence	— (4/35)

Subspaces of \mathbb{R}^n ; Bases and Linear Independence Subspaces of \mathbb{R}^n	Subspaces of \mathbb{R}^n ; Bases and Linear Independence Subspaces of \mathbb{R}^n
Suggested Problems Bases and Linear Independence	Suggested Problems Bases and Linear Independence
Subspaces of \mathbb{R}^n	Example: Subspaces of \mathbb{R}^2
Theorem (Image and Kernel of a Linear Transform are Subspaces)	Example (Subspaces of \mathbb{R}^2)
If $T(\vec{x}) = A\vec{x}$ is a linear transformation from \mathbb{R}^m to \mathbb{R}^n , then	There are infinitely many subspaces of \mathbb{R}^2 ; they fall into one of
• $\ker(T) = \ker(A)$ is a subspace of \mathbb{R}^m , and	three categories:
• $\operatorname{im}(T) = \operatorname{im}(A)$ is a subspace of \mathbb{R}^n .	• $W_0 = \{\vec{0}\}.$
	• $W_1 = \{k\vec{v} : \forall k \in \mathbb{R}\}$, where $\vec{v} \in \mathbb{R}^2$ and $\vec{v} \neq \vec{0}$.
The proof for the image, $im(A)$, is in [Notes#3.1]; we left the (very	• $W_2 = \mathbb{R}^2$.
similar) proof for $ker(A)$ as an exercise for a dark and stormy night.	2
However, recall the "cartoon" illustration	W_0 is quite straight-forward.
Figure: $ker(T)$ are the elements in the domain that are transformed to 0 in the output space; the rest of the domain "paints" $im(T)$. Notice that there may be element of the output space	W_1 Once we have one non-zero vector \vec{v} we must add all scalings and additions of copies of \vec{v} to the space which gives the infinite line going through the origin parallel to \vec{v} .
that are NOT part of $im(T)$.	W_2 If we have two non-parallel vectors \vec{v} and \vec{w} we must include all scalings
[Figure: Copyright © 2019 Peter Blomgren]	of the parallelogram described by $\vec{0} \cdot \vec{v} \cdot \vec{w} \cdot (\vec{v} + \vec{w})$ which fills all of \mathbb{R}^2 .
	Sae Direc Start University
Peter Blomgren (blomgren@sdsu.edu) 3.2. Bases and Linear Independence	Peter Blomgren (blomgren@sdsu.edu) 3.2. Bases and Linear Independence — (6/35)
Subspaces of \mathbb{R}^n ; Bases and Linear Independence Suggested ProblemsSubspaces of \mathbb{R}^n Bases and Linear Independence	Subspaces of \mathbb{R}^n ; Bases and Linear IndependenceSubspaces of \mathbb{R}^n Suggested ProblemsBases and Linear Independence
Example: Subspaces of \mathbb{R}^3	Describing a Plane in 3D Kernel version
Example (Subspaces of \mathbb{R}^3)	Example (Kernel and Image of V)
There are infinitely many subspaces of \mathbb{R}^3 ; they fall into one of four categories:	Consider the plane $V \in \mathbb{R}^3$ given by the equation $x_1 + 2x_2 + 3x_3 = 0$. Express V as the kernel of a matrix; and the image of (another) matrix.
	Express v as the kenter of a matrix, and the image of (another) matrix.
• $W_0 = \{\vec{0}\}.$	a. First we find a matrix A so that $V = \ker(A)$:
• $W_1 = \{k\vec{v} : \forall k \in \mathbb{R}\}$, where $\vec{v} \in \mathbb{R}^3$ — Lines through $\vec{0}$	• We can write the equation as
• $W_2 = \{k\vec{v} + \ell\vec{w} : \forall k, \ell \in \mathbb{R}\}$, where $\vec{v}, \vec{w} \in \mathbb{R}^3$, and \vec{v} and \vec{w} are not parallel — PLANES THROUGH $\vec{0}$,	
• $W_3 = \mathbb{R}^3$.	$\underbrace{\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \vec{0}$
Note that the planes of time 14/ are not increased.	
Note that the planes of type W_2 are not necessarily parallel to any (standard) coordinate axis.	and clearly, we are looking for $ker(A)$.
Figure: In the game "labyrinth," we tilt (part) of a plane in \mathbb{R}^3 to	[Useful Point of View] If we are thinking about $A\vec{x}$ in terms of dot-product($\langle Row-oF-$
move a marble from start-to-finish. License: CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=95651	$A\rangle, \vec{x}$); we can interpret this situation as finding all $\vec{x} \perp$ all rows of A.
License. CC D. D. (2.0, http://commons.wikimedit.org/w/index.php:cdiid=30001	San District State Sta

Peter Blomgren $\langle blomgren@sdsu.edu \rangle$ 3.2. Bases and Linear Independence — (8/35)

```
Subspaces of \mathbb{R}^n; Bases and Linear Independence Suggested Problems
```

Subspaces of \mathbb{R}^n Bases and Linear Independence

Describing a Plane in 3D...

Image version

Example (Kernel and Image of V)

Consider the plane $V \in \mathbb{R}^3$ given by the equation $x_1 + 2x_2 + 3x_3 = 0$. Express V as the kernel of a matrix; and the image of (another) matrix.

- **b.** Second, we find a matrix B so that V = im(B):
 - We need **two non-parallel vectors in the plane** in order to describe it: First, let $x_3 = 0$, giving $x_1 = -2x_2$ as a possibility; then let $x_2 = 0$, giving $x_1 = -3x_3$ as a possibility. Alternatively, we can parameterize in the usual way $\{x_2 = s, x_3 = t\}$ and get the (same) two vectors as:

$$s \begin{bmatrix} -2\\1\\0 \end{bmatrix}, t \begin{bmatrix} -3\\0\\1 \end{bmatrix}$$

Since V consists of all linear combinations of these vectors,

$$V = \operatorname{im} \left(egin{bmatrix} -2 & -3 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}
ight) \equiv \operatorname{span} \left(egin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, egin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}
ight).$$

Subspaces of \mathbb{R}^{\prime}

3.2. Bases and Linear Independence

Bases and Linear Independence

Peter Blomgren (blomgren@sdsu.edu)

Subspaces of \mathbb{R}^n ; Bases and Linear Independence Suggested Problems

Linear Independence: Basis

Key Concept!

Ê

SAN DIEGO SAN DIEGO

Definition (Linear Independence; Basis)

Consider non-zero vectors $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$.

- We say that a vector $\vec{v_i}$ is *linearly* **dependent** if it is a linear combination of the preceding vectors, $\vec{v_1}, \ldots, \vec{v_{i-1}}$
- The vectors $\vec{v_1}, \ldots, \vec{v_m}$ are **linearly independent** if none of them can be written as a linear combination of the others.
- We say that the vectors v₁,..., v_m in a subspace V of ℝⁿ form a **basis** of V if they span V and are linearly independent.

Informally, a basis is a minimal description of a (sub)space.

How Many Column Vectors Do We Need to Describe the Image / Span?

Next, consider

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix} = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} & \vec{v_4} \end{bmatrix}$$

Since $A \in \mathbb{R}^{3 \times 4}$ its image "lives in" (is a subspace of) \mathbb{R}^3 — $\operatorname{im}(A) \subset \mathbb{R}^3$, and kernel $\operatorname{ker}(A) \subset \mathbb{R}^4$.

We notice that $\vec{v}_2 = 2\vec{v}_1$, and $\vec{v}_4 = \vec{v}_1 + \vec{v}_3$; that is the vectors \vec{v}_2 and \vec{v}_4 are "redundant" as far as describing the image is concerned (we can describe them using other columns in the matrix):

$$\operatorname{im} \begin{pmatrix} \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 \end{bmatrix} \end{pmatrix} = \operatorname{span} \begin{pmatrix} \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \end{pmatrix} = \operatorname{span} \begin{pmatrix} \vec{v}_1, \vec{v}_3 \end{pmatrix}$$

If we have a vector $\vec{v} \in \mathbb{R}^3$:

 \bar{v}

$$\begin{aligned} \dot{\mathbf{r}} &= \alpha_1 \vec{\mathbf{v}}_1 + \alpha_2 \vec{\mathbf{v}}_2 + \alpha_3 \vec{\mathbf{v}}_3 + \alpha_4 \vec{\mathbf{v}}_4 \\ &= (\alpha_1 + 2\alpha_2 + \alpha_4) \vec{\mathbf{v}}_1 + (\alpha_3 + \alpha_4) \vec{\mathbf{v}}_3 \end{aligned}$$

- (9/35)	Peter Blomgren (blomgren@sdsu.edu)	3.2. Bases and Linear Independence	— (10/35)
	Subspaces of \mathbb{R}^n ; Bases and Linear Independence Suggested Problems	Subspaces of \mathbb{R}^n Bases and Linear Independence	

A Basis for the Image

In the context of the previously considered matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

we have established that

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, and $\vec{v}_3 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$

give us a (linearly independent) basis of V = im(A).

— (12/35)

Subspaces of \mathbb{R}^n ;	Bases a	nd Linear	Independence
		Sugges	ted Problems

Subspaces of \mathbb{R}^n Bases and Linear Independence Subspaces of \mathbb{R}^n Bases and Linear Independence

Constructing a Basis for the Image Linear Independence or Dependence? Are the following vectors in \mathbb{R}^7 linearly independent? Theorem (Basis of the Image) To construct a basis of im(A), list all the column vectors of A, and 6 3 omit the linearly dependent vectors from the list. $, \quad \vec{v}_3 = \begin{vmatrix} 2 \\ 2 \\ 3 \end{vmatrix}$ 3 $, \vec{v_2} = 1$ $, \vec{v}_4 =$ 2 2 8 Since it is "very difficult" to write • 1 as a linear combination of 0 • 7 as a linear combination of 0 and 0 • 5 as a linear combination of 0, 0, and 0 finding solutions to $\vec{v}_2 = \alpha \vec{v}_1$; $\vec{v}_3 = \beta_1 \vec{v}_1 + \beta_2 \vec{v}_2$; and Figure: Hauling vectors, to $\vec{v_4} = \gamma_1 \vec{v_1} + \gamma_2 \vec{v_2} + \gamma_3 \vec{v_3}$, may prove slightly problematic? build a basis? Êı We can conclude that these four vector are linearly independent. Image License: CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=724545 SAN DIEGO S 3.2. Bases and Linear Independence - (13/35) 3.2. Bases and Linear Independence Peter Blomgren (blomgren@sdsu.edu) Peter Blomgren (blomgren@sdsu.edu) Subspaces of \mathbb{R}^n ; Bases and Linear Independence Subspaces of \mathbb{R}^n ; Bases and Linear Independence Subspaces of \mathbb{R}^n Subspaces of \mathbb{R}^n Suggested Problems Bases and Linear Independence Suggested Problems Bases and Linear Independence Quick-Check for Linear Independence More Generally... The previous theorem does not help for the vectors The previous example gives us a quick-check for linear independence: $\vec{v_1} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \vec{v_2} = \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \quad \vec{v_3} = \begin{bmatrix} 7\\8\\9 \end{bmatrix}$ Theorem (Linear Independence and Zero Components) Consider non-zero vectors $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$. Nothing obvious pops out — clearly \vec{v}_2 is not a scaling of \vec{v}_1 ... If each of the vectors $\vec{v_i}$ has a non-zero entry in a component Now, if \vec{v}_3 is a linear combination of \vec{v}_1 and \vec{v}_2 , then converting the where all the preceding vectors $\vec{v}_1, \ldots, \vec{v}_{i-1}$ have a 0, then the augmented matrix vectors $\vec{v_1}, \ldots, \vec{v_m}$ are linearly independent. $M = \begin{bmatrix} 1 & 4 & 7 & 0 \\ 2 & 5 & 8 & 0 \\ 3 & 6 & 9 & 0 \end{bmatrix}$ Note that the theorem applies to any ordering of the vectors; that is, if it is possible to sort them so that the theorem applies, then

Ê

SAN DIEGO S UNIVERSI into reduced-row-echelon-form, rref(M), will reveal those combinations!

the vectors are linearly independent.

- (14/35)

Subspaces of \mathbb{R}^n ; Bases and Linear Independence Subspaces of \mathbb{R}' Suggested Problems

Bases and Linear Independence

More Generally...

$$M = \begin{bmatrix} 1 & 4 & 7 & | & 0 \\ 2 & 5 & 8 & | & 0 \\ 3 & 6 & 9 & | & 0 \end{bmatrix} \implies \operatorname{rref}(M) = \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

which means that $x_3 = t$ (free variable), $x_1 = x_3$, and $x_2 = -2x_3$; *i.e.* the vectors are NOT linearly independent; $M\vec{x} = \vec{0}$ has infinitely many solutions of the form

 $\vec{x} = t \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

We can write this as the expression (linear relation).

$$\vec{v}_1 - 2\vec{v}_2 + \vec{v}_3 = \vec{0},$$

where $\vec{v_1}$, $\vec{v_2}$ and $\vec{v_3}$ are the columns of M.

Peter Blomgren (blomgren@sdsu.edu)	3.2. Bases and Linear Independence	— (17/35)

Subspaces of \mathbb{R}^n ; Bases and Linear Independence Suggested Problems Subspaces of \mathbb{R}^n Bases and Linear Independence

Relations and Linear Dependence

Proof :: Relations and Linear Dependence

• Suppose vectors $\vec{v_1}, \ldots, \vec{v_m}$ are linearly dependent, and $\vec{v}_i = c_1 \vec{v}_1 + \cdots + c_{i-1} \vec{v}_{i-1}$. Then we can generate a nontrivial relation by

$$c_1ec{v_1}+\dots+c_{i-1}ec{v_{i-1}}+(-1)ec{v_i}=ec{0}$$

• Conversely, if there is a non-trivial relation $c_1 \vec{v_1} + \cdots + c_m \vec{v_m} = \vec{0}$, where *i* is the highest index such that $c_i \neq 0$, then we can solve for \vec{v}_i and this express

$$\vec{v}_i = -\frac{c_1}{c_i}\vec{v}_1 - \dots - \frac{c_{i-1}}{c_i}\vec{v}_{i-1}$$

this shows that $\vec{v_i}$ is a linear combination of the preceding vectors, and hence $\vec{v_1}, \ldots, \vec{v_m}$ are linearly dependent.

Subspaces of \mathbb{R}^n ; Bases and Linear Independence Suggested Problems Subspaces of \mathbb{R}^{\prime} Bases and Linear Independence

More Math Language

Definition (Linear Relations)

Consider vectors $\vec{v_1}, \ldots, \vec{v_m} \in \mathbb{R}^n$. An equation of the form

$$c_1\vec{v_1}+\cdots+c_m\vec{v_m}=\vec{0}$$

is called a (linear) relation among the vectors. There is always the trivial relation, with $c_1 = \cdots = c_m = 0$. Non-trivial relations where at least one c_k is non-zero — may or may not exist among the vectors.

Theorem (Relations and Linear Dependence)

The vectors $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$ are linearly dependent if and only if there are non-trivial relations among them.

- (20/35)

Peter Blomgren (blomgren@sdsu.edu)	3.2. Bases and Linear Independence	— (18/35
Subspaces of \mathbb{R}^n ; Bases and Linear Independence Suggested Problems	Subspaces of \mathbb{R}^n Bases and Linear Independence	

Example

Ê SAN DIEGO S

A

- (19/35)

[Fundamental Concept].

Suppose the column vectors of an $(n \times m)$ matrix A are linearly independent. Find ker(A).

Solution: We are looking for

$$A\vec{x} = 0 \iff \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_m \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = \vec{0} \iff x_1\vec{v}_1 + \cdots + x_m\vec{v}_m = \vec{0}$$

now, since the columns are linearly independent, the trivial solution is the only solution $(x_1 = \cdots = x_m = 0)$. Therefore $\ker(A) = \{\vec{0}\}$.

Subspaces of \mathbb{R}^n ; Bases and Linear Independence Suggested Problems

Subspaces of \mathbb{R}^n Bases and Linear Independence

3.2. Bases and Linear Independence

Suggested Problems 3.2

Lecture – Book Roadmap

Basis and Unique Representation

Proof: BASIS \Rightarrow UNIQUENESS

Let $\vec{v}_1, \ldots, \vec{v}_m$ be a basis of V.

Assume: we have two representations of some $\vec{v} \in V$:

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_m \vec{v}_m$$

= $d_1 \vec{v}_1 + \dots + d_m \vec{v}_m$.

Subtracting gives

Suggested Problems 3.2

$$\vec{0} = (\vec{v} - \vec{v}) = (c_1 - d_1)\vec{v}_1 + \dots + (c_m - d_m)\vec{v}_m$$

Since $\vec{v_1}, \ldots, \vec{v_m}$ form a basis, they are (by definition) linearly independent, so $(c_k - d_k) = 0, \forall k \in \{1, \ldots, m\}$; which shows that the two representation must be the same.

Available on Learning Glass videos:

Peter Blomgren (blomgren@sdsu.edu)

Suggested Problems

Subspaces of \mathbb{R}^n ; Bases and Linear Independence

3.2 - 1, 3, 7, 11, 17, 25, 27, 32, 34

Basis and Unique Representation

[Fundamental Concept].	
	Proof: UNIQUENESS \Rightarrow BASIS [Fundamental Concept].
<i>V</i> :	Consider the subspace V of \mathbb{R}^n spanned by the vectors $ec{v_1}, \ldots, ec{v_m}$.
	Given that the representation
	$ec{v}=c_1ec{v_1}+\cdots+c_mec{v_m}$
$-d_m)\vec{v}_m$. on) linearly hich shows that	is unique; let $\vec{v} = \vec{0}$, this forces $c_k = 0 \ \forall k \in \{1, \dots, m\}$, which shows that the vectors are linearly independent; so we have a basis.
SAN DIRO STAT	See Third Shart UNIVERSE
ependence — (25/35)	Peter Blomgren (blomgren@sdsu.edu) 3.2. Bases and Linear Independence
	Subspaces of R ⁿ ; Bases and Linear Independence Suggested Problems 3.2 Suggested Problems Lecture – Book Roadmap
	Lecture–Book Roadmap
	LectureBook, $[GS5-]$ 3.1§3.1, §3.2, §3.33.2§3.1, §3.2, §3.3, §3.43.3§3.1, §3.2, §3.3, §3.4, §3.53.4

Ê

SAN DIEG UNIVER

— (27/35)

Ê

Supplemental Material	Metacognitive Reflection Problem Statements 3.2	Supplemental Material
Metacognitive Exercise — Thinking	About Thinking & Learning	(3.2.1), (3.2.3)
I know / learned Almos	t there Huh?!?	
Right Aft	er Lecture	(3.2.1) Check whether or not t
		$\mathcal{W} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \right.$
After Thinking / Off	ice Hours / SI-session	
		(3.2.3) Check whether or not t
		$\int \int x + 2y +$
After Reviewing for	Quiz/Midterm/Final	$\mathcal{W} = \begin{cases} x + 2y + 4x + 5y + 4x + 5y + 7x + 8y + 7x + 8x + 7x + 7$
		$\left(\left\lfloor lx + 8y + lz \right\rfloor \right)$
	See Direct Start Lawrenty	
Peter Blomgren (blomgren@sdsu.edu)	3.2. Bases and Linear Independence — (29/35)	Peter Blomgren (blomgren@sdsu.edu)
Supplemental Material	Metacognitive Reflection Problem Statements 3.2	Supplemental Material
(3.2.7), (3.2.11)		(3.2.17), (3.2.25)

(3.2.7) Consider a nonempty subset \mathcal{W} of \mathbb{R}^n that is closed under addition and under scalar multiplication. Is ${\mathcal W}$ necessarily a subspace of \mathbb{R}^n ? Explain.

(3.2.11) Determine whether the given vectors are linearly independent:

 $\begin{bmatrix} 7\\11 \end{bmatrix}, \begin{bmatrix} 11\\7 \end{bmatrix}.$

Metacognitive Reflection Supplemental Material Problem Statements 3.2

eck whether or not the subset \mathcal{W} of \mathbb{R}^n is subspace:

$$\mathcal{W} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 1 \right\}$$

eck whether or not the subset \mathcal{W} of \mathbb{R}^n is subspace:

$$\mathcal{W} = \left\{ \begin{bmatrix} x+2y+3z\\4x+5y+6z\\7x+8y+9z \end{bmatrix} : x, y, z \in \mathbb{R} \right\}.$$

Supplemental Material

— (30/35)

Ê SAN DIEGO S

Metacognitive Reflection **Problem Statements 3.2**

3.2. Bases and Linear Independence

(3.2.17) Determine whether the given vectors are linearly independent:

$\lceil 1 \rceil$		$\begin{bmatrix} 1 \end{bmatrix}$	
2	,	3	
[3]		6	
	2		2, 3

(3.2.25) Find a linearly *dependent* (or *"redundant"*) column of the given matrix A, and write it as a linear combination of the preceding columns. Use this representation to write a non-trivial relation among the columns, and thus find a non-zero vector in the kernel of A:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

Ê

SAN DIEGO UNIVER — (31/35) Êı

