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Student Learning Objectives SLOs: Bases and Linear Independence

SLOs 3.2 Image & Bases and Linear Independence

After this lecture you should:

Know the definition of Subspaces; be comfortable with the
concepts of the Image and Kernel of a linear
transformation (and/or its associated matrix A).

Know how (i) the Span, (ii) Linear Independence, and
(iii) the Basis of a Subspace are inter-related.

Be familiar with the Equivalent properties of Linearly
Independent Vectors.

Equivalent Language [GS5–3.1–3.2]

Image: “Column Space (of a Matrix).”

Kernel: “Null Space (of a Matrix).”
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Subspaces of Rn

In a previous episode of “Adventures in Linear Algebra” we
encountered the image and kernel of a linear transform. It turns
out both have three particular properties that fit into a more
general classification:

Definition (Subspaces of Rn)

A subset W of the vector space R
n is called a (linear) subspace of

R
n if it has the following three properties:

1 W contains the zero vector.

2 W is closed under addition∗1.

3 W is closed under scalar multiplication∗2.

∗1 — if ~w1, ~w2 ∈ W , then ~w1 + ~w2 ∈ W ; and
∗2 — if ~w ∈ W and α ∈ R, then α~w ∈ W .
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Subspaces of Rn

Theorem (Image and Kernel of a Linear Transform are Subspaces)

If T (~x) = A~x is a linear transformation from R
m to R

n, then

ker(T ) = ker(A) is a subspace of Rm, and

im(T ) = im(A) is a subspace of Rn.

The proof for the image, im(A), is in [Notes#3.1]; we left the (very
similar) proof for ker(A) as an exercise for a dark and stormy night.

However, recall the “cartoon” illustration
R Rm n

ker(T) im(T)0

Figure: ker(T ) are the elements in the domain
that are transformed to 0 in the output space;
the rest of the domain “paints” im(T ). Notice
that there may be element of the output space
that are NOT part of im(T ).

[Figure: Copyright © 2019 Peter Blomgren]
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Example: Subspaces of R2

Example (Subspaces of R2)

There are infinitely many subspaces of R2; they fall into one of
three categories:

W0 = {~0}.

W1 = {k~v : ∀k ∈ R}, where ~v ∈ R
2 and ~v 6= ~0.

W2 = R
2.

W0 is quite straight-forward.

W1 Once we have one non-zero vector ~v we must add all scalings and
additions of copies of ~v to the space which gives the infinite line going
through the origin parallel to ~v .

W2 If we have two non-parallel vectors ~v and ~w we must include all scalings
of the parallelogram described by ~0-~v -~w -(~v + ~w)... which fills all of
R

2.
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Example: Subspaces of R3

Example (Subspaces of R3)

There are infinitely many subspaces of R3; they fall into one of four
categories:

W0 = {~0}.

W1 = {k~v : ∀k ∈ R}, where ~v ∈ R
3 — Lines through ~0

W2 = {k~v + ℓ~w : ∀k , ℓ ∈ R}, where ~v , ~w ∈ R
3, and ~v and ~w are

not parallel — Planes through ~0,

W3 = R
3.

Note that the planes of type W2 are not necessarily
parallel to any (standard) coordinate axis.

Figure: In the game “labyrinth,” we tilt (part) of a plane in R
3 to

move a marble from start-to-finish.

License: CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=9565133
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Describing a Plane in 3D... Kernel version

Example (Kernel and Image of V )

Consider the plane V ∈ R
3 given by the equation x1 + 2x2 + 3x3 = 0.

Express V as the kernel of a matrix; and the image of (another) matrix.

a. First we find a matrix A so that V = ker(A):

We can write the equation as

[
1 2 3

]

︸ ︷︷ ︸

A





x1
x2
x3



 = ~0

and clearly, we are looking for ker(A).

[Useful Point of View] If we are thinking about A~x in terms of dot-product(〈Row-of-

A〉, ~x); we can interpret this situation as finding all ~x ⊥ all rows of A.
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Subspaces of Rn

Bases and Linear Independence

Describing a Plane in 3D... Image version

Example (Kernel and Image of V )

Consider the plane V ∈ R
3 given by the equation x1 + 2x2 + 3x3 = 0. Express V as

the kernel of a matrix; and the image of (another) matrix.

b. Second, we find a matrix B so that V = im(B):

We need
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Describing a Plane in 3D... Image version

Example (Kernel and Image of V )

Consider the plane V ∈ R
3 given by the equation x1 + 2x2 + 3x3 = 0. Express V as

the kernel of a matrix; and the image of (another) matrix.

b. Second, we find a matrix B so that V = im(B):

We need two non-parallel vectors in the plane in order to describe it:
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Describing a Plane in 3D... Image version

Example (Kernel and Image of V )

Consider the plane V ∈ R
3 given by the equation x1 + 2x2 + 3x3 = 0. Express V as

the kernel of a matrix; and the image of (another) matrix.

b. Second, we find a matrix B so that V = im(B):

We need two non-parallel vectors in the plane in order to describe it:
First, let x3 = 0, giving x1 = −2x2 as a possibility; then let x2 = 0, giving
x1 = −3x3 as a possibility. Alternatively, we can parameterize in the usual
way {x2 = s, x3 = t} and get the (same) two vectors as:

s





−2
1
0



 , t





−3
0
1





Since V consists of all linear combinations of these vectors,

V = im









−2 −3
1 0
0 1







 ≡ span









−2
1
0



 ,





−3
0
1







 .
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Suggested Problems

Subspaces of Rn

Bases and Linear Independence

How Many Column Vectors Do We Need to Describe the Image / Span?

Next, consider

A =





1 2 1 2
1 2 2 3
1 2 3 4



 =
[
~v1 ~v2 ~v3 ~v4

]

Since A ∈ R
3×4 its image “lives in” (is a subspace of) R3 —

im(A) ⊂ R
3, and kernel ker(A) ⊂ R

4.
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

How Many Column Vectors Do We Need to Describe the Image / Span?

Next, consider

A =





1 2 1 2
1 2 2 3
1 2 3 4



 =
[
~v1 ~v2 ~v3 ~v4

]

Since A ∈ R
3×4 its image “lives in” (is a subspace of) R3 —

im(A) ⊂ R
3, and kernel ker(A) ⊂ R

4.

We notice that ~v2 = 2~v1, and ~v4 = ~v1 + ~v3; that is the vectors ~v2 and ~v4
are “redundant” as far as describing the image is concerned (we can
describe them using other columns in the matrix)
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

How Many Column Vectors Do We Need to Describe the Image / Span?

Next, consider

A =





1 2 1 2
1 2 2 3
1 2 3 4



 =
[
~v1 ~v2 ~v3 ~v4

]

Since A ∈ R
3×4 its image “lives in” (is a subspace of) R3 —

im(A) ⊂ R
3, and kernel ker(A) ⊂ R

4.

We notice that ~v2 = 2~v1, and ~v4 = ~v1 + ~v3; that is the vectors ~v2 and ~v4
are “redundant” as far as describing the image is concerned (we can
describe them using other columns in the matrix):

im
([
~v1 ~v2 ~v3 ~v4

])
= span (~v1, ~v2, ~v3, ~v4) = span (~v1, ~v3)

If we have a vector ~v ∈ R
3:

~v = α1~v1 + α2~v2 + α3~v3 + α4~v4
= (α1 + 2α2 + α4)~v1 + (α3 + α4)~v3

Peter Blomgren 〈blomgren@sdsu.edu〉 3.2. Bases and Linear Independence — (10/35)



Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Linear Independence; Basis Key Concept!

!

Definition (Linear Independence; Basis)

Consider non-zero vectors ~v1, . . . , ~vm ∈ R
n.

We say that a vector ~vi is linearly dependent if it is a linear
combination of the preceding vectors, ~v1, . . . , ~vi−1

The vectors ~v1, . . . , ~vm are linearly independent if none of
them can be written as a linear combination of the others.

We say that the vectors ~v1, . . . , ~vm in a subspace V of Rn

form a basis of V if they span V and are linearly independent.

!

Informally, a basis is a minimal description of a (sub)space.
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

A Basis for the Image

In the context of the previously considered matrix

A =





1 2 1 2
1 2 2 3
1 2 3 4





we have established that

~v1 =





1
1
1



 , and ~v3 =





1
2
3





give us a (linearly independent) basis of V = im(A).
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Subspaces of Rn

Bases and Linear Independence

Constructing a Basis for the Image

Theorem (Basis of the Image)

To construct a basis of im(A), list all the column vectors of A, and

omit the linearly dependent vectors from the list.

Figure: Hauling vectors, to
build a basis?

Image License: CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=724545
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Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Linear Independence or Dependence?

Are the following vectors in R
7 linearly independent?

~v1 =













7
0
4
0
1
9
0













, ~v2 =













6
0
7
1
4
8
0













, ~v3 =













5
0
6
2
3
1
7













, ~v4 =













4
5
3
3
2
2
4













,

Since it is “very difficult” to write

1 as a linear combination of 0

7 as a linear combination of 0 and 0

5 as a linear combination of 0, 0, and 0

finding solutions to ~v2 = α~v1; ~v3 = β1~v1 + β2~v2; and
~v4 = γ1~v1 + γ2~v2 + γ3~v3, may prove slightly problematic?

We can conclude that these four vector are linearly independent.
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Subspaces of Rn ; Bases and Linear Independence
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Subspaces of Rn

Bases and Linear Independence

Quick-Check for Linear Independence

The previous example gives us a quick-check for linear
independence:

Theorem (Linear Independence and Zero Components)

Consider non-zero vectors ~v1, . . . , ~vm ∈ R
n.

If each of the vectors ~vi has a non-zero entry in a component

where all the preceding vectors ~v1, . . . , ~vi−1 have a 0, then the

vectors ~v1, . . . , ~vm are linearly independent.

Note that the theorem applies to any ordering of the vectors; that
is, if it is possible to sort them so that the theorem applies, then
the vectors are linearly independent.
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Subspaces of Rn

Bases and Linear Independence

More Generally...

The previous theorem does not help for the vectors

~v1 =





1
2
3



 , ~v2 =





4
5
6



 , ~v3 =





7
8
9





Nothing obvious pops out — clearly ~v2 is not a scaling of ~v1...
Now, if ~v3 is a linear combination of ~v1 and ~v2, then converting the
augmented matrix

M =





1 4 7 0
2 5 8 0
3 6 9 0





into reduced-row-echelon-form, rref(M), will reveal those
combinations!
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Subspaces of Rn

Bases and Linear Independence

More Generally...

M =





1 4 7 0
2 5 8 0
3 6 9 0



 =⇒ rref(M) =





1 0 −1 0
0 1 2 0
0 0 0 0





which means that x3 = t (free variable), x1 = x3, and x2 = −2x3; i.e. the
vectors are NOT linearly independent; M~x = ~0 has infinitely many
solutions of the form

~x = t





1
−2
1





We can write this as the expression (linear relation),

~v1 − 2~v2 + ~v3 = ~0,

where ~v1, ~v2 and ~v3 are the columns of M.
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Subspaces of Rn

Bases and Linear Independence

More Math Language

Definition (Linear Relations)

Consider vectors ~v1, . . . , ~vm ∈ R
n. An equation of the form

c1~v1 + · · ·+ cm~vm = ~0

is called a (linear) relation among the vectors. There is always the
trivial relation, with c1 = · · · = cm = 0. Non-trivial relations —
where at least one ck is non-zero — may or may not exist among
the vectors.

Theorem (Relations and Linear Dependence)

The vectors ~v1, . . . , ~vm ∈ R
n are linearly dependent if

and only if there are non-trivial relations among them. Pr
oo
f
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Relations and Linear Dependence

Proof :: Relations and Linear Dependence [Fundamental Concept].

Suppose vectors ~v1, . . . , ~vm are linearly dependent, and
~vi = c1~v1 + · · ·+ ci−1~vi−1. Then we can generate a nontrivial
relation by

c1~v1 + · · ·+ ci−1~vi−1 + (−1)~vi = ~0

Conversely, if there is a non-trivial relation c1~v1 + · · ·+ cm~vm = ~0,
where i is the highest index such that ci 6= 0, then we can solve for
~vi and this express

~vi = −
c1

ci
~v1 − · · · −

ci−1

ci
~vi−1

this shows that ~vi is a linear combination of the preceding vectors,
and hence ~v1, . . . , ~vm are linearly dependent.
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Bases and Linear Independence

Example

Example (Find the Kernel)

Suppose the column vectors of an (n ×m) matrix A are linearly
independent. Find ker(A).

Solution: We are looking for

A~x = 0 ⇔
[
~v1 · · · ~vm

]






x1
...
xm




 = ~0 ⇔ x1~v1 + · · ·+ xm~vm = ~0

now, since the columns are linearly independent, the trivial solution
is the only solution (x1 = · · · = xm = 0). Therefore ker(A) = {~0}.
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Subspaces of Rn

Bases and Linear Independence

Summarizing

Theorem (Kernel and Relations)

The vectors in the kernel of an (n×m) matrix A correspond to the

linear relations among the column vectors ~v1, . . . , ~vm of A: the

equation

A~x = ~0 means that x1~v1 + · · ·+ xm~vm = ~0.

In particular, the column vectors of A are linearly independent if

and only if ker(A) = {~0}, or equivalently, if and only if

rank(A) = m. This condition implies that m ≤ n.

We can find at most n linearly independent vectors in R
n.
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Subspaces of Rn

Bases and Linear Independence

Example (Revisited) Collecting All the Pieces in One Place

A =





1 4 7
2 5 8
3 6 9





We have previously established that





7
8
9



 = −





1
2
3



+ 2





4
5
6





︸ ︷︷ ︸

~v3 is redundant linearly dependent

⇔





1
2
3



− 2





4
5
6



+





7
8
9



 = ~0

︸ ︷︷ ︸

∃ non-trivial linear relation

Collecting in matrix-vector form:

⇔





1 4 7
2 5 8
3 6 9









1
−2
1



 = ~0 ⇒





1
−2
1



 ∈ ker(A).

︸ ︷︷ ︸

non-trivial kernel
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Bases and Linear Independence

Linear Independence Important Summary

!

Equivalent Properties: Linear Independence

For a list ~v1, . . . , ~vm ∈ R
n of vectors, the following statements are

equivalent [all TRUE, or all FALSE]:

i. The vectors ~v1, . . . , ~vm are linearly independent

ii. None of the vectors in the list can be written as a linear
combination of preceding vectors.

iii. None of the vectors can be written as a linear combination of the
others.

iv. There is only the trivial solution to c1~v1 + · · ·+ cm~vm = ~0, i.e.
c1 = · · · = cm = 0

v. ker
([
~v1 · · · ~vm

])
= {~0}

vi. rank
([
~v1 · · · ~vm

])
= m

!
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Subspaces of Rn

Bases and Linear Independence

Basis and Unique Representation

Theorem (Basis and Unique Representation)

Consider the vectors ~v1, . . . , ~vm in a subspace V of

R
n.

The vectors form a basis if and only if every vector ~v

in V can be expressed uniquely as a linear combination

~v = c1~v1 + · · ·+ cm~vm

The coefficients c1, . . . , cm are called the coordinates
of ~v with respect to the basis ~v1, . . . , ~vm.

Pr
oo
f

We will discuss coordinates in more details in [Notes#3.4].
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Basis and Unique Representation

Proof: Basis ⇒ Uniqueness [Fundamental Concept].

Let ~v1, . . . , ~vm be a basis of V .

Assume: we have two representations of some ~v ∈ V :

~v = c1~v1 + · · ·+ cm~vm

= d1~v1 + · · ·+ dm~vm.

Subtracting gives

~0 = (~v − ~v) = (c1 − d1)~v1 + · · ·+ (cm − dm)~vm.

Since ~v1, . . . , ~vm form a basis, they are (by definition) linearly
independent, so (ck − dk) = 0, ∀k ∈ {1, . . . ,m}; which shows that
the two representation must be the same.

Peter Blomgren 〈blomgren@sdsu.edu〉 3.2. Bases and Linear Independence — (25/35)



Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Subspaces of Rn

Bases and Linear Independence

Basis and Unique Representation

Proof: Uniqueness ⇒ Basis [Fundamental Concept].

Consider the subspace V of Rn spanned by the vectors ~v1, . . . , ~vm.

Given that the representation

~v = c1~v1 + · · ·+ cm~vm

is unique; let ~v = ~0, this forces ck = 0 ∀k ∈ {1, . . . ,m}, which
shows that the vectors are linearly independent; so we have a
basis.

Peter Blomgren 〈blomgren@sdsu.edu〉 3.2. Bases and Linear Independence — (26/35)



Subspaces of Rn ; Bases and Linear Independence
Suggested Problems

Suggested Problems 3.2
Lecture –Book Roadmap

Suggested Problems 3.2

Available on Learning Glass videos:
3.2 — 1, 3, 7, 11, 17, 25, 27, 32, 34
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Suggested Problems 3.2
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

3.1 §3.1, §3.2, §3.3
3.2 §3.1, §3.2, §3.3, §3.4
3.3 §3.1, §3.2, §3.3, §3.4, §3.5
3.4
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Supplemental Material
Metacognitive Reflection
Problem Statements 3.2

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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Supplemental Material
Metacognitive Reflection
Problem Statements 3.2

(3.2.1), (3.2.3)

(3.2.1) Check whether or not the subset W of Rn is subspace:

W =











x

y

z



 : x + y + z = 1






.

(3.2.3) Check whether or not the subset W of Rn is subspace:

W =











x + 2y + 3z
4x + 5y + 6z
7x + 8y + 9z



 : x , y , z ∈ R






.
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Supplemental Material
Metacognitive Reflection
Problem Statements 3.2

(3.2.7), (3.2.11)

(3.2.7) Consider a nonempty subset W of Rn that is closed under
addition and under scalar multiplication. Is W necessarily a
subspace of Rn? Explain.

(3.2.11) Determine whether the given vectors are linearly
independent:

[
7
11

]

,

[
11
7

]

.
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Supplemental Material
Metacognitive Reflection
Problem Statements 3.2

(3.2.17), (3.2.25)

(3.2.17) Determine whether the given vectors are linearly
independent:





1
1
1



 ,





1
2
3



 ,





1
3
6



 .

(3.2.25) Find a linearly dependent (or “redundant”) column of the
given matrix A, and write it as a linear combination of the
preceding columns. Use this representation to write a non-trivial
relation among the columns, and thus find a non-zero vector in the
kernel of A:

A =





1 0 1
1 1 1
1 0 1



 .
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Supplemental Material
Metacognitive Reflection
Problem Statements 3.2

(3.2.27), (3.2.32)

(3.2.27) Find a basis for the image of the matrix

A =





1 1
1 2
1 3



 .

(3.2.32) Find a basis for the image of the matrix

A =







0 1 2 0 0 3
0 0 0 1 0 4
0 0 0 0 1 5
0 0 0 0 0 0






.
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(3.2.34)

(3.2.34) Consider the (5× 4) matrix

A =





| | | |
~v1 ~v2 ~v3 ~v4
| | | |



 ,

we are told that the vector

~n1 =







1
2
3
4







is in the kernel of A. Write ~v4 as a linear combination of ~v1, ~v2, ~v3.
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Spring 2019 “Live Math” Debugged

A “2”went missing...

A =



















x1 x2 x3 x4 x5 x6
0 1 2 0 0 4
0 0 0 1 0 3
0 0 0 0 1 2
0 0 0 0 0 0
0 0 0 0 0 0
~v1 ~v2 ~v3 ~v4 ~v5 ~v6



















, A ∈ R
5×6, rank(A) = 3

~v2, ~v4, and ~v5 are linearly independent. Basis(im(A)) = {~v2, ~v4, ~v5} .
~v1, ~v3, and ~v6 are linearly dependent: the zero-vector is always “dependent,” and
~v3 = 2~v2, ~v6 = 4~v2 + 3~v4 + 2~v5.
If we parameterize the free variables as usual (x1, x3, x6) = (s, t, u); then A~x = 0 has
solutions:

s















1
0
0
0
0
0















+ t















0
−2
1
0
0
0















+ u















0
−4
0

−3
−2
1















, Basis(ker(A)) =









































1
0
0
0
0
0















,















0
−2
1
0
0
0















,















0
−4
0

−3
−2
1















.
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