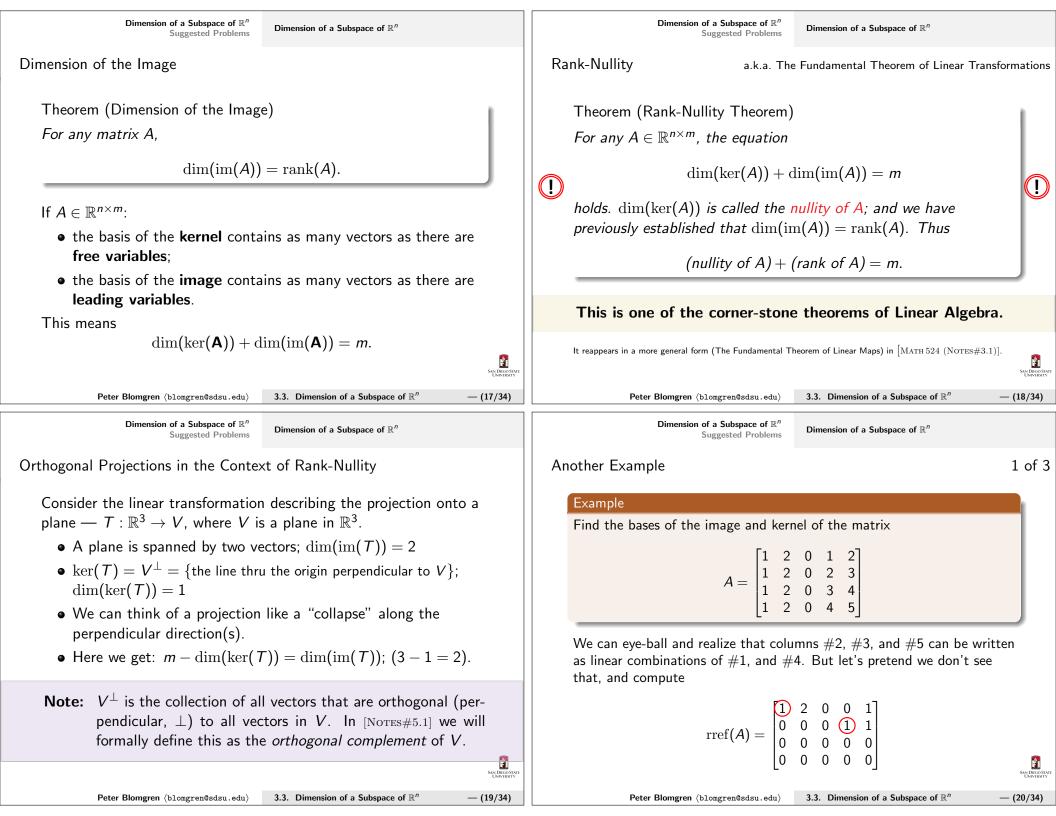


Dimension of a Subspace of \mathbb{R}^n Suggested ProblemsDimension of a Subspace of \mathbb{R}^n	Dimension of a Subspace of \mathbb{R}^n Suggested ProblemsDimension of a Subspace of \mathbb{R}^n			
Example: Bases for $ker(A)$ and $im(A)$ 4 of 5	Example: Bases for $ker(A)$ and $im(A)$ 5 of 5			
The Image: Consider -4 5	The Image: Consider			
$A = \begin{bmatrix} 1 & 2 & 2 & -5 & 6 \\ -1 & -2 & -1 & 1 & -1 \\ 4 & 8 & 5 & -8 & 9 \\ 3 & 6 & 1 & 5 & -7 \end{bmatrix}, B = \operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & 3 & -4 \\ 0 & 0 & 1 & -4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$A = \begin{bmatrix} 1 & 2 & 2 & -5 & 6 \\ -1 & -2 & -1 & 1 & -1 \\ 4 & 8 & 5 & -8 & 9 \\ 3 & 6 & 1 & 5 & -7 \end{bmatrix}, B = \operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & 3 & -4 \\ 0 & 0 & 1 & -4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$			
We quickly see that \vec{b}_1 , and \vec{b}_3 form a basis for $im(B)$. —: $\vec{b}_2 = 2\vec{b}_1$, $\vec{b}_4 = 3\vec{b}_1 - 4\vec{b}_3$, and $\vec{b}_5 = -(4)\vec{b}_1 + (5)\vec{b}_3$. and finally:	Bottom line: It is easy to see what column vectors are the basis for $im(rref(A))$ [and how the other columns are formed from these], once we have identified them; the corresponding ones in A form a basis for $im(A)$ [and the same linear relations hold for A and $rref(A)$]; in this case the vectors			
$-(4)\vec{a}_{1} + (5)\vec{a}_{3} = \begin{bmatrix} -4\\4\\-16\\-12 \end{bmatrix} + \begin{bmatrix} 10\\-5\\25\\5 \end{bmatrix} = \begin{bmatrix} 6\\-1\\9\\-7 \end{bmatrix} = \vec{a}_{5}$	$ec{a_1} = egin{bmatrix} 1 \ -1 \ 4 \ 3 \end{bmatrix}, ec{a_3} = egin{bmatrix} 2 \ -1 \ 5 \ 1 \end{bmatrix}$			
Son Direo Statt UNIVERSITY	form a basis for $im(A)$, and $dim(im(A)) = 2$.			
Peter Blomgren (blomgren@sdsu.edu) 3.3. Dimension of a Subspace of \mathbb{R}^n - (13/34)	Peter Blomgren (blomgren@sdsu.edu) 3.3. Dimension of a Subspace of \mathbb{R}^n - (14/34)			
Dimension of a Subspace of \mathbb{R}^n Dimension of a Subspace of \mathbb{R}^n Suggested ProblemsDimension of a Subspace of \mathbb{R}^n	Dimension of a Subspace of \mathbb{R}^n Suggested Problems Dimension of a Subspace of \mathbb{R}^n			
Insight :: Row-Reductions and Columns	Using RREF to Construct a Basis of the Image			
Insight Row-reductions DO NOT change the relations between columns.	Theorem (Using RREF to Construct a Basis of the Image) To construct a basis of the image of A, pick the column vectors of A that correspond to the columns of rref(A) containing leading 1's.			
"Captain Obvious" from https://imgflip.com/i/1klhm5, copyright/license unknown.	Note that you are picking columns of A (not $\operatorname{rref}(A)$). Generally $\operatorname{im}(A) \neq \operatorname{im}(\operatorname{rref}(A))$.			
Peter Blomgren (blomgren@sdsu.edu) 3.3. Dimension of a Subspace of \mathbb{R}^n (15/34)	Peter Blomgren (blomgren@sdsu.edu) 3.3. Dimension of a Subspace of \mathbb{R}^n (16/34)			



Dimension of a Subspace of \mathbb{R}^n Suggested Problems

Dimension of a Subspace of \mathbb{R}^n

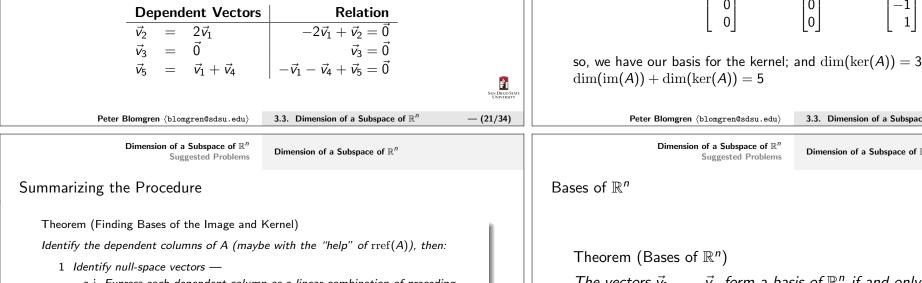
Another Example

We have

<i>A</i> =	1 1 1 1	2 2 2 2	0 0 0 0	1 2 3 4	2 3 4 5],	$\operatorname{rref}(A) =$	1 0 0 0	2 0 0 0	0 0 0 0	0 1 0 0	1 1 0 0	
------------	------------------	------------------	------------------	------------------	--------------------	----------------------------	------------------	------------------	------------------	------------------	------------------	--

So, yeah columns #1 and #4 do indeed form a basis for im(A), and $\dim(\operatorname{im}(A)) = 2.$

Further, we have



Ê

— (23/34)

a-i Express each dependent column as a linear combination of preceding columns

$$ec{v}_i = c_1 ec{v}_1 + \dots + c_{i-1} ec{v}_{i-1}$$

a-ii Write the corresponding relation

$$-c_1 \vec{v}_1 - \dots - c_{i-1} \vec{v}_{i-1} + \vec{v}_i = \vec{0}$$

a-iii Identify the null-space vector

$$\begin{bmatrix} -c_1 & \dots & -c_{i-1} & 1 & 0 & \dots & 0 \end{bmatrix}^T$$

- 2 Collect all such vectors and you have the basis for ker(A).
- 3 The other (independent) columns of A form a basis of im(A).

Êı

Ê

Another Example

2 of 3

The three relations define the three vectors spanning the kernel:

Dependent Vectors	Relation
$\vec{v}_2 = 2\vec{v}_1$	$-2\vec{v_1}+\vec{v_2}=\vec{0}$
$\vec{v}_3 = \vec{0}$	$\vec{v}_3 = \vec{0}$
$ec{v}_5 = ec{v}_1 + ec{v}_4$	$-\vec{v_1} - \vec{v_4} + \vec{v_5} = \vec{0}$

Kernel vectors:

$$\vec{w_1} = \begin{bmatrix} -2\\1\\0\\0\\0\end{bmatrix}, \quad \vec{w_2} = \begin{bmatrix} 0\\0\\1\\0\\0\end{bmatrix}, \quad \vec{w_3} = \begin{bmatrix} -1\\0\\0\\-1\\1\end{bmatrix}$$

so, we have our basis for the kernel; and $\dim(\ker(A)) = 3$;

Peter Blomgren (blomgren@sdsu.edu)
3.3. Dimension of a Subspace of
$$\mathbb{R}^n$$
-- (22/3)

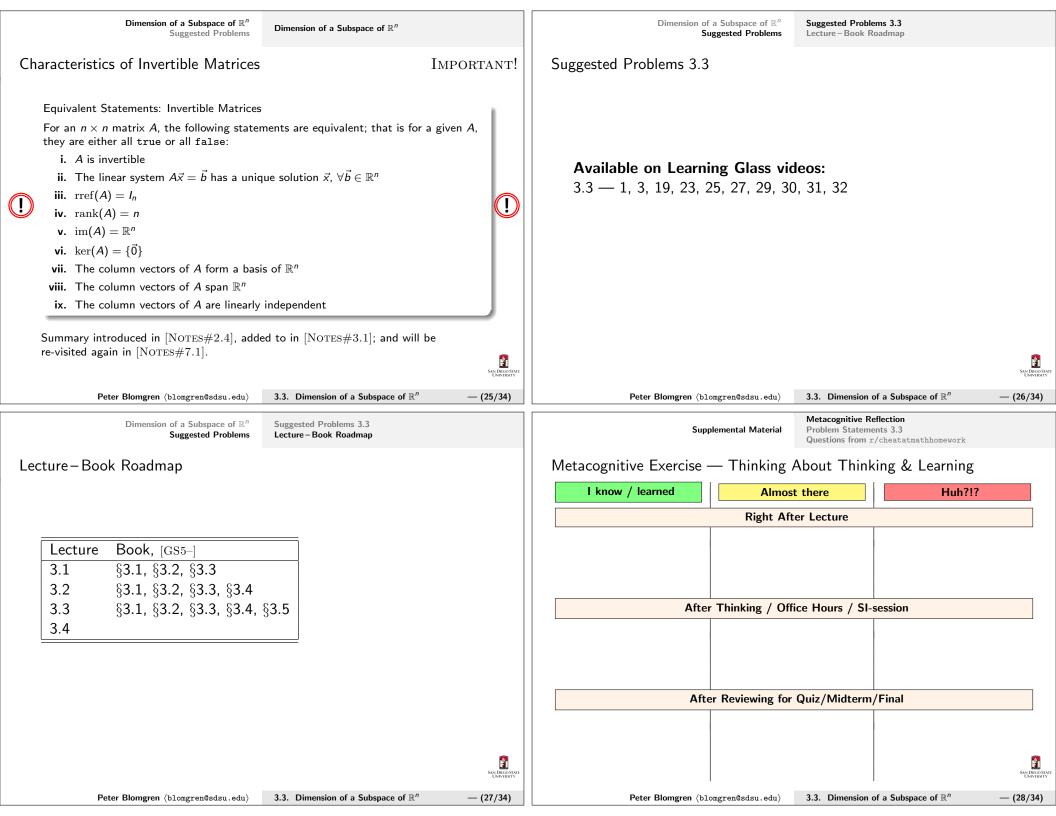
Dimension of a Subspace of \mathbb{R}^n
Dimension of a Subspace of \mathbb{R}^n
Dimension of a Subspace of \mathbb{R}^n

The vectors $\vec{v_1}, \ldots, \vec{v_n}$ form a basis of \mathbb{R}^n if and only if the matrix

$$A = \begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_n \end{bmatrix}$$

is invertible.

Note: We have *n* vectors $\in \mathbb{R}^n$, which means $A \in \mathbb{R}^{n \times n}$.



Supplemental Material

Problem Statements 3.3 Questions from r/cheatatmathhomework

Metacognitive Reflection

(3.3.1), (3.3.3)

(3.3.1) Find the linearly dependent (redundant) column vectors; then find a basis for the image of A, and a basis for the kernel of A, where

 $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}.$

(3.3.3) Find the linearly dependent (redundant) column vectors; then find a basis for the image of A, and a basis for the kernel of A, where

Δ	1	2	
$A \equiv$	3	4	

Ê. SAN DIEGO Peter Blomgren (blomgren@sdsu.edu) 3.3. Dimension of a Subspace of \mathbb{R}^n - (29/34) 3.3. Dimension of a Subspace of \mathbb{R}^n - (30/34) Peter Blomgren (blomgren@sdsu.edu) Metacognitive Reflection Metacognitive Reflection Supplemental Material **Problem Statements 3.3** Supplemental Material **Problem Statements 3.3** Questions from r/cheatatmathhomework Questions from r/cheatatmathhomework

(3.3.25), (3.3.27)

(3.3.25) Find the reduced row echelon form of A; then find a basis for the image of A, and a basis for the kernel of A, where

$$A = \begin{bmatrix} 1 & 2 & 3 & 2 & 1 \\ 3 & 6 & 9 & 6 & 3 \\ 1 & 2 & 4 & 1 & 2 \\ 2 & 4 & 9 & 1 & 2 \end{bmatrix}.$$

(3.3.27) Determine whether the following vectors form a basis of \mathbb{R}^4 :

$\lceil 1 \rceil$		[1]		[1]		[1]	
1		-1		2		-2	
1	,	1	,	4	,	4	•
$\lfloor 1 \rfloor$		$\lfloor -1 \rfloor$		8		8_	

Supplemental Material

Metacognitive Reflection **Problem Statements 3.3** Questions from r/cheatatmathhomework

(3.3.19), (3.3.23)

(3.3.19) Find the linearly dependent (redundant) column vectors; then find a basis for the image of A, and a basis for the kernel of A, where

 $A = \begin{bmatrix} 1 & 0 & 5 & 3 & 0 \\ 0 & 1 & 4 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$

(3.3.23) Find the reduced row echelon form of A; then find a basis for the image of A, and a basis for the kernel of A, where

	Γ1	0	2	4]	
A =	0	0 1 4	-3	4 -1 8 1	
A =	3	4	-6	8	•
	[0	-1	3	1	

```
(3.3.29), (3.3.30)
```

(3.3.29) Find a basis of the subspace of \mathbb{R}^3 defined by the equation

$$2x_1 + 3x_2 + x_3 = 0$$

(3.3.30) Find a basis of the subspace of \mathbb{R}^4 defined by the equation

$$2x_1 - x_2 + 2x_3 + 4x_4 = 0$$

Peter Blomgren (blomgren@sdsu.edu)

3.3. Dimension of a Subspace of \mathbb{R}^n

Supplemental Material

Problem Statements 3.3 Questions from r/cheatatmathhomework

Metacognitive Reflection

(3.3.31), (3.3.32)

(3.3.31) Let V be the subspace of \mathbb{R}^4 defined by the equation

 $x_1 - x_2 + 2x_3 + 4x_4 = 0.$

Find a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ such that ker $(T) = \{\vec{0}\}$, and im(T) = V. Describe T by its matrix.

(3.3.32) Find a basis of the subspace of \mathbb{R}^4 that consists of all vectors perpendicular to both

Bonus Questions from Reddit

(a) Show that the kernel of a linear transformation

$$T_A: \mathbb{R}^5 \to \mathbb{R}^3$$

must have dimension at least 2.

(b) Show that the image of a linear transformation

$$T_B: \mathbb{R}^3 \to \mathbb{R}^5$$

must have dimension at most 3.

