Math 254：Introduction to Linear Algebra

 Notes \＃3．3－Dimension of a Subspace of \mathbb{R}^{n}Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

Spring 2022
（Revised：January 18，2022）

Outline
(1) Student Learning Objectives

- SLOs: Dimension of a Subspace of \mathbb{R}^{n}
(2) Dimension of a Subspace of \mathbb{R}^{n}
- Dimension of a Subspace of \mathbb{R}^{n}
(3) Suggested Problems
- Suggested Problems 3.3
- Lecture-Book Roadmap

4 Supplemental Material

- Metacognitive Reflection
- Problem Statements 3.3
- Questions from r/cheatatmathhomework

After this lecture you should:

- Know that the dimension of a subspace $V \subset \mathbb{R}^{n}$, is denoted $\operatorname{dim}(V)$; it is a non-negative integer counting the number of vectors in (all) bases for V.
- Know that for $V \subset \mathbb{R}^{n}$, we must have $\operatorname{dim}(V) \leq \operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.
- Know that the trivial subspace has dimension zero: $\operatorname{dim}(\{\overrightarrow{0}\})=0$.

Common Struggles at This Point

Comment ("Basis for" vs. "Span of" a Vector Space)

The Basis is the (minimal) description of the space - given a set of Basis Vectors.

Think "building materials."
The Span of the Basis Vectors (that is the collection of all linear combinations) is the space.

Think "finished product."

Comment (Dimension of a Space)
The dimension is always just the count of the number of vectors in the basis - see today's lecture!

How many (non-zero) vectors do we need to describe a subspace?

Figure: The two vectors $\overrightarrow{v_{1}}$ and \vec{v}_{2} form a basis of the subspace V.
Our geometric intuition, and some vigorous hand-waving, seem to indicate that all bases of a plane V in \mathbb{R}^{3} consist of 2 non-parallel vectors.

Maximum Number of Linearly Independent Vectors in a Subspace

Theorem (Proof in [Math 524 (Notes\#2)])
Consider vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ and $\vec{w}_{1}, \ldots, \vec{w}_{q}$ in a subspace of \mathbb{R}^{n}. If the vectors $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are linearly independent, and the vectors $\vec{w}_{1}, \ldots, \vec{w}_{q}$ span V, then $q \geq p$.

Comments:

- It is not possible to squeeze more than q linearly independent vectors into the subspace.
- When $q=2$ (V is a plane), we can have at most 2 linearly independent vectors in the plane.
- We push the proof into the distant future (it's a bit technical and does not necessarily help our intuition; however, we show some related results....)

Number of Vectors in a Basis

Theorem (Number of Vectors in a Basis)
All bases of a subspace V of \mathbb{R}^{n} consist of the same number of vectors.

Proof :: Number of Vectors in a Basis.
We consider 2 bases $\vec{v}_{1}, \ldots, \vec{v}_{p}$ and $\vec{w}_{1}, \ldots, \vec{w}_{q}$ of V. Since $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are linearly independent (they're a basis!), and the vectors $\vec{w}_{1}, \ldots, \vec{w}_{q}$ span the space (also a basis!), we have $q \geq p$ by the theorem on the previous slide.

Flipping the argument, since $\vec{w}_{1}, \ldots, \vec{w}_{q}$ are linearly independent, and $\vec{v}_{1}, \ldots, \vec{v}_{p}$ span the space; we must also have $p \geq q$.

We conclude that $p=q$.

The Dimension of a Subspace
Definition (Dimension of a Subspace)
Consider a subspace V of \mathbb{R}^{n}. The number of vectors in a basis of V is called the dimension of V, denoted $\operatorname{dim}(V)$.

Example (The Dimension of \mathbb{R}^{n})

The vectors $\vec{e}_{1}, \ldots, \vec{e}_{n}$ (where $\vec{e}_{k} \in \mathbb{R}^{n}$, and only the $k^{\text {th }}$ component is non-zero (one)) form a basis for \mathbb{R}^{n}; we call this the standard basis. As expected, it follows that $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.

Standard basis for $\mathbb{R}^{4}:\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$

Independent Vectors and Spanning Vectors in a Subspace of \mathbb{R}^{n}

Example (The Dimension of a Plane)

A plane V in $\mathbb{R}^{n}, n \geq 2$ is two-dimensional. We need exactly two [Linearly Independent] vectors to describe a plane.

Theorem (Independent Vectors and Spanning Vectors in a Subspace of \mathbb{R}^{n})
Consider a subspace V of \mathbb{R}^{n}, with $\operatorname{dim}(V)=m$.
a. We can find at most m linearly independent vectors in V.
b. We need at least m vectors to span V.
c. If m vectors in V are linearly independent, then they form a basis of V.
d. If m vectors in V span V, then they form a basis of V.

Example: Bases for $\operatorname{ker}(A)$ and $\operatorname{im}(A)$

Example

Find a basis for the kernel, and image, of

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 2 & -5 & 6 \\
-1 & -2 & -1 & 1 & -1 \\
4 & 8 & 5 & -8 & 9 \\
3 & 6 & 1 & 5 & -7
\end{array}\right]
$$

The Kernel: We solve $A \vec{x}=\overrightarrow{0}$ and/get

$$
\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & -4 \\
0 & 0 & 1 & -4 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad \operatorname{rank}(A)=2
$$

The leading ones tell what columns of A contain basis vectors for the image of A. [See the next few slides]

Example: Bases for $\operatorname{ker}(A)$ and $\operatorname{im}(A)$

Standard parameterization of the free variables $\left(x_{2}, x_{4}, x_{5}\right)$ yield the infinitely many non-trivial solutions for the kernel (see [Nотеs\#3.1]):

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=s \underbrace{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]}_{\vec{w}_{1}}+t \underbrace{\left[\begin{array}{c}
-3 \\
0 \\
4 \\
1 \\
0
\end{array}\right]}_{\vec{w}_{2}}+r \underbrace{\left[\begin{array}{c}
4 \\
0 \\
-5 \\
0 \\
1
\end{array}\right]}_{\overrightarrow{w_{3}}}
$$

The vectors \vec{w}_{1}, \vec{w}_{2}, and \vec{w}_{3} are linearly independent (see [Linear Independence and Zero Components (Notes\#3.2)]), and span the kernel.

It follows that $\vec{w}_{1}, \overrightarrow{w_{2}}$, and \vec{w}_{3} form a basis for the kernel of A, and $\operatorname{dim}(\operatorname{ker}(A))=3$.

Example: Bases for $\operatorname{ker}(A)$ and $\operatorname{im}(A)$
The Image: Consider
$A=\left[\begin{array}{rrrrr}1 & 2 & 2 & -5 & 6 \\ -1 & -2 & -1 & 1 & -1 \\ 4 & 8 & 5 & -8 & 9 \\ 3 & 6 & 1 & 5 & -7\end{array}\right], \quad B=\operatorname{rref}(A)=\left[\begin{array}{cccrr}1 & 2 & 0 & 3 & -4 \\ 0 & 0 & 1 & -4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
We quickly see that \vec{b}_{1}, and \vec{b}_{3} form a basis for $\operatorname{im}(B)$. -: $\vec{b}_{2}=$ (2) \vec{b}_{1}, $\vec{b}_{4}=$ (3) \vec{b}_{1} - (4) \vec{b}_{3}, and $\vec{b}_{5}=-4 \vec{b}_{1}+5 \vec{b}_{3}$.
Also,

$$
\text { (2) } \vec{a}_{1}=\left[\begin{array}{r}
2 \\
-2 \\
8 \\
6
\end{array}\right]=\vec{a}_{2}, \quad \text { (3) } \vec{a}_{1}-\text { (4) } \vec{a}_{3}=\left[\begin{array}{r}
3 \\
-3 \\
12 \\
9
\end{array}\right]-\left[\begin{array}{r}
8 \\
-4 \\
20 \\
4
\end{array}\right]=\left[\begin{array}{r}
-5 \\
1 \\
-8 \\
5
\end{array}\right]=\vec{a}_{4}
$$

Example: Bases for $\operatorname{ker}(A)$ and $\operatorname{im}(A)$
The Image: Consider
$A=\left[\begin{array}{rrrrr}1 & 2 & 2 & -5 & 6 \\ -1 & -2 & -1 & 1 & -1 \\ 4 & 8 & 5 & -8 & 9 \\ 3 & 6 & 1 & 5 & -7\end{array}\right], \quad B=\operatorname{rref}(A)=\left[\begin{array}{lllrr}1 & 2 & 0 & 3 & -4 \\ 0 & 0 & 1 & -4 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

We quickly see that \vec{b}_{1}, and \vec{b}_{3} form a basis for $\operatorname{im}(B) .-: \vec{b}_{2}=2 \vec{b}_{1}$, $\vec{b}_{4}=3 \vec{b}_{1}-4 \vec{b}_{3}$, and $\vec{b}_{5}=-(4) \vec{b}_{1}+(5) \vec{b}_{3}$. and finally:

$$
\text { -(4) } \vec{a}_{1}+(5) \vec{a}_{3}=\left[\begin{array}{r}
-4 \\
4 \\
-16 \\
-12
\end{array}\right]+\left[\begin{array}{r}
10 \\
-5 \\
25 \\
5
\end{array}\right]=\left[\begin{array}{r}
6 \\
-1 \\
9 \\
-7
\end{array}\right]=\vec{a}_{5}
$$

Example: Bases for $\operatorname{ker}(A)$ and $\operatorname{im}(A)$
The Image: Consider

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 2 & -5 & 6 \\
-1 & -2 & -1 & 1 & -1 \\
4 & 8 & 5 & -8 & 9 \\
3 & 6 & 1 & 5 & -7
\end{array}\right], \quad B=\operatorname{rref}(A)=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 3 & -4 \\
0 & 0 & 1 & -4 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Bottom line: It is easy to see what column vectors are the basis for $\operatorname{im}(\operatorname{rref}(A))$ [and how the other columns are formed from these], once we have identified them; the corresponding ones in A form a basis for $\operatorname{im}(A)$ [and the same linear relations hold for A and $\operatorname{rref}(A)]$; in this case the vectors

$$
\vec{a}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
4 \\
3
\end{array}\right], \quad \vec{a}_{3}=\left[\begin{array}{r}
2 \\
-1 \\
5 \\
1
\end{array}\right]
$$

form a basis for $\operatorname{im}(A)$, and $\operatorname{dim}(\operatorname{im}(A))=2$.

Insight :: Row-Reductions and Columns

Insight

Row-reductions DO NOT change the relations between columns.

"Captain Obvious" from https://imgflip.com/i/1klhm5, copyright/license unknown.

Using Rref to Construct a Basis of the Image

Theorem (Using Rref to Construct a Basis of the Image)
To construct a basis of the image of A, pick the column vectors of A that correspond to the columns of $\operatorname{rref}(A)$ containing leading 1 's.

Note that you are picking columns of $A($ not $\operatorname{rref}(A))$. Generally $\operatorname{im}(A) \neq \operatorname{im}(\operatorname{rref}(A))$.

Dimension of the Image

Theorem (Dimension of the Image)
For any matrix A,

$$
\operatorname{dim}(\operatorname{im}(A))=\operatorname{rank}(A)
$$

If $A \in \mathbb{R}^{n \times m}$:

- the basis of the kernel contains as many vectors as there are free variables;
- the basis of the image contains as many vectors as there are leading variables.
This means

$$
\operatorname{dim}(\operatorname{ker}(\mathbf{A}))+\operatorname{dim}(\operatorname{im}(\mathbf{A}))=m
$$

Rank-Nullity
a.k.a. The Fundamental Theorem of Linear Transformations

Theorem (Rank-Nullity Theorem)
For any $A \in \mathbb{R}^{n \times m}$, the equation

$$
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=m
$$

holds. $\operatorname{dim}(\operatorname{ker}(A))$ is called the nullity of A; and we have previously established that $\operatorname{dim}(\operatorname{im}(A))=\operatorname{rank}(A)$. Thus

$$
(\text { nullity of } A)+(\operatorname{rank} \text { of } A)=m .
$$

This is one of the corner-stone theorems of Linear Algebra.

It reappears in a more general form (The Fundamental Theorem of Linear Maps) in [Math 524 (Notes\#3.1)].

Orthogonal Projections in the Context of Rank-Nullity
Consider the linear transformation describing the projection onto a plane $-T: \mathbb{R}^{3} \rightarrow V$, where V is a plane in \mathbb{R}^{3}.

- A plane is spanned by two vectors; $\operatorname{dim}(\operatorname{im}(T))=2$
- $\operatorname{ker}(T)=V^{\perp}=\{$ the line thru the origin perpendicular to $V\}$; $\operatorname{dim}(\operatorname{ker}(T))=1$
- We can think of a projection like a "collapse" along the perpendicular direction(s).
- Here we get: $m-\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}(\operatorname{im}(T)) ;(3-1=2)$.

Note: V^{\perp} is the collection of all vectors that are orthogonal (perpendicular, \perp) to all vectors in V. In [Notes\#5.1] we will formally define this as the orthogonal complement of V.

Another Example

Example

Find the bases of the image and kernel of the matrix

$$
A=\left[\begin{array}{lllll}
1 & 2 & 0 & 1 & 2 \\
1 & 2 & 0 & 2 & 3 \\
1 & 2 & 0 & 3 & 4 \\
1 & 2 & 0 & 4 & 5
\end{array}\right]
$$

We can eye-ball and realize that columns \#2, \#3, and \#5 can be written as linear combinations of $\# 1$, and \#4. But let's pretend we don't see that, and compute

$$
\operatorname{rref}(A)=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Another Example
We have

$$
A=\left[\begin{array}{lllll}
1 & 2 & 0 & 1 & 2 \\
1 & 2 & 0 & 2 & 3 \\
1 & 2 & 0 & 3 & 4 \\
1 & 2 & 0 & 4 & 5
\end{array}\right], \quad \operatorname{rref}(A)=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So, yeah columns \#1 and \#4 do indeed form a basis for im (A), and $\operatorname{dim}(\operatorname{im}(A))=2$.

Further, we have

Dependent Vectors	Relation
$\overrightarrow{v_{2}}=2 \overrightarrow{v_{1}}$	$-2 \overrightarrow{\vec{v}_{1}}+\overrightarrow{v_{2}}=\overrightarrow{0}$
$\overrightarrow{v_{3}}=\overrightarrow{0}$	$\overrightarrow{0}$
$\overrightarrow{v_{5}}=\overrightarrow{v_{1}}+\overrightarrow{v_{4}}$	$-\overrightarrow{v_{1}}-\overrightarrow{v_{4}}+\overrightarrow{v_{5}}=\overrightarrow{0}$

Another Example
The three relations define the three vectors spanning the kernel:

Dependent Vectors			Relation		
$\overrightarrow{v_{2}}$		$2 \vec{v}_{1}$			$\vec{v}_{1}+\overrightarrow{v_{2}}=\overrightarrow{0}$
	$=$	$\overrightarrow{0}$			$\vec{v}_{3}=\overrightarrow{0}$
\vec{v}_{5}	-			$\overrightarrow{V_{1}}$	$\vec{v}_{4}+\vec{v}_{5}=\overrightarrow{0}$

Kernel vectors:

$$
\vec{w}_{1}=\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \vec{w}_{3}=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
-1 \\
1
\end{array}\right]
$$

so, we have our basis for the kernel; and $\operatorname{dim}(\operatorname{ker}(A))=3$;
$\operatorname{dim}(\operatorname{im}(A))+\operatorname{dim}(\operatorname{ker}(A))=5$

Summarizing the Procedure

Theorem (Finding Bases of the Image and Kernel)
Identify the dependent columns of A (maybe with the "help" of $\operatorname{rref}(A)$), then:
1 Identify null-space vectors -
a-i Express each dependent column as a linear combination of preceding columns

$$
\vec{v}_{i}=c_{1} \vec{v}_{1}+\cdots+c_{i-1} \vec{v}_{i-1}
$$

a-ii Write the corresponding relation

$$
-c_{1} \vec{v}_{1}-\cdots-c_{i-1} \vec{v}_{i-1}+\vec{v}_{i}=\overrightarrow{0}
$$

a-iii Identify the null-space vector

$$
\left[\begin{array}{lllllll}
-c_{1} & \ldots & -c_{i-1} & 1 & 0 & \ldots & 0
\end{array}\right]^{T}
$$

b (Alternative) Parameterize as usual to get null-space vectors
2 Collect all such vectors and you have the basis for $\operatorname{ker}(A)$.
3 The other (independent) columns of A form a basis of $\mathrm{im}(A)$.

Bases of \mathbb{R}^{n}

Theorem (Bases of \mathbb{R}^{n})
The vectors $\vec{v}_{1}, \ldots, \overrightarrow{v_{n}}$ form a basis of \mathbb{R}^{n} if and only if the matrix

$$
A=\left[\begin{array}{lll}
\vec{v}_{1} & \ldots & \vec{v}_{n}
\end{array}\right]
$$

is invertible.

Note: We have n vectors $\in \mathbb{R}^{n}$, which means $A \in \mathbb{R}^{n \times n}$.

Characteristics of Invertible Matrices

Equivalent Statements: Invertible Matrices
For an $n \times n$ matrix A, the following statements are equivalent; that is for a given A, they are either all true or all false:
i. A is invertible
ii. The linear system $A \vec{x}=\vec{b}$ has a unique solution $\vec{x}, \forall \vec{b} \in \mathbb{R}^{n}$
iii. $\operatorname{rref}(A)=I_{n}$
iv. $\operatorname{rank}(A)=n$
v. $\operatorname{im}(A)=\mathbb{R}^{n}$
vi. $\operatorname{ker}(A)=\{\overrightarrow{0}\}$
vii. The column vectors of A form a basis of \mathbb{R}^{n}
viii. The column vectors of A span \mathbb{R}^{n}
ix. The column vectors of A are linearly independent

Summary introduced in [Notes\#2.4], added to in [Notes\#3.1]; and will be re-visited again in [NOTES\#7.1].

Suggested Problems 3.3

Available on Learning Glass videos:
$3.3-1,3,19,23,25,27,29,30,31,32$

Lecture-Book Roadmap

Lecture	Book, $[$ GS55-]
3.1	$\S 3.1, \S 3.2, \S 3.3$
3.2	$\S 3.1, \S 3.2, \S 3.3, \S 3.4$
3.3	$\S 3.1, \S 3.2, \S 3.3, \S 3.4, \S 3.5$
3.4	

Metacognitive Exercise - Thinking About Thinking \& Learning

I know / learned	Almost there	Huh?!?
Right After Lecture		
After Thinking / Office Hours / SI-session		
After Reviewing for Quiz/Midterm/Final		

(3.3.1), (3.3.3)

(3.3.1) Find the linearly dependent (redundant) column vectors; then find a basis for the image of A, and a basis for the kernel of A, where

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] .
$$

(3.3.3) Find the linearly dependent (redundant) column vectors; then find a basis for the image of A, and a basis for the kernel of A, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] .
$$

(3.3.19), (3.3.23)
(3.3.19) Find the linearly dependent (redundant) column vectors; then find a basis for the image of A, and a basis for the kernel of A, where

$$
A=\left[\begin{array}{lllll}
1 & 0 & 5 & 3 & 0 \\
0 & 1 & 4 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(3.3.23) Find the reduced row echelon form of A; then find a basis for the image of A, and a basis for the kernel of A, where

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right]
$$

(3.3.25), (3.3.27)
(3.3.25) Find the reduced row echelon form of A; then find a basis for the image of A, and a basis for the kernel of A, where

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & 1 \\
3 & 6 & 9 & 6 & 3 \\
1 & 2 & 4 & 1 & 2 \\
2 & 4 & 9 & 1 & 2
\end{array}\right]
$$

(3.3.27) Determine whether the following vectors form a basis of \mathbb{R}^{4} :

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
4 \\
8
\end{array}\right],\left[\begin{array}{r}
1 \\
-2 \\
4 \\
-8
\end{array}\right]
$$

(3.3.29), (3.3.30)
(3.3.29) Find a basis of the subspace of \mathbb{R}^{3} defined by the equation

$$
2 x_{1}+3 x_{2}+x_{3}=0
$$

(3.3.30) Find a basis of the subspace of \mathbb{R}^{4} defined by the equation

$$
2 x_{1}-x_{2}+2 x_{3}+4 x_{4}=0
$$

(3.3.31), (3.3.32)
(3.3.31) Let V be the subspace of \mathbb{R}^{4} defined by the equation

$$
x_{1}-x_{2}+2 x_{3}+4 x_{4}=0
$$

Find a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ such that $\operatorname{ker}(T)=\{\overrightarrow{0}\}$, and $\operatorname{im}(T)=V$. Describe T by its matrix.
(3.3.32) Find a basis of the subspace of \mathbb{R}^{4} that consists of all vectors perpendicular to both

$$
\left[\begin{array}{r}
1 \\
0 \\
-1 \\
1
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right] .
$$

Bonus Questions from Reddit

(a) Show that the kernel of a linear transformation

$$
T_{A}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}
$$

must have dimension at least 2.
(b) Show that the image of a linear transformation

$$
T_{B}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}
$$

must have dimension at most 3 .

