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Student Learning Objectives SLOs: Coordinates

SLOs 3.4 Coordinates

After this lecture you should:

Know the relation between the basis B (of a subspace V ), the
B-coordinates of a vector ~x ∈ V , and the B-coordinate
vector [~x ]B.

Be able to identify the Matrix and B-Matrix of a linear
transformation.

Know the basic definition of Similarity of Matrices (to be
revisited in the context of Eigenvalues and Eigenvectors).
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Coordinates: Where are We?

Example (Coefficients in a Linear Combination  Coordinates)

Consider the vectors (in R
3)

~v1 =





1
1
1



 , ~v2 =





1
2
3





and define the plane V = span(~v1, ~v2) in R
3. Is the vector

~x =





5
7
9





in the plane? (Visualize)
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Coefficients in a Linear Combination  Coordinates

We are really asking “Can we find c1 and c2 so that:

c1~v1 + c2~v2 = ~x ⇔





1 1
1 2
1 3





[

c1
c2

]

=





5
7
9



 ?”

We look in our toolbox, and what do we find...

rref









1 1 5
1 2 7
1 3 9







 =





1 0 3
0 1 2
0 0 0





that is, the short answer is “Yes,” and the slightly longer c1 = 3,
c2 = 2.
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Coefficients in a Linear Combination  Coordinates
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Figure: In the [Left] panel we see the vectors ~v1, ~v2, and the linear combination
~v1 + ~v2. In the [Right] panel we see the vectors 3~v1, 2~v2, and the linear combi-
nation 3~v1 + 2~v2 which reaches the vector ~x . (∃ Movie)
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Coefficients in a Linear Combination  Coordinates
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Figure: We can think of ~c =

[

3
2

]

as the address (coordinate)

of the vector ~x in a grid where ~v1 and ~v2 are the coordinate-
axes.
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Coefficients in a Linear Combination  Coordinates

By introducing the c1-c2 coordinates along the vectors ~v1 and ~v2,
we transform the plane V to R

2.

It is natural to have a brief panic attack when you realize that the
coordinate axes ~v1 and ~v2 are not perpendicular; but, really, it is
not a problem... each point in the plane does get its own unique
(coordinate) address.

Notation (Basis, B; coordinate vector [~x ]B)

Let B denote the basis ~v1-~v2 of V , and let the coordinate vector of
~x with respect to B be denoted by [~x ]B.

In our example we had [~x ]B =

[

3
2

]

, with B =









1
1
1



 ,





1
2
3








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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Coordinates in a Subspace of Rn

Definition (Coordinates in a Subspace of Rn)

Consider a basis B = (~v1, . . . , ~vm) of a subspace V = span (~v1, . . . , ~vm)
of Rn; dim(V ) = m ≤ n. Any vector ~x ∈ V can be written uniquely as

~x = c1~v1 + · · ·+ cm~vm.

The scalars c1, . . . , cm are called B-coordinates of ~x , and the vector

~c =
[

c1 . . . cm
]T

is the B-coordinate vector of ~x , denoted by [~x ]B. Thus,

[~x ]B =
[

c1 · · · cm
]T

means that ~x = c1~v1 + · · ·+ cm~vm.

Note that

~x = S [~x ]B, where S =
[

~v1 · · · ~vm
]

, an (n ×m) matrix.
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Checking Our Example

We had:

~v1 =





1
1
1



 , ~v2 =





1
2
3



 , ~x =





5
7
9



 ,  S =





1 1
1 2
1 3



 .

We computed:

[~x ]B =

[

3
2

]

.

We can reconstruct ~x from S and [~x ]B:

S [~x ]B =





1 1
1 2
1 3





[

3
2

]

= 3





1
1
1



+ 2





1
2
3



 =





5
7
9



 = ~x .
√
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Property: Linearity of Coordinates

Theorem (Linearity of Coordinates)

If B is a basis of a subspace V of Rn, then

a. [~x + ~y ]B = [~x ]B + [~y ]B ∀~x , ~y ∈ V , and

b. [k~x ]B = k[~x ]B ∀~x ∈ V , ∀k ∈ R

Building Blocks for the Proof

With B = (~v1, . . . , ~vm) keep in mind

~x = c1~v1 + · · ·+ cm~vm

~y = d1~v1 + · · ·+ dm~vm

}

⇔ [~x ]
B

=







c1
...
cm






, [~y ]

B
=







d1
...
dm






,

and use the definitions of vector-addition and scaling.
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Example: Coordinates / Basis / Vectors

Example (Basis-Vector-Coordinate Transformations)

Consider the basis B of R2 consisting of vectors

~v1 =

[

3
1

]

, ~v2 =

[

−1
3

]

,  S =

[

3 −1
1 3

]

(a) If ~x =

[

10
10

]

, find [~x ]B; (b) if [~y ]B =

[

2
−1

]

, find ~y .

For (a) we need to solve (for [~x ]B)

S [~x ]B = ~x , rref

([

3 −1 10
1 3 10

])

=

([

1 0 4
0 1 2

])

, [~x ]B =

[

4
2

]

.
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Example: Coordinates / Basis / Vectors

Example (Basis-Vector-Coordinate Transformations)

Consider the basis B of R2 consisting of vectors

~v1 =

[

3
1

]

, ~v2 =

[

−1
3

]

,  S =

[

3 −1
1 3

]

(a) If ~x =

[

10
10

]

, find [~x ]B; (b) if [~y ]B =

[

2
−1

]

, find ~y .

For (b) we need to compute (~y)

~y = S [~y ]B,

[

3 −1
1 3

] [

2
−1

]

=

[

7
−1

]

.
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Example: Projection

Example (Projection)

Let L be the line in R
2 spanned by ~w =

[

3
1

]

. Let T : R2 → R
2 be the

linear transformation that projects any vector ~x orthogonally onto L. It is
quite useful to think of this in a coordinate system where one axis is L
and the other is L⊥...
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Example: Projection

Example (Projection)

Let L be the line in R
2 spanned by ~w =

[

3
1

]

. Let T : R2 → R
2 be the

linear transformation that projects any vector ~x orthogonally onto L. It is
quite useful to think of this in a coordinate system where one axis is L
and the other is L⊥...

Let ~v1 =

[
3
1

]
and ~v2 =

[
−1
3

]
(clearly ~v1 · ~v2 = 0, so they are perpendicular.)
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Example: Projection

Example (Projection)

Let L be the line in R
2 spanned by ~w =

[

3
1

]

. Let T : R2 → R
2 be the

linear transformation that projects any vector ~x orthogonally onto L. It is
quite useful to think of this in a coordinate system where one axis is L
and the other is L⊥...

Let ~v1 =

[
3
1

]
and ~v2 =

[
−1
3

]
(clearly ~v1 · ~v2 = 0, so they are perpendicular.)

Now, if we have a vector ~x = c1~v1 + c2~v2, then T (~x) = c1~v1, or

[~x]B =

[
c1

c2

]
,  [T (~x)]B =

[
c1

0

]
;
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Example: Projection

Example (Projection)

Let L be the line in R
2 spanned by ~w =

[

3
1

]

. Let T : R2 → R
2 be the

linear transformation that projects any vector ~x orthogonally onto L. It is
quite useful to think of this in a coordinate system where one axis is L
and the other is L⊥...

Let ~v1 =

[
3
1

]
and ~v2 =

[
−1
3

]
(clearly ~v1 · ~v2 = 0, so they are perpendicular.)

Now, if we have a vector ~x = c1~v1 + c2~v2, then T (~x) = c1~v1, or

[~x]B =

[
c1

c2

]
,  [T (~x)]B =

[
c1

0

]
;

which means that the projection matrix is given by

[
1 0
0 0

]
in B-coordinates; compare with

1

10

[
9 3
3 1

]
in standard coordinates.
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

The Matrix of a Linear Transformation

Theorem (The B-Matrix of a Linear Transformation)

Consider a linear transformation T : Rn → R
n and a basis

B = (~v1, . . . , ~vn) of R
n. There there exits a unique “ ∃!”

B ∈ R
n×n matrix that transforms [~x ]B into [T (~x)]B: Pr

oo
f

[T (~x)]B = B[~x ]B,

∀~x ∈ R
n. This matrix B is called the B-matrix of T . We can construct

B column-by-column, as follows:

B =
[

[T (~v1)]B . . . [T (~vn)]B
]

.

Note: In [Math 524] we use the notation M(T ,B) — “The matrix of T
with respect to the basis B.”
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

The Matrix of a Linear Transformation

Proof (The B-Matrix of a Linear Transformation))

B-coordinates: ~x = c1~v1 + · · ·+ cn~vn; then

[T (~x)]B = [T (c1~v1 + · · ·+ cn~vn)]B [~x as lin.comb.]

= [c1T (~v1) + · · ·+ cnT (~vn)]B [T is lin.trans.]

= c1[T (~v1)]B + · · ·+ cn[T (~vn)]B [[◦]B is linear.]

=
[

[T (~v1)]B . . . [T (~vn)]B
]







c1
...
cn






[book-keeping]

= B[~x ]B. [identify]

(Sequence of Definitions / Properties)
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Standard Matrix vs. B-matrix

Theorem (Standard Matrix vs. B-Matrix)

Consider a linear transformation T : Rn → R
n and a basis

B = (~v1, . . . , ~vn) of R
n. Let B be the B-matrix of T , and let A be

the standard matrix of T — so that T (~x) = A~x ∀x ∈ R
n; then

AS = SB , B = S−1AS , A = SBS−1, where S =
[

~v1 . . . ~vn
]

This follows from the linear transform relations:

T (~x) = A~x , [T (~x)]B = B[~x ]B,

and
~x = S [~x ]B, T (~x) = S [T (~x)]B

We formalize the matrix relations (in 2 slides)...
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Standard Matrix vs. B-matrix ((Change of Basis))

Visualizing the Theorem:

T (~x)T (~x)T (~x)T (~x)
standard coordinates ~x T (~x)

B-coordinates [~x ]B [T (~x)]B

A~x

[~x]B = S
−1

~x~x = S[~x]B [T (~x)]B = S
−1

T (~x)T (~x) = S[T (~x)]B

B[~x]B

S =
[

~v1 . . . ~vn
]

, B = (~v1, . . . , ~vn)

~x = S [~x ]B, S−1~x = [~x ]B; T (~x)= S [T (~x)]B, S−1T (~x) = [T (~x)]B

Therefore

A~x = T (~x)= S [T (~x)]B = SB[~x ]B= SBS−1~x
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Similar Matrices — Definition

Definition (Similar Matrices)

Consider two matrices A,B ∈ R
n×n. We say that A is similar to B

if there exists an invertible matrix S such that

AS = SB , B = S−1AS , A = SBS−1

At this point we do not have an efficient way of finding out
whether two given matrices are similar.

(We can set up a matrix S and leave its entries as variables, create
AS and SB , and then set the two results equal and solve for the
S-entries... However, better methods will be developed in the near
future.)
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

[Focus ::Math] Similar Matrices — Properties

Theorem (Matrix Similarity is an Equivalence Relation∗)

reflexivity A ∈ R
n×n is similar to itself.

symmetry If A is similar to B , then B is similar to A

transitivity If A is similar to B , and B is similar to C , then A is
similar to C

Reflexivity let S = In.

Symmetry given ASA = SAB , let SB = S−1
A

; then
SBASASB = SBA, and SBSABSB = BSB , so that BSB = SBA.

Transitivity, we have AS1 = S1B , and BS2 = S2C ; now
AS1S2 = S1BS2 = S1S2C ; so with S3 = S1S2 we have AS3 = S3C .
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Diagonal B-matrix

Example

Given T (~x) = A~x (T : R2 → R
2), we often want the basis B be such

that the B-matrix of T is diagonal, that is

B =

[

b11 0
0 b22

]

The big question is how to pick the basis (~v1,~v2) so that happens?!

Recall that each column in the B-matrix is of the form

[T (~vk)]B

and the components of the column vectors are the coordinates expressed
in the basis. We want only the kth component to be non-zero, which
means we must have T (~vk) = bkk~vk .

Peter Blomgren 〈blomgren@sdsu.edu〉 3.4. Coordinates — (21/44)



Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Coordinates: Introduction, Definition, and Properties
Coordinates: Examples
The Matrix of a Linear Transformation: Change of Coordinates

Diagonal B-matrix

Theorem (When is the B-matrix Diagonal?)

Consider a linear transformation T : Rn → R
n and a basis

B = (~v1, . . . , ~vn) of R
n.

The B-matrix B of T is diagonal if and only if T (~vk) = ck~vk
∀k ∈ {1, . . . , n}, for some scalars c1, . . . , cn ∈ R.

From a geometric point of view, this means that T (~vk) is parallel to
~vk ∀k ∈ {1, . . . , n}.

In general it is hard (we don’t have the tools yet) to find a basis which
makes the B-matrix diagonal... We will return to this topic
[Eigenvectors and Eigenvalues] in the future... Simple examples with

A =

[

1 0
0 0

]

, B =

[

1 0
0 −1

]

are given by the vectors parallel and orthogonal to a line L we are
orthogonally projecting onto, or reflecting across.
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Suggested Problems 3.4
Lecture –Book Roadmap

Suggested Problems 3.4

Available on Learning Glass videos:
3.4 — 1, 3, 4, 7, 9, 17, 19, 23, 27, 29, 37
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Subspaces of Rn and Their Dimensions: Coordinates
Suggested Problems

Suggested Problems 3.4
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

3.1 §3.1, §3.2, §3.3
3.2 §3.1, §3.2, §3.3, §3.4
3.3 §3.1, §3.2, §3.3, §3.4, §3.5
3.4 §8.2, (§8.3)

§8.2 “Change of Basis” (p.412), “Choosing the Best Basis” (p.415–416)

§8.3 Extension of our discussion (we will revisit this)
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Supplemental Material
[Focus ::Math] Beyond Vectors & Matrices — Linear Spaces

Metacognitive Reflection
Problem Statements 3.4

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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Supplemental Material
[Focus ::Math] Beyond Vectors & Matrices — Linear Spaces

Metacognitive Reflection
Problem Statements 3.4

(3.4.1), (3.4.3)

(3.4.1) Determine whether the vector ~x is in V = span(~v1, . . . , ~vm). If
~x ∈ V , find the coordinates of ~x with respect to the basis
B = (~v1, . . . , ~vm) of V , and write the coordinate vector [~x ]B:

~x =

[

2
3

]

; ~v1 =

[

1
0

]

, ~v2 =

[

0
1

]

.

(3.4.3) Determine whether the vector ~x is in V = span(~v1, . . . , ~vm). If
~x ∈ V , find the coordinates of ~x with respect to the basis
B = (~v1, . . . , ~vm) of V , and write the coordinate vector [~x ]B:

~x =

[

31
37

]

; ~v1 =

[

23
29

]

, ~v2 =

[

31
37

]

.
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Supplemental Material
[Focus ::Math] Beyond Vectors & Matrices — Linear Spaces

Metacognitive Reflection
Problem Statements 3.4

(3.4.4), (3.4.7)

(3.4.4) Determine whether the vector ~x is in V = span(~v1, . . . , ~vm). If
~x ∈ V , find the coordinates of ~x with respect to the basis
B = (~v1, . . . , ~vm) of V , and write the coordinate vector [~x ]B:

~x =

[

3
−4

]

; ~v1 =

[

0
1

]

, ~v2 =

[

1
0

]

.

(3.4.7) Determine whether the vector ~x is in V = span(~v1, . . . , ~vm). If
~x ∈ V , find the coordinates of ~x with respect to the basis
B = (~v1, . . . , ~vm) of V , and write the coordinate vector [~x ]B:

~x =





3
1

−4



 ; ~v1 =





1
−1
0



 , ~v2 =





0
1

−1



 .
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(3.4.9), (3.4.17)

(3.4.9) Determine whether the vector ~x is in V = span(~v1, . . . , ~vm). If
~x ∈ V , find the coordinates of ~x with respect to the basis
B = (~v1, . . . , ~vm) of V , and write the coordinate vector [~x ]B:

~x =





3
3
4



 ; ~v1 =





1
1
0



 , ~v2 =





0
−1
2



 .

(3.4.17) Determine whether the vector ~x is in V = span(~v1, . . . , ~vm). If
~x ∈ V , find the coordinates of ~x with respect to the basis
B = (~v1, . . . , ~vm) of V , and write the coordinate vector [~x ]B:

~x =









1
1
1

−1









; ~v1 =









1
0
2
0









, ~v2 =









0
1
3
0









, ~v3 =









0
0
4
1









.
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(3.4.19), (3.4.23)

(3.4.19) Find the matrix B of the linear transformation T (~x) = A~x , with
respect to the basis B = (~v1, ~v2). Solve in three ways: (a) Use the
formula B = S−1AS , (b) Use a commutative diagram, and (c) construct
B column-by-column.

A =

[

0 1
1 0

]

; ~v1 =

[

1
1

]

, ~v2 =

[

1
−1

]

.

(3.4.23) Find the matrix B of the linear transformation T (~x) = A~x , with
respect to the basis B = (~v1, ~v2). Solve in three ways: (a) Use the
formula B = S−1AS , (b) Use a commutative diagram, and (c) construct
B column-by-column.

A =

[

5 −3
6 −4

]

; ~v1 =

[

1
1

]

, ~v2 =

[

1
2

]

.
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(3.4.27), (3.4.29)

(3.4.27) Find the matrix B of the linear transformation T (~x) = A~x , with
respect to the basis B = (~v1, . . . , ~vm).

A =





4 2 −4
2 1 −2

−4 = 2 4



 ; ~v1 =





2
1

−2



 , ~v2 =





0
2
1



 , ~v3 =





1
0
1



 .

(3.4.29) Find the matrix B of the linear transformation T (~x) = A~x , with
respect to the basis B = (~v1, . . . , ~vm).

A =





−1 1 0
0 −2 2
3 −9 6



 ; ~v1 =





1
1
1



 , ~v2 =





1
2
3



 , ~v3 =





1
3
6



 .
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(3.4.37)

(3.4.37) Find a basis B of Rnsuch that the B-matrix of the given linear
transformation is diagonal.

T (~x) = [Orthogonal Projection onto the line] L = k

[

1
2

]
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Motivation

So far, we have talked about vectors in R
n, and matrix operations from

R
m to R

n; expressed as linear transformations, via matrix-vector
operations.

Some of the key concepts we have covered are: linear combination, linear
transformation, kernel, image, subspace, span, linear independence, basis,
dimension, and coordinates.

It turns out that this language (really, think of it as a language) can be
applied to mathematical objects other than matrices and vectors; e.g.
functions, equations, or infinite sequences.

The “language” of Linear Algebra is used throughout mathematics and
other sciences.

Here, we “free” ourselves from the constraint of “living in R
n,” and

re-state some of our result in a way that is useful in many settings.
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Linear Spaces Definition

Definition (Linear Spaces)

A Linear Space V is a set with a definition (rule) for addition “+”, and a definition
(rule) for scalar multiplication; and the following must hold (∀u, v ,w ∈ V , ∀c, k ∈ R)

a. v + w ∈ V .

b. kv ∈ V .

c. (u + v) + w = u + (v + w).

d. u + v = v + u.

e. ∃n ∈ V : u + n = u, [Neutral Element, denoted by 0]

f. ∃û: u + û = 0; û unique, and denoted by −u.

g. k(u + v) = ku + kv .

h. (c + k)u = cu + ku.

i. c(ku) = (ck)u.

j. 1u = u.
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Examples: Linear Spaces

We have already seen the “prototype” linear spaces:

Example (Linear Space(s) Rn)

Here, the natural element is the zero vector ~0 ∈ R
n.

We give a few other examples

Example

Let F (R,R) set the set of all functions f : R → R, with the operations

(f + g)(x) = f (x) + g(x), and (kf )(x) = kf (x)

then F (R,R) is a linear space; the function f (x) = 0 is the neutral
element.
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Examples: Linear Spaces

Example (Rn×m)

Given our previous definitions [Notes#1.3] of matrix addition and scalar
multiplication of a matrix, then R

n×m, the set of all n ×m matrices, is a
linear space. The zero-matrix is the neutral element.

Example (Infinite Sequences)

The set of all infinite sequences x = (x1, x2, . . . , x∞) is a linear space;
addition is defined x + y = (x1 + y1, x2 + y2, . . . , x∞ + y∞); scalar
multiplication kx = (kx1, kx2, . . . , kx∞). The zero-sequence (0, 0, . . . ) is
the neutral element.
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Examples: Linear Spaces

Example (Linear Equations)

The linear equations in 3 unknowns

ax + by + cz = d

where a, b, c , and d are constants, form a linear space. The neutral
element is 0 = 0, i.e. a = b = c = d = 0.

Example (Complex Numbers)

Let C be the set of complex numbers z = a+ bi ; with addition defined
by z1 + z2 = (a1 + a2) + (b1 + b2)i , and scalar multiplication by
kz = ka+ (kb)i (∀k ∈ R). C with these two operations form a linear
space, with neutral element 0 + 0i .
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Definitions

Definition (Linear Combination)

We say that an element u of a linear space is a linear combination of the elements
v1, . . . , vn if u = c1v1 + · · ·+ cnvn.

Since the basic notation for Linear Algebra (on Rn) are defined in terms of linear
combinations, we can generalize those concepts to all Linear Spaces without
generalizations:

Definition (Subspaces)

A subset W of a linear space V is called a subspace of V if

a. W contains the neutral element, 0, of V

b. W is closed under addition

c. W is closed under scalar multiplication

b+c. ⇒ W is closed under linear combinations
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Examples: Subspaces of F (R,R)

Example

The polynomials of degree 2 — P2 = { ax2 + bx + c : a, b, c ∈ R },
form a subspace of F (R,R).

f (x) = 0 = 0x2 + 0x + 0

kp1(x) + p2(x) = (ka1 + a2)x
2 + (kb1 + b2)x + (kc1 + c2)

Example

The differentiable functions, C 0 form a subspace of F (R,R).

f (x) = 0, with f ′(x) = 0

Calculus tell us that (kf (x) + g(x))′ = kf ′(x) + g ′(x).
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Examples: Subspaces of F (R,R)

Example (More subspaces of F (R,R))

Cn, n ∈ {1, 2, . . . ,∞} — the functions with n (possibly
infinitely) many continuous derivatives form subspaces of
F (R,R).

P, the set of polynomials forms a subspace of F (R,R).

Pn, the set of all polynomials of degree ≤ n forms a subspace
of F (R,R).
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Span, Linear Independence, Basis, Coordinates

Example (Span, Linear Independence, Basis, Coordinates)

Consider the elements u1, . . . , un in a linear space V .

a. u1, . . . , un span V if every v ∈ V can be expressed as a linear
combination of u1, . . . , un

b-i . ui is linearly dependent if it is a linear combination of u1, . . . , ui−1.

b-ii . The elements u1, . . . , un are linearly independent if none of them is
linearly dependent. This is the case if the equation

c1u1 + · · ·+ cnun = 0

only has the trivial solution c1 = · · · = cn = 0.
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Span, Linear Independence, Basis, Coordinates

Example (Span, Linear Independence, Basis, Coordinates)

Consider the elements u1, . . . , un in a linear space V .

c-i . u1, . . . , un are a basis of V is they span V and are linearly
independent. This means every v ∈ V can be written as a unique
linear combination v = c1u1 + · · ·+ cnun,

c-ii . The coefficients c1, . . . , cn are called the coefficients of v with
respect to the basis B = (u1, . . . , un). The vector

~cT =
[

c1 · · · cn
]T

in R
n is called the B-coordinate vector of v , denoted by [v ]B

c-iii . The transformation L(v) = [v ]B =
[

c1 · · · cn
]T

is called the
B-coordinate transformation, sometimes denoted by LB
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Linear Spaces: Theorems Properties

Theorem (Linearity of the B-coordinate transformation, LB)

If B is a basis of a linear space, then ∀u, v ∈ V , ∀k ∈ R:

a. [u + v ]B = [u]B + [v ]B

b. [ku]B = k[u]B

(The proof is pretty much a copy of the R
n version from [Notes#3.4]).

Theorem (Dimension(!!!))

If a linear space V has a basis with n elements, then all other bases of V
consist of n elements as well, and we say

dim(V ) = n
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Linear (Ordinary) Differential Equations — ODEs Important for the Future!

Theorem (Linear Differential Equations)

The solutions of the differential equation (a, b ∈ R are constants)

u
′′(x) + au

′(x) + bu(x) = 0

form a two-dimensional subspace of the space C∞ of smooth functions; more
generally, the solutions of the differential equation

v
(n)(x) + an−1v

(n−1)(x) + · · ·+ a1v
′(x) + a0u(x) = 0

(where the coefficients a0, . . . , an−1 are constants) form an n-dimensional subspace of

C∞. A differential equation of this form is called an nth-order linear differential
equation with constant coefficients.

The connection between linear algebra and ODEs (both in terms of theory and appli-
cations) is VERY STRONG. In many places the topics are taught together in a joint
(sequence of) class(es).
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Finite Dimensional Subspaces

Definition (Finite Dimensional Subspaces)

A linear space V is called finite dimensional if it has a (finite) basis
v1, . . . , vn, so that dim(V ) = n. Otherwise the space is called
infinite dimensional.

The space of polynomials, P, is infinite dimensional.

The study of infinite dimensional linear spaces — e.g. Hilbert-,
Banach-, and Sobolev spaces, belong in a course on functional
analysis; somewhere beyond the horizon of Advanced
Calculus... really, it’s fun stuff!
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