		Outline
Math 254: Introduction to Notes #5.1 — Orthogonal Projections		 Student Learning Objectives SLOs: Orthogonal Projections and Orthonormal Bases Orthogonality and Least Squares Orthogonal Projections and Orthonormal Bases
Peter Blomgren (blomgren@sdsu.) Department of Mathematics an Dynamical Systems Group Computational Sciences Research San Diego State Univer San Diego, CA 92182- http://terminus.sdsu.e Spring 2022 (Revised: March 21, 2022	edu) nd Statistics Center rsity 7720 edu/	 3 Suggested Problems a Suggested Problems 5.1 b Lecture – Book Roadmap 3 Supplemental Material a Metacognitive Reflection b Problem Statements 5.1 3 Why Orthonormality Matters a Application: The (Fast) Fourier Transform b Application: MPEG-4 Compression without some of the Math
Peter Blomgren (blomgren@sdsu.edu) 5.1. Orth	logonal Projections; Orthonormal Bases $-$ (1/54)	Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (2/54)
Student Learning Objectives SLOs: 0	rthogonal Projections and Orthonormal Bases	Orthogonality and Least Squares Suggested Problems Orthogonal Projections and Orthonormal Bases
SLOs 5.1 Orthogonal Pro	jections and Orthonormal Bases	Something Old + Something New
 After this lecture you should: Understand the concept of Orthono Be able to compute the Projection of dim(V) > 1), using an Orthonorma Be comfortable with the use of the V[⊥] of a subspace V. 	onto a subspace <i>V</i> (with <i>I Basis.</i>	Rewind (Orthogonality, Length, Unit Vectors)a. Two vectors \vec{v} and $\vec{w} \in \mathbb{R}^n$ are called orthogonal (or perpendicular) if $\vec{v} \cdot \vec{w} = 0$.b. The length (or norm, or magnitude) of a vector $\vec{v} \in \mathbb{R}^n$ is $\ \vec{v}\ = \sqrt{\vec{v} \cdot \vec{v}}$.c. A vector $\vec{u} \in \mathbb{R}^n$ is called a unit vector if $\ \vec{u}\ = 1$.Definition (Orthonormal Vectors)The vectors $\vec{u}_1, \ldots, \vec{u}_m \in \mathbb{R}^n$ are called orthonormal if they are all unit vectors and orthogonal to one another: $\vec{u}_i \cdot \vec{u}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$
Peter Blomgren (blomgren@sdsu.edu) 5.1. Orth	ogonal Projections; Orthonormal Bases — (3/54)	Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases - (4/54)

Orthogonal Projections and Orthonormal Bases

Orthonormal Vectors

Example (The "Standard Basis Vectors")

The vectors $\vec{e_1}, \ldots, \vec{e_n} \in \mathbb{R}^n$ are orthonormal. — They form an *orthonormal basis* for \mathbb{R}^n .

Example (Rotated Standard Vectors in \mathbb{R}^2)

 Consider \vec{e}_1 , and \vec{e}_2 in \mathbb{R}^2 ; and their rotated versions:

 $\vec{r}_1(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$
 $\vec{r}_2(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$

 Peter Blomgren (blomgren@sdsu.edu)
 5.1. Orthogonal Projections; Orthonormal Bases — 0.5/44

 Orthogonality and Least Squares Suggested Problems
 Orthogonal Projections and Orthonormal Bases

Theorem (Properties of Orthonormal Vectors)

- a. Orthonormal Vectors are linearly independent.
- **b.** Orthonormal Vectors $\vec{u_1}, \ldots, \vec{u_n} \in \mathbb{R}^n$ form a basis of \mathbb{R}^n .
- a. Clearly, there is no way to (linearly) combine perpendicular vectors to describe each other (*for example*, think of $\vec{e_1}$, $\vec{e_2}$, and $\vec{e_3}$ in \mathbb{R}^3 .)
- **b.** By previous theorems, *n* linearly independent vectors in \mathbb{R}^n necessarily form a basis of \mathbb{R}^n . (Think of the standard basis $\vec{e_1}, \ldots, \vec{e_n} \in \mathbb{R}^n$; and rotations / reflections of it...)
- **Comment:** In some sense, Orthonormal vectors are "maximally linearly independent."

Orthonormal Vectors

	Example (Orthonormal Vectors in \mathbb{R}^4)	
	The vectors	
	$\vec{u}_1 = \begin{bmatrix} 1/2\\1/2\\1/2\\1/2\\1/2 \end{bmatrix}, \ \vec{u}_2 = \begin{bmatrix} 1/2\\1/2\\-1/2\\-1/2\\-1/2 \end{bmatrix}, \ \vec{u}_3 = \begin{bmatrix} 1/2\\-1/2\\1/2\\-1/2\\-1/2 \end{bmatrix}, \ \vec{u}_4 = \begin{bmatrix} 1/2\\-1/2\\-1/2\\1/2\\1/2 \end{bmatrix}$	
	in \mathbb{R}^4 are orthonormal.	
	UNIT LENGTH: $\sqrt{4 \times \frac{1}{2^2}} = 1.$	
	ORTHOGONALITY: For each pair of vectors, two of the products $\vec{u}_{i,k}\vec{u}_{j,k}$ will be positive and two negative; hence the sum $\sum_{k=1}^{4} \vec{u}_{i,k}\vec{u}_{j,k}$ will be zero.	
SAN DIEGO STATE UNIVERSITY	Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (6/54	A
s — (5/54)	Orthographity and Loast Squares	,4)
	Suggested Problems Orthogonal Projections and Orthonormal Bases	
1 of 2	Properties 2 of	f 2
1 of 2		f 2
1 of 2	Rewind (Orthogonal Projection)	f 2
1 of 2		f 2
1 of 2	Rewind (Orthogonal Projection)Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then we can write $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$,	f 2
1 of 2	Rewind (Orthogonal Projection) Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then we can write $\vec{x} = \vec{x}^{ } + \vec{x}^{\perp}$, where $\vec{x}^{ } \in V$, and $\vec{x}^{\perp} \perp V$. This representation is unique. The vector $\vec{x}^{ }$ is called the <i>orthogonal projection</i> of \vec{x} onto V ,	f 2
1 of 2	Rewind (Orthogonal Projection) Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then we can write $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$, where $\vec{x}^{\parallel} \in V$, and $\vec{x}^{\perp} \perp V$. This representation is unique. The	f 2
1 of 2	Rewind (Orthogonal Projection) Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then we can write $\vec{x} = \vec{x}^{ } + \vec{x}^{\perp}$, where $\vec{x}^{ } \in V$, and $\vec{x}^{\perp} \perp V$. This representation is unique. The vector $\vec{x}^{ }$ is called the <i>orthogonal projection</i> of \vec{x} onto V , sometimes denoted $\operatorname{proj}_V(\vec{x})$; the transformation $T(\vec{x}) = \operatorname{proj}_V(\vec{x}) = \vec{x}^{ }$ from $\mathbb{R}^n \mapsto \mathbb{R}^n$ is linear.	f 2
1 of 2	Rewind (Orthogonal Projection) Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then we can write $\vec{x} = \vec{x}^{ } + \vec{x}^{\perp}$, where $\vec{x}^{ } \in V$, and $\vec{x}^{\perp} \perp V$. This representation is unique. The vector $\vec{x}^{ }$ is called the <i>orthogonal projection</i> of \vec{x} onto V , sometimes denoted $\operatorname{proj}_V(\vec{x})$; the transformation $T(\vec{x}) = \operatorname{proj}_V(\vec{x}) = \vec{x}^{ }$ from $\mathbb{R}^n \mapsto \mathbb{R}^n$ is linear. We have discussed this previously, but only in the context of	f 2
	Rewind (Orthogonal Projection) Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then we can write $\vec{x} = \vec{x}^{ } + \vec{x}^{\perp}$, where $\vec{x}^{ } \in V$, and $\vec{x}^{\perp} \perp V$. This representation is unique. The vector $\vec{x}^{ }$ is called the <i>orthogonal projection</i> of \vec{x} onto V , sometimes denoted $\operatorname{proj}_V(\vec{x})$; the transformation $T(\vec{x}) = \operatorname{proj}_V(\vec{x}) = \vec{x}^{ }$ from $\mathbb{R}^n \mapsto \mathbb{R}^n$ is linear.	f 2
1 of 2	Rewind (Orthogonal Projection) Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then we can write $\vec{x} = \vec{x}^{ } + \vec{x}^{\perp}$, where $\vec{x}^{ } \in V$, and $\vec{x}^{\perp} \perp V$. This representation is unique. The vector $\vec{x}^{ }$ is called the <i>orthogonal projection</i> of \vec{x} onto V , sometimes denoted $\operatorname{proj}_V(\vec{x})$; the transformation $T(\vec{x}) = \operatorname{proj}_V(\vec{x}) = \vec{x}^{ }$ from $\mathbb{R}^n \mapsto \mathbb{R}^n$ is linear. We have discussed this previously, but only in the context of describing the <i>image</i> and <i>kernel</i> of the projection We are now	ñ

Orthogonal Projections and Orthonormal Bases

Orthogonal Projection: Formula

Theorem (Formula for the Orthogonal Projection)

If V is a subspace of \mathbb{R}^n with an orthonormal basis $\vec{u_1}, \ldots, \vec{u_m}$ that is $V = \text{span}(\vec{u_1}, \ldots, \vec{u_m})$ then

$$\operatorname{proj}_{V}(\vec{x}) = \vec{x}^{\parallel} = (\vec{u}_{1} \cdot \vec{x})\vec{u}_{1} + \dots + (\vec{u}_{m} \cdot \vec{x})\vec{u}_{m}$$

 $\forall x \in \mathbb{R}^n$.

Having the orthonormal basis is the absolute key to this formula. Any non-orthonormal basis will produce strange (incorrect) results.

Orthogonal Projection: Example

Example (Orthogonal Projection (Part 1))

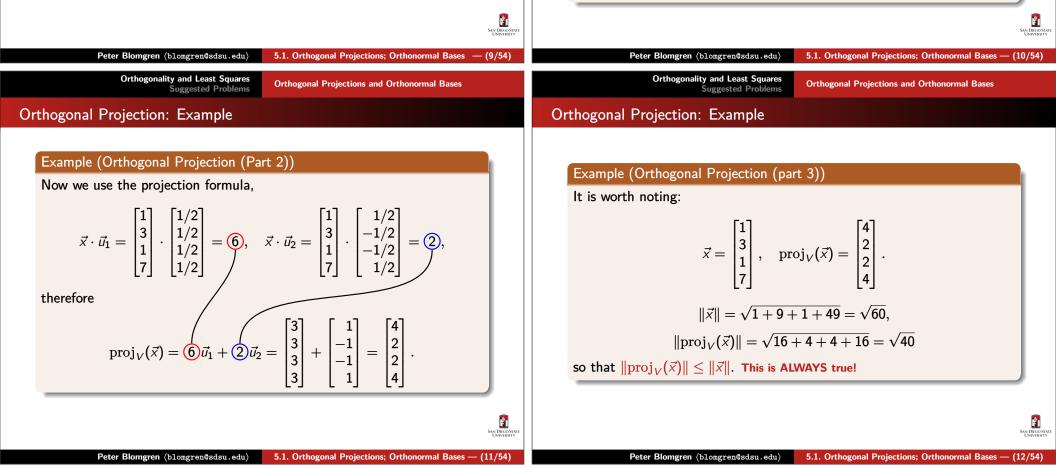
Consider the subspace V = im(A) of \mathbb{R}^4 , find $\operatorname{proj}_V(\vec{x})$; where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 7 \end{bmatrix}, \quad \left\| \begin{bmatrix} \pm 1 \\ \pm 1 \\ \pm 1 \\ \pm 1 \end{bmatrix} \right\| = \sqrt{4(\pm 1)^2} = \sqrt{4} = 2.$$

Since the columns $\vec{a_1}$ and $\vec{a_2}$ are linearly independent, and orthogonal (zero dot-product), they form a[n orthogonal] basis of V. Dividing each vector by its length gives us an orthonormal basis for $V = \text{span}(\vec{u_1}, \vec{u_2})$, where

$$ec{J}_1 = egin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}, \ ec{u}_2 = egin{bmatrix} 1/2 \\ -1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$$

Continued on the next slide ...



Orthogonality and Least Squares Suggested Problems Orthogonal Projections and Orthonormal Bases	Orthogonality and Least Squares Suggested Problems Orthogonal Projections and Orthonormal Bases
Orthogonal Projection onto a [Subspace Spanned by a] Basis 1/2	Orthogonal Projection onto a [Subspace Spanned by a] Basis 2/2
Theorem (Orthogonal Projection onto a Basis) Consider an orthonormal basis $\vec{u}_1, \ldots, \vec{u}_n$ of \mathbb{R}^n . Then $\vec{x} = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \cdots + (\vec{u}_n \cdot \vec{x})\vec{u}_n$ $\forall \vec{x} \in \mathbb{R}^n$. Since the basis spans \mathbb{R}^n , we can "rebuild" \vec{x} completely by adding up all the projected pieces. We have \vec{x} as a unique linear combination $\vec{x} = c_1\vec{u}_1 + \cdots + c_n\vec{u}_n$ where $c_k = (\vec{u}_k \cdot \vec{x}), \ k = 1, \dots, n$.	Looking in the rear-view mirror [Coordinates (Notes#3.4)], we can let BASIS: $\mathfrak{U} = \langle \vec{u}_1, \vec{u}_2, \dots, \vec{u}_n \rangle$ COORDINATES: $[\vec{x}]_{\mathfrak{U}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ $c_k = (\vec{u}_k \cdot \vec{x}), k = 1, \dots, n.$ Orthogonality allows us to compute the coordinates one-at-a-time, <i>i.e.</i> they are independent from each other. This in itself is a useful property! \sim Parallel Computing for speed!
State State <th< th=""><th>Sub Division Start University Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (14/54)</th></th<>	Sub Division Start University Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (14/54)
Orthogonality and Least Squares Suggested Problems Orthogonal Projections and Orthonormal Bases	Orthogonality and Least Squares Suggested Problems Orthogonal Projections and Orthonormal Bases
Image, and Kernel	The Orthogonal Complement :: Definition and Related Expressions
Using our recently acquired vocabulary, we realize that $\operatorname{im}(\operatorname{proj}_V(ec{x})) = V$	Definition (Orthogonal Complement) Consider a subspace V of \mathbb{R}^m . The Orthogonal Complement V^{\perp} of V is the set of those vectors $\vec{x} \in \mathbb{R}^m$ that are orthogonal to all vectors in V:
Also, we know we can write	$V^{\perp} = \{ec{x} \in \mathbb{R}^m : ec{x} \cdot ec{v} = 0, \forall ec{v} \in V\}$
$\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$	Note [*] that V^{\perp} is the kernel of $\operatorname{proj}_{V}(\vec{x})$.
and $\operatorname{proj}_V(ec{x})) = ec{x}^{\parallel}$, so if we are looking for the kernel,	* This means that if we have a description of V as the solution of a linear system $(A \in \mathbb{R}^{n \times m})$
$\ker(\operatorname{proj}_V(\vec{x})),$	$V = \{ \vec{x} \in \mathbb{R}^m : A\vec{x} = \vec{0} \}$
we want all \vec{x} without a \vec{x}^{\parallel} part, <i>i.e.</i> $\{\vec{x} \in \mathbb{R}^n : \vec{x} = \vec{x}^{\perp}\}$, the collection of all vectors orthogonal to the subspace V. A formal definition follows on the next slide	then (note that $\operatorname{proj}_V(\vec{x}) : \mathbb{R}^m \mapsto \mathbb{R}^m$) $V = \ker(A) = \operatorname{im}(\operatorname{proj}_V(\vec{x})) \subset \mathbb{R}^m$ $V^{\perp} = \operatorname{im}(A^T) = \ker(\operatorname{proj}_V(\vec{x})) \subset \mathbb{R}^m$
	$V^{-} = \operatorname{im}(A^{+}) = \operatorname{ker}(\operatorname{proj}_{V}(x)) \subset \mathbb{R}^{+}$

The Orthogonal Complements of a Linear Transformation

Consider a linear transformation $T(\vec{x}) = A\vec{x}$, where $A \in \mathbb{R}^{n \times m}$:

"Input Space"		"Output Space"
$\vec{x} \in \mathbb{R}^m$	\mapsto	$\vec{y} = A\vec{x} \in \mathbb{R}^n$
$\ker(A)$	\mapsto	ō
$\ker(A)^{\perp}$	\mapsto	$\operatorname{im}(A)$
nothing	\mapsto	$\operatorname{im}(A)^{\perp}$
$\ker(A) \oplus \ker(A)^{\perp} = \mathbb{R}^m$		$\operatorname{im}(A) \oplus \operatorname{im}(A)^{\perp} = \mathbb{R}^n$

We use the symbol \oplus to denote the "Direct Sum" of two subspaces (formal definition in a few slides).

We make a big deal of the direct sum in $[{\rm MATH}\,524]...$

Orthogonality and Least Squares Suggested Problems Orthogon

Ê

The Orthogonal Complement :: Properties

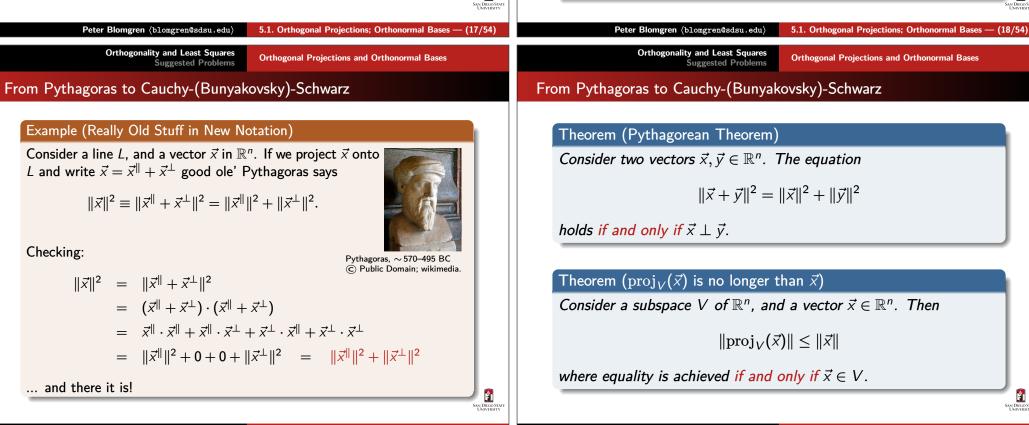
Theorem (Properties of the Orthogonal Complement)

Consider a subspace V of \mathbb{R}^n .

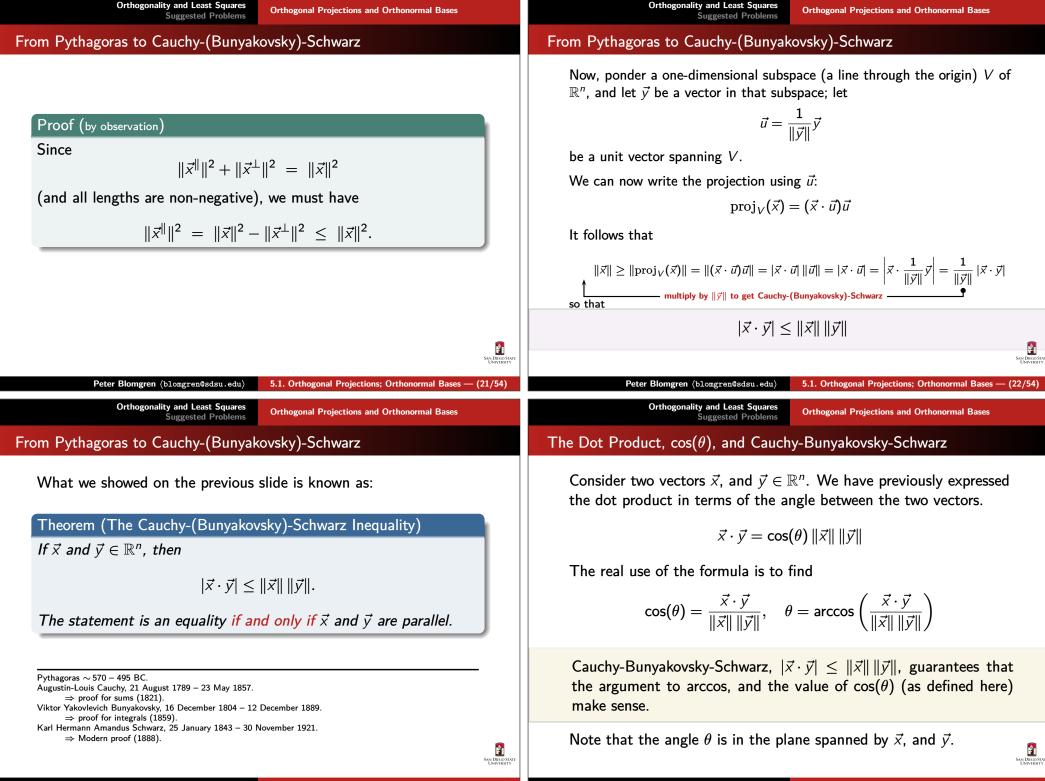
- a. The Orthogonal Complement V^{\perp} of V is a subspace of \mathbb{R}^n .
- **b.** The intersection (common elements) of V^{\perp} and V consists of the zero vector: $V^{\perp} \cap V = \{\vec{0}\}$. $[\vec{x} \in v^{\perp} \cap v : \vec{x} \cdot \vec{x} = 0 \Rightarrow \vec{x} = \vec{0}.]$
- **c.** $\dim(V) + \dim(V^{\perp}) = n$. [By Rank-Nullity Theorem; $T(\vec{x}) = \operatorname{proj}_{V}(\vec{x})$]
- **d.** $(V^{\perp})^{\perp} = V$.
- e. The "Direct Sum" $V \oplus V^{\perp} = \mathbb{R}^n$, where

$$U=V\oplus V^{\perp}\stackrel{\rm def}{=}\{\vec{u}=\vec{v}+\vec{w}\ :\ \vec{v}\in V, \vec{w}\in V^{\perp}\},$$

that is, V and V^{\perp} "split" the space in two non-overlapping parts — in this context $\vec{0}$ does not "count" as an overlap.



Êı



Orthogonality and Least Squares Suggested Problems Orthogonal Projections and Orthonormal Bases	Orthogonality and Least Squares Suggested Problems Suggested Problems Suggested Problems Lecture – Book Roadmap
Example: Angle Between Vectors	Suggested Problems 5.1
Example (Angle Between Vectors)Find the angle between $\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{y} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ We have $\ \vec{x}\ = 1, \ \vec{y}\ = \sqrt{4} = 2, \vec{x} \cdot \vec{y} = 1$	Available on Learning Glass videos: 5.1 — 7, 10, 11, 15, <u>17</u> , 27, 28
so that $\cos(\theta) = \frac{1}{2}, \theta = \arccos\left(\frac{1}{2}\right) = \frac{\pi}{3}$	Ke Dava Start Ventralisty
Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (25/54) Orthogonality and Least Squares Suggested Problems 5.1	Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (26/54) Supplemental Material Metacognitive Reflection
Suggested Problems Lecture – Book Roadmap	Why Orthonormality Matters Problem Statements 5.1
Lecture – Book Roadmap	Metacognitive Exercise — Thinking About Thinking & Learning
	I know / learned Almost there Huh?!? Right After Lecture
LectureBook, $[GS5-]$ 5.1§4.1, §4.2, §4.45.2§4.1, §4.2, §4.45.3§4.1, §4.2, §4.4	After Thinking / Office Hours / SI-session After Reviewing for Quiz/Midterm/Final
Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (27/54)	Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (28/54)

Supplemental Material Metacognitive Reflection Why Orthonormality Matters Problem Statements 5.1	Supplemental Material Metacognitive Reflection Why Orthonormality Matters Problem Statements 5.1
(5.1.7), (5.1.10)	(5.1.11)
(5.1.7) For vectors \vec{u} , \vec{v} , determine whether the angle is acute $(<\frac{\pi}{2})$, right $(=\frac{\pi}{2})$, or obtuse $(>\frac{\pi}{2})$.	(5.1.11) Consider the vectors
$ec{u} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, ec{v} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}.$	$\vec{u} = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1\\0\\\vdots\\2 \end{bmatrix} \in \mathbb{R}^n$
(5.1.10) For which value(s) of $k \in \mathbb{R}$ are the vectors	[1] [0]
$\vec{u} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix}$	a. For $n = 2, 3, 4$, find the angle θ_n between \vec{u} and \vec{v} . b. Find the limit of θ_n as $n \to \infty$.
perpendicular?	
Son Dires Sart Listvirksty	Sed Dates State University
Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (29/54) Supplemental Material Metacognitive Reflection	Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (30/54) Supplemental Material Metacognitive Reflection
Why Orthonormality Matters Problem Statements 5.1	Why Orthonormality Matters Problem Statements 5.1
(5.1.15)	(5.1.17), (5.1.27)
(5.1.15) Consider the vector $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \in \mathbb{R}^{4}.$ Find a basis for the subspace of \mathbb{R}^{4} consisting of all vectors perpendicular to \vec{v} .	(5.1.17) Find a basis for W^{\perp} , where $W = \operatorname{span} \left(\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix} \right).$ (5.1.27) Find the orthogonal projection of $9\vec{e_1}$ onto the subspace W of \mathbb{R}^4 , where $W = \operatorname{span} \left(\begin{bmatrix} 2\\2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\2\\0\\1\\1 \end{bmatrix} \right), \vec{e_1} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}.$

Supplemental Material Metacognitive Reflection Why Orthonormality Matters Problem Statements 5.1	Supplemental Material Why Orthonormality MattersApplication: The (Fast) Fourier Transform Application: MPEG-4 Compression without some of the Math
(5.1.28)	The Super-Slow, Slow, and Fast Fourier Transform
(5.1.28) Find the orthogonal projection of $\vec{e_1}$ onto the subspace W of \mathbb{R}^4 , where $W = \operatorname{span}\left(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \right), \vec{e_1} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}.$	A lot of signal analysis and processing is frequency-based; meaning that it is highly useful to express a signal using basis functions that are determined by various frequencies. Consider the functions: $\begin{cases} \Phi_0(x) = \frac{1}{2} \\ \Phi_k(x) = \cos(kx), k = 1, \dots, n \\ \Phi_{n+k}(x) = \sin(kx), k = 1, \dots, n-1 \end{cases}$ and let each one define a vector $\vec{v_i} \in \mathbb{R}^{2n}$, by evaluating the function in the points $x_j = -\pi + (j\pi/n), \ j = 0, 1, \dots, (2m-1).$
See Diraco Statt UNIVERSITY	SAU DIGO STAT UNIVERTY
Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — $(33/54)$	Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (34/54)
Supplemental Material Why Orthonormality MattersApplication: The (Fast) Fourier Transform Application: MPEG-4 Compression without some of the Math	Supplemental Material Why Orthonormality MattersApplication: The (Fast) Fourier Transform Application: MPEG-4 Compression without some of the Math
The Super-Slow, Slow, and Fast Fourier Transform	The Super-Slow, Slow, and Fast Fourier Transform
 Let those vectors be the columns in a matrix, M ∈ ℝ^{2n×2n}. It turns out that the vectors are <i>linearly independent</i>, which 	 Since the vectors are orthogonal, solving the system is not necessary; we can get each coefficient by computing a length

- makes them a *basis*, \mathfrak{B} , for \mathbb{R}^{2n} and the matrix M invertible; • further, the vectors are *orthogonal* (which will help us save
- Now, if we have sampled a signal in 2n locations / timepoints; then we can collect those samples in $\vec{f} \in \mathbb{R}^{2n}$.
- If we can to express the signal as a linear combination of the cos/sin-vectors, all we have to do is solve the linear system

some work).

$$M[\vec{f}]_{\mathfrak{B}} = \vec{f}$$

which in general requires roughly $\frac{8}{3}n^3$ operations (×/+). This is the **Super-Slow Fourier Transform**.

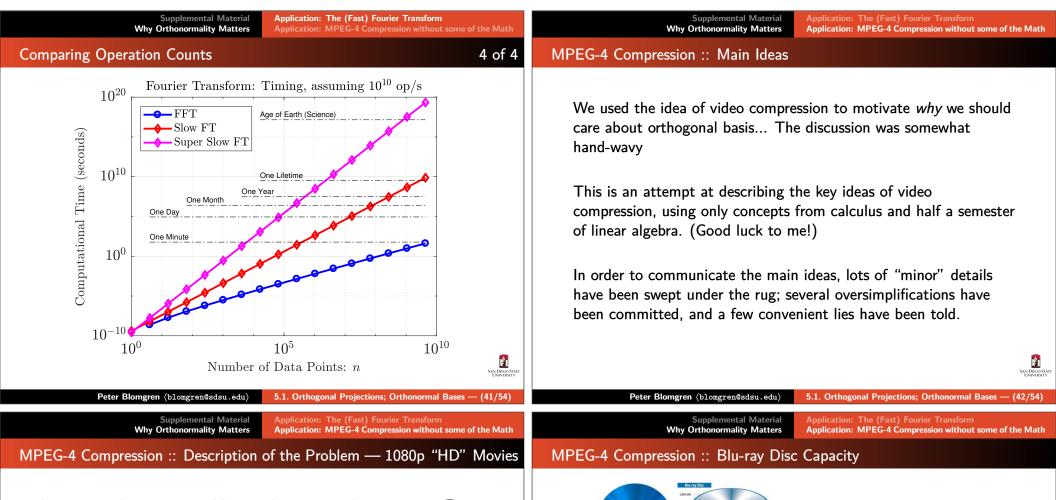
necessary; we can get each coefficient by computing a length 2n dot-product:

$$a_k = \frac{1}{n} \sum_{j=0}^{2n-1} f_j \cos(kx_j) \quad b_k = \frac{1}{n} \sum_{j=0}^{2n-1} f_j \sin(kx_j).$$

where a_k , k = 0, ..., n are the first (n + 1) coefficients of $[\vec{f}]_{\mathfrak{B}}$, and b_k , k = 1, ..., (n-1) are the remaining coefficients.

- This approach, the **Slow Fourier Transform** requires roughly $4n^2$ operations.
- [FULL DISCLOSURE] We have omitted a few (3) factors of 2 which are necessary to make the vectors ortho*normal*.

Supplemental Material Why Orthonormality Matters	Application: The (Fast) Fourier Transform Application: MPEG-4 Compression without som	ne of the Math		Supplemental Material Orthonormality Matters	Application: The (Fast) Application: MPEG-4 Co		some of the Math
The Super-Slow, Slow, and Fast Fou	rier Transform		Comparing Operation	Counts	2,500,000 s $pprox$ 1 m	onth	1 of 4
Much of the analysis was done by Je early 1800s, but the use of the Fouri practical until 1965, when Cooley and Tukey * pu	er series representation was not		n 16 64 256 1,024 4,096	41 1,02 16,38 262,14 4,194,30 67,108,86	4 112 14 576 14 2,816 14 13,312	Speedup 9 28 93 315 1,092	
algorithm which computes the coeffi operations.			16,384 65,536 262,144	1,073,741,82 17,179,869,18 274,877,906,94	278,528 4 1,245,184	3,855 13,797 49,932	
It is hard to overstate the import	ance of this paper!!!		1,048,576 4,194,304	4,398,046,511,10 70,368,744,177,66	4 24,117,248	182,361 671,088	
The algorithm is now known as the the "FFT" . We sweep the details of down to some clever complex analys $1-1=0$.	the FFT under the rug; it comes	5	8,388,608 16,777,216 33,554,432 3	$281,474,976,710,65$ $1,125,899,906,842,62$ $4,503,599,627,370,49$ $3,554,432 = 2^{13} \times 2^{12}$	$\begin{array}{l} 66 & 218,103,808 \\ 44 & 452,984,832 \\ 66 & 939,524,096 \end{array}$	1,290,555 2,485,513 4,793,490	
* JAMES W. COOLEY AND JOHN W. TUK Calculation of Complex Fourier Series," M NO. 90, APRIL 1965, PP. 297-301, DOI: HTTP://WWW.JSTOR.ORG/STABLE/200335	ATHEMATICS OF COMPUTATION, VOL. 10.2307/2003354, URL: 4	SAN DIIGO STATE UNIVERSITY	[†] The "8k Digital Video tentative Ultra High Do 7,680 \times 4,320 pixels fo \sim 4.0 \times 10 ⁹ 36-bit pix resolution of 12,000 \times	efinition Television (UH or 16:9 aspect ratio (12 els/sec). IMAX shot o 8,700 (at 24 fps, for a	HDTV) specification 0 fps, 12 bits/chan n 70 mm <i>film</i> has a total of 2.5×10^9	n calls for nel (at least 3 - theoretical pix pixels/sec).	el Esan Dico State
Peter Blomgren (blomgren@sdsu.edu)	5.1. Orthogonal Projections; Orthonormal Base	es — (37/54)			5.1. Orthogonal Projecti		Bases — (38/54)
Supplemental Material Why Orthonormality Matters	Application: The (Fast) Fourier Transform Application: MPEG-4 Compression without som	ne of the Math		Supplemental Material Orthonormality Matters	Application: The (Fast) Application: MPEG-4 Co		some of the Math
Comparing Operation Counts		2 of 4	Comparing Operation	Counts			3 of 4
	9s 1s 9 9s 1s 28 3s 1s 93 5s 1s 315 2s 1s 1,092 26 1s 3,855 57 1s 13,797 12 1s 49,932 21 1s 182,361 48 1s 671,088 15 1s 1,290,555 13 1s 2,485,513	SELENTISTI			mputational Con mputational Co	nplexity)



Imagine a 2-hour 1080p24 Movie; where we are showing 24 frames/second, and each frame is 1920×1080 pixels, each pixel has a bit depth of 8-bits per color (whether that's Red-Green-Blue, or Y-Cb-Cr, is a discussion for someplace else); but the bottom line is that we have 3 bytes/pixel, so we end of with a raw datastream with

		١
IA		
(8)		7.
(8)	NY (1)/	1
	V V	/
- L T	\sim	
\prec		
$\mathbf{\mathbf{\nabla}}$		
-		

A

SAN DIEG

	3	bytes/pixel
×	24	frames/second
×	7200	seconds
×	(1920×1080)	pixels/frame
=	1,074,954,240,000	bytes.

Image License: User:Bromskloss [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons.

Image License: "Bluray," "Blu-ray Disc," logos, specifications, etc. are trademarks owned by the Bluray Disc Association (Hitachi, Ltd., LG Electronics Inc., Matsushita Electric Industrial Co., Ltd., PI-ONEER CORPORATION, Royal Philips Electronics, SAMSUNG ELECTRONICS CO., LTD., SHARP CORPORATION, Sony Corporation, THOMSON multimedia).

Ê

Now, keeping in mind that a standard dual-layer Blu-ray disc holds a measly 50,050,629,632 bytes of data, we need a compression ratio of 1:21.5 in order to fit the movie onto a disk. This means we can only store slightly less than 4.7% of the datastream.

Blu-rau Disc

OK, OK, OK, the extended version of *Lord of the Rings* is 208 minutes; so really we can only fit 2.7% of the datastream...

If you are streaming the movie, even LESS data is getting transmitted.

Supplemental Material Why Orthonormality Matters	Application: The (Fast) Fourier Transform Application: MPEG-4 Compression without some of the Math	Supplemental Material Why Orthonormality Matters	Application: The (Fast) Fourier Transform Application: MPEG-4 Compression without som
MPEG-4 Compression :: Movie \rightsquigarrow A	Single Frame \rightsquigarrow Gray-scale	MPEG-4 Compression :: Compressing	g the Single Frame
Let's for a moment restict our discus frame; and for simplicity, let's make	•	Note: Simplifying to a single gray-scale frather ug, but the example still gives the "right Next we are going to discuss how snapshot to use only 4.0% storage bit of mathematics Looking at a Single Horizontal First, we can consider the image lines, each with 1920 pixels; whice 1080 vectors $\vec{r_1}, \vec{r_2}, \ldots, \vec{r_{1080}}$, each also (simultaneously) think of the columns, each with 1080 (vertical $\vec{c_1}, \vec{c_2}, \ldots, \vec{c_{1920}}$, each "living it up	ght flavor" of how compression works we can compress this single the. This is going to require a lite I/Vertical Line of the Image to be constructed out of 1080 th means we have a collection of the "living it up" in \mathbb{R}^{1920} ; we can be as being constructed out of 19 I) pixels; giving us vectors
Peter Blomgren (blomgren@sdsu.edu)	5.1. Orthogonal Projections; Orthonormal Bases — (45/54)	Peter Blomgren (blomgren@sdsu.edu)	5.1. Orthogonal Projections; Orthonormal Base
Supplemental Material Why Orthonormality Matters	Application: The (Fast) Fourier Transform Application: MPEG-4 Compression without some of the Math	Supplemental Material Why Orthonormality Matters	Application: The (Fast) Fourier Transform Application: MPEG-4 Compression without som

SAN DIEGO S UNIVERSI

MPEG-4 Compression :: The Need for Orthonormality

What we need are some good (orthonormal) bases for \mathbb{R}^{1080} and \mathbb{R}^{1920} . It turns out that if we are given an even number, 2n points, then we can use the 2n vectors generated by the functions

$$\begin{cases} \Phi_0(x) = \frac{1}{2} \\ \Phi_k(x) = \cos(kx), \quad k = 1, \dots, n \\ \Phi_{n+k}(x) = \sin(kx), \quad k = 1, \dots, n-1 \end{cases}$$

evaluated in the interval $[-\pi,\pi]$, at the equally spaced points $x_{j} = -\pi + (j\pi/n), j = 0, 1, ..., (2n-1)$. The generated set of vectors are orthonormal!

ne of the Math

Ê

little

:e: 0

of can 1920

ases — (45/54)	Peter Blomgren (blomgren@sdsu.edu)	5.1. Orthogonal Projections; Orthonormal Bases — (46/54)
ome of the Math	Supplemental Material Why Orthonormality Matters	Application: The (Fast) Fourier Transform Application: MPEG-4 Compression without some of the Math

MPEG-4 Compression :: Enter the Fourier Transform

Now, align the points x_i with the pixels, numbered from j = 0 to j = (2n - 1), horizontally or vertically. Let p_i denote the pixel value (gray-scale intensity). Now, if we let

$$a_k = \frac{1}{n} \sum_{j=0}^{2n-1} f_j \cos(kx_j) \quad b_k = \frac{1}{n} \sum_{j=0}^{2n-1} f_j \sin(kx_j),$$

be the values of the [pixel-vector]-[cos/sin-vector] dot-products. In our language the a_k and b_k coefficients are coordinates in the cos/sin-vector basis for \mathbb{R}^{2n} ; and given the coordinates, we can fully reconstruct the pixel values:

$$p_j \equiv S(x_j) = \frac{a_0}{2} + \frac{a_n}{2}\cos(nx_j) + \sum_{k=1}^{n-1} [a_k\cos(kx_j) + b_k\sin(kx_j)].$$

Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math	Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math
MPEG-4 Compression :: 1D ~> 2D Fourier Transform	MPEG-4 Compression :: The Office Scene through "Fourier Goggles"
We now have a set-up where we can go from "image coordinates" to [cos/sin-vector] coordinates (and back) using only dot products. What we have defined is known as the (one dimensional) <i>Fourier transform.</i>	
Back to 2D Even though the previos discussion gave us a nice way to build orthonormal bases in one dimension, it is far from clear <i>why</i> this is desirable.	
Now, consider the Office-Scene-image we had; and lets perform the above procedure first in the horizontal direction (which transforms the image into 1080 lines of [cos/sin-vector] coordinates. Next, transform <i>that</i> "image" in the vertical direction. This now gives us an "image" of vertial [cos/sin-vector] coordinates of (horizonal [cos/sin-vector] of	The two dimensional Fourier transform of the original Office Scene.
imagef). This is known as the two dimensional <i>Fourier transform.</i>	Peter Blomgren (blomgren@sdsu.edu) 5.1. Orthogonal Projections; Orthonormal Bases — (50/54)
Feter Diolingten (Dromgtenestativetty) Official Control official Control of the C	Feter Dibingten (Dromgrenesustation) of the orthogonal residences of the
Supplemental MaterialApplication: The (East) Fourier Transform	Supplemental Material - Application: The (Fast) Fourier Transform
Supplemental Material Why Orthonormality MattersApplication: The (Fast) Fourier Transform Application: MPEG-4 Compression without some of the Math	Supplemental Material Application: The (Fast) Fourier Transform Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math
Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math	Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math
Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math MPEG-4 Compression :: Compressing	Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math
Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math MPEG-4 Compression :: Compressing Next, we throw away some Fourier Coefficients. Here, we take the time to figure out what (in magnitude) 4.0% of	Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math MPEG-4 Compression :: The Leading 4.0% of Fourier Coefficients
Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math MPEG-4 Compression :: Compressing Next, we throw away some Fourier Coefficients. Here, we take the time to figure out what (in magnitude) 4.0% of coefficients are the largest. — We keep those, and discard the rest. Then we reconstruct the Office Scene using only the leading 4.0%	Why Orthonormality Matters Application: MPEG-4 Compression without some of the Math

Supplemental Material

Supplemental Material

Supplemental Material Why Orthonormality Matters

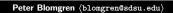
Office-Scene: Fourier transformed, filtered and reconstructed: only the largest 4.0% of coefficients have been kept.

MPEG-4 Compression :: Wrap-up

For more details on how video compression actually is implemented, check out the following

References:

- What is H.264 http://www.h264info.com/h264.html
- Wikipedia H.264/MPEG-4 AVC http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
- Whitepaper: H.264 video compression standard: New possibilities within video surveillance http://www.axis.com/files/whitepaper/wp_h264_31669_en_0803_lo.pdf



5.1. Orthogonal Projections; Orthonormal Bases — (53/54)

Ê

SAN DIEGO STA UNIVERSITY

Application: MPEG-4 Compression without some of the Math

 Peter Blomgren (blomgren@sdsu.edu)
 5.1. Orthogonal Projections; Orthonormal Bases — (54/54)

Êı

SAN DIEGO