
Math 254: Introduction to Linear Algebra

Notes #5.1 — Orthogonal Projections and Orthonormal Bases

Peter Blomgren
〈blomgren@sdsu.edu〉

Department of Mathematics and Statistics
Dynamical Systems Group

Computational Sciences Research Center

San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2022
(Revised:March 21, 2022)

Peter Blomgren 〈blomgren@sdsu.edu〉 5.1. Orthogonal Projections; Orthonormal Bases — (1/54)

http://terminus.sdsu.edu/


Outline

1 Student Learning Objectives
SLOs: Orthogonal Projections and Orthonormal Bases

2 Orthogonality and Least Squares
Orthogonal Projections and Orthonormal Bases

3 Suggested Problems
Suggested Problems 5.1
Lecture –Book Roadmap

4 Supplemental Material
Metacognitive Reflection
Problem Statements 5.1

5 Why Orthonormality Matters
Application: The (Fast) Fourier Transform
Application: MPEG-4 Compression without some of the Math

Peter Blomgren 〈blomgren@sdsu.edu〉 5.1. Orthogonal Projections; Orthonormal Bases — (2/54)



Student Learning Objectives SLOs: Orthogonal Projections and Orthonormal Bases

SLOs 5.1 Orthogonal Projections and Orthonormal Bases

After this lecture you should:

Understand the concept of Orthonormality

Be able to compute the Projection onto a subspace V (with
dim(V ) > 1), using an Orthonormal Basis.

Be comfortable with the use of the Orthogonal Complement,
V⊥ of a subspace V .
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Something Old + Something New...

Rewind (Orthogonality, Length, Unit Vectors)

a. Two vectors ~v and ~w ∈ R
n are called orthogonal (or

perpendicular) if ~v · ~w = 0.

b. The length (or norm, or magnitude) of a vector ~v ∈ R
n is

‖~v‖ =
√
~v · ~v .

c. A vector ~u ∈ R
n is called a unit vector if ‖~u‖ = 1.

Definition (Orthonormal Vectors)

The vectors ~u1, . . . , ~um ∈ R
n are called orthonormal if they are all

unit vectors and orthogonal to one another:

~ui · ~uj =
{

1 if i = j

0 if i 6= j

Peter Blomgren 〈blomgren@sdsu.edu〉 5.1. Orthogonal Projections; Orthonormal Bases — (4/54)



Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Orthonormal Vectors

Example (The “Standard Basis Vectors”)

The vectors ~e1, . . . , ~en ∈ R
n are orthonormal. — They form an

orthonormal basis for Rn.

Example (Rotated Standard Vectors in R
2)

Consider ~e1, and ~e2 in R
2; and their rotated versions:

~r1(θ) =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

1
0

]

=

[

cos(θ)
sin(θ)

]

,

~r2(θ) =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [

0
1

]

=

[

− sin(θ)
cos(θ)

]

,
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Orthonormal Vectors

Example (Orthonormal Vectors in R
4)

The vectors

~u1 =









1/2
1/2
1/2
1/2









, ~u2 =









1/2
1/2

−1/2
−1/2









, ~u3 =









1/2
−1/2
1/2

−1/2









, ~u4 =









1/2
−1/2
−1/2
1/2









in R
4 are orthonormal.

Unit Length:
√

4× 1
22

= 1.

Orthogonality: For each pair of vectors, two of the products
~ui ,k~uj ,k will be positive and two negative; hence the sum
∑4

k=1 ~ui ,k~uj ,k will be zero.
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Properties 1 of 2

Theorem (Properties of Orthonormal Vectors)

a. Orthonormal Vectors are linearly independent.

b. Orthonormal Vectors ~u1, . . . , ~un ∈ R
n form a basis of Rn.

a. Clearly, there is no way to (linearly) combine perpendicular
vectors to describe each other (for example, think of ~e1, ~e2,
and ~e3 in R

3.)

b. By previous theorems, n linearly independent vectors in R
n

necessarily form a basis of Rn. (Think of the standard basis
~e1, . . . , ~en ∈ R

n; and rotations / reflections of it...)

Comment: In some sense, Orthonormal vectors are “maximally linearly
independent.”
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Properties 2 of 2

Rewind (Orthogonal Projection)

Consider a vector ~x ∈ R
n and a subspace V of Rn. Then we can

write
~x = ~x‖ + ~x⊥,

where ~x‖ ∈ V , and ~x⊥ ⊥ V . This representation is unique. The
vector ~x‖ is called the orthogonal projection of ~x onto V ,
sometimes denoted projV (~x); the transformation
T (~x) = projV (~x) = ~x‖ from R

n 7→ R
n is linear.

We have discussed this previously, but only in the context of
describing the image and kernel of the projection... We are now
ready to start discussing HOW we can compute the projection in
any dimension space (onto any subspace).
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Orthogonal Projection: Formula

Theorem (Formula for the Orthogonal Projection)

If V is a subspace of Rn with an orthonormal basis ~u1, . . . , ~um —
that is V = span (~u1, . . . , ~um) then

projV (~x) = ~x‖ = (~u1 · ~x)~u1 + · · ·+ (~um · ~x)~um

∀x ∈ R
n.

Having the orthonormal basis is the absolute key to this formula.
Any non-orthonormal basis will produce strange (incorrect) results.
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Orthogonal Projection: Example

Example (Orthogonal Projection (Part 1))

Consider the subspace V = im(A) of R4, find projV (~x); where

A =

[

1 1
1 −1
1 −1
1 1

]

, ~x =

[

1
3
1
7

]

,

∥

∥

∥

∥

∥

[

±1
±1
±1
±1

]∥

∥

∥

∥

∥

=
√

4(±1)2 =
√
4 = 2.

Since the columns ~a1 and ~a2 are linearly independent, and orthogonal
(zero dot-product), they form a[n orthogonal] basis of V . Dividing each
vector by its length gives us an orthonormal basis for V = span(~u1, ~u2),
where

~u1 =

[

1/2
1/2
1/2
1/2

]

, ~u2 =

[

1/2
−1/2
−1/2
1/2

]

.

Continued on the next slide...
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Orthogonal Projection: Example

Example (Orthogonal Projection (Part 2))

Now we use the projection formula,

~x · ~u1 =









1
3
1
7









·









1/2
1/2
1/2
1/2









= 6 , ~x · ~u2 =









1
3
1
7









·









1/2
−1/2
−1/2
1/2









= 2 ,

therefore

projV (~x) = 6 ~u1 + 2 ~u2 =









3
3
3
3









+









1
−1
−1
1









=









4
2
2
4









.
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Orthogonal Projection: Example

Example (Orthogonal Projection (part 3))

It is worth noting:

~x =









1
3
1
7









, projV (~x) =









4
2
2
4









.

‖~x‖ =
√
1 + 9 + 1 + 49 =

√
60,

‖projV (~x)‖ =
√
16 + 4 + 4 + 16 =

√
40

so that ‖projV (~x)‖ ≤ ‖~x‖. This is ALWAYS true!
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Orthogonal Projection onto a [Subspace Spanned by a] Basis 1/2

Theorem (Orthogonal Projection onto a Basis)

Consider an orthonormal basis ~u1, . . . , ~un of Rn. Then

~x = (~u1 · ~x)~u1 + · · ·+ (~un · ~x)~un

∀~x ∈ R
n.

Since the basis spans Rn, we can “rebuild” ~x completely by adding
up all the projected pieces.

We have ~x as a unique linear combination

~x = c1~u1 + · · ·+ cn~un

where ck = (~uk · ~x), k = 1, . . . , n.
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Orthogonal Projection onto a [Subspace Spanned by a] Basis 2/2

Looking in the rear-view mirror [Coordinates (Notes#3.4)], we can let

Basis: U = 〈~u1, ~u2, . . . , ~un〉

Coordinates: [~x ]
U
=











c1
c2
...
cn











ck = (~uk · ~x), k = 1, . . . , n.

Orthogonality allows us to compute the coordinates one-at-a-time,
i.e. they are independent from each other. This in itself is a useful
property!  Parallel Computing for speed!
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Image, and Kernel...

Using our recently acquired vocabulary, we realize that

im(projV (~x)) = V

Also, we know we can write

~x = ~x‖ + ~x⊥

and projV (~x)) = ~x‖, so if we are looking for the kernel,

ker(projV (~x)),

we want all ~x without a ~x‖ part, i.e. {~x ∈ R
n : ~x = ~x⊥}, the

collection of all vectors orthogonal to the subspace V .

A formal definition follows on the next slide...
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

The Orthogonal Complement :: Definition and Related Expressions

Definition (Orthogonal Complement)

Consider a subspace V of Rm. The Orthogonal Complement V⊥ of V is
the set of those vectors ~x ∈ R

m that are orthogonal to all vectors in V :

V⊥ = {~x ∈ R
m : ~x · ~v = 0, ∀~v ∈ V }

Note∗ that V⊥ is the kernel of projV (~x).

∗ This means that if we have a description of V as the solution of a
linear system (A ∈ R

n×m)

V = {~x ∈ R
m : A~x = ~0}

then (note that projV (~x) : R
m 7→ R

m)

V = ker(A) = im(projV (~x)) ⊂ R
m

V⊥ = im(AT ) = ker(projV (~x)) ⊂ R
m
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

The Orthogonal Complements of a Linear Transformation

Consider a linear transformation T (~x) = A~x , where A ∈ R
n×m:

“Input Space” “Output Space”

~x ∈ R
m 7→ ~y = A~x ∈ R

n

ker(A) 7→ ~0

ker(A)⊥ 7→ im(A)

nothing 7→ im(A)⊥

ker(A)⊕ ker(A)⊥ = R
m im(A)⊕ im(A)⊥ = R

n

We use the symbol ⊕ to denote the “Direct Sum” of two subspaces
(formal definition in a few slides).

We make a big deal of the direct sum in [Math 524]...
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

The Orthogonal Complement :: Properties

Theorem (Properties of the Orthogonal Complement)

Consider a subspace V of Rn.

a. The Orthogonal Complement V⊥ of V is a subspace of Rn.

b. The intersection (common elements) of V⊥ and V consists of
the zero vector: V⊥ ∩ V = {~0}. [~x ∈ V⊥ ∩ V : ~x · ~x = 0 ⇒ ~x = ~0.]

c. dim(V ) + dim(V⊥) = n. [By Rank-Nullity Theorem; T (~x) = projV (~x)]

d. (V⊥)⊥ = V .

e. The “Direct Sum” V ⊕ V⊥ = R
n, where

U = V ⊕ V⊥ def
= {~u = ~v + ~w : ~v ∈ V , ~w ∈ V⊥},

that is, V and V⊥ “split” the space in two non-overlapping
parts — in this context ~0 does not “count” as an overlap.
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

From Pythagoras to Cauchy-(Bunyakovsky)-Schwarz

Example (Really Old Stuff in New Notation)

Consider a line L, and a vector ~x in R
n. If we project ~x onto

L and write ~x = ~x‖ + ~x⊥ good ole’ Pythagoras says

‖~x‖2 ≡ ‖~x‖ + ~x⊥‖2 = ‖~x‖‖2 + ‖~x⊥‖2.

Pythagoras, ∼ 570–495 BC
© Public Domain; wikimedia.

Checking:

‖~x‖2 = ‖~x‖ + ~x⊥‖2

= (~x‖ + ~x⊥) · (~x‖ + ~x⊥)

= ~x‖ · ~x‖ + ~x‖ · ~x⊥ + ~x⊥ · ~x‖ + ~x⊥ · ~x⊥

= ‖~x‖‖2 + 0 + 0 + ‖~x⊥‖2 = ‖~x‖‖2 + ‖~x⊥‖2

... and there it is!

Peter Blomgren 〈blomgren@sdsu.edu〉 5.1. Orthogonal Projections; Orthonormal Bases — (19/54)



Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

From Pythagoras to Cauchy-(Bunyakovsky)-Schwarz

Theorem (Pythagorean Theorem)

Consider two vectors ~x , ~y ∈ R
n. The equation

‖~x + ~y‖2 = ‖~x‖2 + ‖~y‖2

holds if and only if ~x ⊥ ~y .

Theorem (projV (~x) is no longer than ~x)

Consider a subspace V of Rn, and a vector ~x ∈ R
n. Then

‖projV (~x)‖ ≤ ‖~x‖

where equality is achieved if and only if ~x ∈ V .
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

From Pythagoras to Cauchy-(Bunyakovsky)-Schwarz

Proof (by observation)

Since
‖~x‖‖2 + ‖~x⊥‖2 = ‖~x‖2

(and all lengths are non-negative), we must have

‖~x‖‖2 = ‖~x‖2 − ‖~x⊥‖2 ≤ ‖~x‖2.
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

From Pythagoras to Cauchy-(Bunyakovsky)-Schwarz

Now, ponder a one-dimensional subspace (a line through the origin) V of
R

n, and let ~y be a vector in that subspace; let

~u =
1

‖~y‖~y

be a unit vector spanning V .

We can now write the projection using ~u:

projV (~x) = (~x · ~u)~u

It follows that

‖~y‖‖~x‖ ≥ ‖projV (~x)‖ = ‖(~x · ~u)~u‖ = |~x · ~u| ‖~u‖ = |~x · ~u| =

∣

∣

∣

∣

~x ·
1

‖~y‖
~y

∣

∣

∣

∣

=
1

‖~y‖
|~x · ~y |

so that

|~x · ~y | ≤ ‖~x‖ ‖~y‖

multiply by ‖~y‖ to get Cauchy-(Bunyakovsky)-Schwarz

Peter Blomgren 〈blomgren@sdsu.edu〉 5.1. Orthogonal Projections; Orthonormal Bases — (22/54)



Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

From Pythagoras to Cauchy-(Bunyakovsky)-Schwarz

What we showed on the previous slide is known as:

Theorem (The Cauchy-(Bunyakovsky)-Schwarz Inequality)

If ~x and ~y ∈ R
n, then

|~x · ~y | ≤ ‖~x‖ ‖~y‖.

The statement is an equality if and only if ~x and ~y are parallel.

Pythagoras ∼ 570 – 495 BC.
Augustin-Louis Cauchy, 21 August 1789 – 23 May 1857.

⇒ proof for sums (1821).
Viktor Yakovlevich Bunyakovsky, 16 December 1804 – 12 December 1889.

⇒ proof for integrals (1859).
Karl Hermann Amandus Schwarz, 25 January 1843 – 30 November 1921.

⇒ Modern proof (1888).
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

The Dot Product, cos(θ), and Cauchy-Bunyakovsky-Schwarz

Consider two vectors ~x , and ~y ∈ R
n. We have previously expressed

the dot product in terms of the angle between the two vectors.

~x · ~y = cos(θ) ‖~x‖ ‖~y‖

The real use of the formula is to find

cos(θ) =
~x · ~y

‖~x‖ ‖~y‖ , θ = arccos

(

~x · ~y
‖~x‖ ‖~y‖

)

Cauchy-Bunyakovsky-Schwarz, |~x · ~y | ≤ ‖~x‖ ‖~y‖, guarantees that
the argument to arccos, and the value of cos(θ) (as defined here)
make sense.

Note that the angle θ is in the plane spanned by ~x , and ~y .
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Orthogonality and Least Squares
Suggested Problems

Orthogonal Projections and Orthonormal Bases

Example: Angle Between Vectors

Example (Angle Between Vectors)

Find the angle between

~x =









1
0
0
0









, ~y =









1
1
1
1









We have
‖~x‖ = 1, ‖~y‖ =

√
4 = 2, ~x · ~y = 1

so that

cos(θ) =
1

2
, θ = arccos

(

1

2

)

=
π

3
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Orthogonality and Least Squares
Suggested Problems

Suggested Problems 5.1
Lecture –Book Roadmap

Suggested Problems 5.1

Available on Learning Glass videos:
5.1 — 7, 10, 11, 15, 17, 27, 28
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Orthogonality and Least Squares
Suggested Problems

Suggested Problems 5.1
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

5.1 §4.1, §4.2, §4.4
5.2 §4.1, §4.2, §4.4
5.3 §4.1, §4.2, §4.4
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Supplemental Material
Why Orthonormality Matters

Metacognitive Reflection
Problem Statements 5.1

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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Supplemental Material
Why Orthonormality Matters

Metacognitive Reflection
Problem Statements 5.1

(5.1.7), (5.1.10)

(5.1.7) For vectors ~u, ~v , determine whether the angle is acute
(< π

2 ), right (=
π
2 ), or obtuse (> π

2 ).

~u =

[

2
−3

]

, ~v =

[

5
4

]

.

(5.1.10) For which value(s) of k ∈ R are the vectors

~u =





2
3
4



 , ~v =





1
k

1





perpendicular?
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Supplemental Material
Why Orthonormality Matters

Metacognitive Reflection
Problem Statements 5.1

(5.1.11)

(5.1.11) Consider the vectors

~u =











1
1
...
1











, ~v =











1
0
...
0











∈ R
n

a. For n = 2, 3, 4, find the angle θn between ~u and ~v .

b. Find the limit of θn as n → ∞.
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Supplemental Material
Why Orthonormality Matters

Metacognitive Reflection
Problem Statements 5.1

(5.1.15)

(5.1.15) Consider the vector

~v =









1
2
3
4









∈ R
4.

Find a basis for the subspace of R4 consisting of all vectors
perpendicular to ~v .
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Supplemental Material
Why Orthonormality Matters

Metacognitive Reflection
Problem Statements 5.1

(5.1.17), (5.1.27)

(5.1.17) Find a basis for W⊥, where

W = span

















1
2
3
4









,









5
6
7
8

















.

(5.1.27) Find the orthogonal projection of 9~e1 onto the subspace
W of R4, where

W = span

















2
2
1
0









,









−2
2
0
1

















, ~e1 =









1
0
0
0









.
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Supplemental Material
Why Orthonormality Matters

Metacognitive Reflection
Problem Statements 5.1

(5.1.28)

(5.1.28) Find the orthogonal projection of ~e1 onto the subspace
W of R4, where

W = span

















1
1
1
1









,









1
1

−1
−1









,









1
−1
−1
1

















, ~e1 =









1
0
0
0









.
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Supplemental Material
Why Orthonormality Matters

Application: The (Fast) Fourier Transform
Application: MPEG-4 Compression without some of the Math

The Super-Slow, Slow, and Fast Fourier Transform

A lot of signal analysis and processing is frequency-based; meaning
that it is highly useful to express a signal using basis functions that
are determined by various frequencies.

Consider the functions:










Φ0(x) =
1

2
Φk(x) = cos(kx), k = 1, . . . , n

Φn+k(x) = sin(kx), k = 1, . . . , n − 1

and let each one define a vector ~vi ∈ R
2n, by evaluating the

function in the points xj = −π + (jπ/n), j = 0, 1, . . . , (2m − 1).
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Supplemental Material
Why Orthonormality Matters

Application: The (Fast) Fourier Transform
Application: MPEG-4 Compression without some of the Math

The Super-Slow, Slow, and Fast Fourier Transform

Let those vectors be the columns in a matrix, M ∈ R
2n×2n.

It turns out that the vectors are linearly independent, which
makes them a basis, B, for R2n and the matrix M invertible;
further, the vectors are orthogonal (which will help us save
some work).

Now, if we have sampled a signal in 2n locations / timepoints; then

we can collect those samples in ~f ∈ R
2n.

If we can to express the signal as a linear combination of the
cos/sin-vectors, all we have to do is solve the linear system

M[~f ]B = ~f ,

which in general requires roughly 8
3n

3 operations (×/+). This is the
Super-Slow Fourier Transform.
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The Super-Slow, Slow, and Fast Fourier Transform

Since the vectors are orthogonal, solving the system is not
necessary; we can get each coefficient by computing a length
2n dot-product:

ak =
1

n

2n−1
∑

j=0

fj cos(kxj) bk =
1

n

2n−1
∑

j=0

fj sin(kxj).

where ak , k = 0, . . . , n are the first (n + 1) coefficients of
[~f ]B, and bk , k = 1, . . . , (n− 1) are the remaining coefficients.

This approach, the Slow Fourier Transform requires roughly
4n2 operations.

[Full Disclosure] We have omitted a few (3) factors of 2 which
are necessary to make the vectors orthonormal.
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The Super-Slow, Slow, and Fast Fourier Transform

Much of the analysis was done by Jean Baptiste Joseph Fourier in the
early 1800s, but the use of the Fourier series representation was not
practical until...

1965, when Cooley and Tukey∗ published a 4-page paper describing an
algorithm which computes the coefficients using only O(n log2 n)
operations.

It is hard to overstate the importance of this paper!!!

The algorithm is now known as the “Fast Fourier Transform” or just
the “FFT”. We sweep the details of the FFT under the rug; it comes
down to some clever complex analysis, and the facts that 1 + 1 = 2, and
1− 1 = 0.

∗ James W. Cooley and John W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Mathematics of Computation, Vol. 19,
No. 90, April 1965, pp. 297-301, DOI: 10.2307/2003354, URL:
http://www.jstor.org/stable/2003354
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Comparing Operation Counts 2,500,000 s ≈ 1month 1 of 4

n 4n2 3n+ n log2 n Speedup
16 1,024 112 9
64 16,384 576 28

256 262,144 2,816 93
1,024 4,194,304 13,312 315
4,096 67,108,864 61,440 1,092

16,384 1,073,741,824 278,528 3,855
65,536 17,179,869,184 1,245,184 13,797

262,144 274,877,906,944 5,505,024 49,932
1,048,576 4,398,046,511,104 24,117,248 182,361
4,194,304 70,368,744,177,664 104,857,600 671,088
8,388,608 281,474,976,710,656 218,103,808 1,290,555

16,777,216 1,125,899,906,842,624 452,984,832 2,485,513
33,554,432 4,503,599,627,370,496 939,524,096 4,793,490

33, 554, 432 = 213 × 212 = 8, 196× 4, 096†

†The “8k Digital Video Format” has a resolution of 8, 192× 4, 320 pixels; the
tentative Ultra High Definition Television (UHDTV) specification calls for
7, 680× 4, 320 pixels for 16:9 aspect ratio (120 fps, 12 bits/channel (at least 3 – RGB)
 4.0× 109 36-bit pixels/sec). IMAX shot on 70mm film has a theoretical pixel
resolution of 12, 000× 8, 700 (at 24 fps, for a total of 2.5× 109 pixels/sec).
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Comparing Operation Counts 2 of 4

n SLOW-FT time FFT time Speedup
16 9 s 1 s 9
64 29 s 1 s 28

256 1m 33 s 1 s 93
1,024 5m 15 s 1 s 315
4,096 18m 12 s 1 s 1,092

16,384 1:04:26 1 s 3,855
65,536 3:49:57 1 s 13,797

262,144 13:52:12 1 s 49,932
1,048,576 2d + 02:39:21 1 s 182,361
4,194,304 7d + 18:24:48 1 s 671,088
8,388,608 14d + 22:29:15 1 s 1,290,555

16,777,216 28d + 18:25:13 1 s 2,485,513
33,554,432 55d + 11:31:30 1 s 4,793,490
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Comparing Operation Counts 3 of 4
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Comparing Operation Counts 4 of 4

One Day

One Minute

One Month
One Year

One Lifetime

Age of Earth (Science)
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MPEG-4 Compression :: Main Ideas

We used the idea of video compression to motivate why we should
care about orthogonal basis... The discussion was somewhat
hand-wavy

This is an attempt at describing the key ideas of video
compression, using only concepts from calculus and half a semester
of linear algebra. (Good luck to me!)

In order to communicate the main ideas, lots of “minor” details
have been swept under the rug; several oversimplifications have
been committed, and a few convenient lies have been told.
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MPEG-4 Compression :: Description of the Problem — 1080p “HD” Movies

Imagine a 2-hour 1080p24 Movie; where we are show-
ing 24 frames/second, and each frame is 1920×1080
pixels, each pixel has a bit depth of 8-bits per color
(whether that’s Red-Green-Blue, or Y-Cb-Cr, is a dis-
cussion for someplace else); but the bottom line is
that we have 3 bytes/pixel, so we end of with a raw
datastream with

3 bytes/pixel
× 24 frames/second
× 7200 seconds
× (1920×1080) pixels/frame
= 1,074,954,240,000 bytes.

Image License: User:Bromskloss [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via
Wikimedia Commons.

Peter Blomgren 〈blomgren@sdsu.edu〉 5.1. Orthogonal Projections; Orthonormal Bases — (43/54)

http://creativecommons.org/licenses/by-sa/3.0/


Supplemental Material
Why Orthonormality Matters

Application: The (Fast) Fourier Transform
Application: MPEG-4 Compression without some of the Math

MPEG-4 Compression :: Blu-ray Disc Capacity

Image License: “Bluray,” “Blu-ray Disc,” logos,
specifications, etc. are trademarks owned by the Blu-
ray Disc Association (Hitachi, Ltd., LG Electronics
Inc., Matsushita Electric Industrial Co., Ltd., PI-
ONEER CORPORATION, Royal Philips Electron-
ics, SAMSUNG ELECTRONICS CO., LTD., SHARP
CORPORATION, Sony Corporation, THOMSON
multimedia).

Now, keeping in mind that a standard dual-layer Blu-ray disc holds a
measly 50,050,629,632 bytes of data, we need a compression ratio of
1 : 21.5 in order to fit the movie onto a disk. This means we can only
store slightly less than 4.7% of the datastream.

OK, OK, OK, the extended version of Lord of the Rings is 208 minutes;
so really we can only fit 2.7% of the datastream...

If you are streaming the movie, even LESS data is getting transmitted.
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MPEG-4 Compression :: Movie  A Single Frame  Gray-scale

Let’s for a moment restict our discussion to a single 1920×1080 pixel
frame; and for simplicity, let’s make it gray-scale.

Gandalf was vanquished by the “Copyright spell,” so you’re stuck with my ugly face...
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MPEG-4 Compression :: Compressing the Single Frame

Note: Simplifying to a single gray-scale frame sweeps a lot of important details under
the rug, but the example still gives the “right flavor” of how compression works...

Next we are going to discuss how we can compress this single
snapshot to use only 4.0% storage. This is going to require a little
bit of mathematics...

Looking at a Single Horizontal/Vertical Line of the Image:
First, we can consider the image to be constructed out of 1080
lines, each with 1920 pixels; which means we have a collection of
1080 vectors ~r1, ~r2, . . . , ~r1080, each “living it up” in R

1920; we can
also (simultaneously) think of the as being constructed out of 1920
columns, each with 1080 (vertical) pixels; giving us vectors
~c1, ~c2, . . . , ~c1920, each “living it up” in R

1080.
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MPEG-4 Compression :: The Need for Orthonormality

What we need are some good (orthonormal) bases for R1080 and
R
1920. It turns out that if we are given an even number, 2n points,

then we can use the 2n vectors generated by the functions











Φ0(x) =
1

2
Φk(x) = cos(kx), k = 1, . . . , n

Φn+k(x) = sin(kx), k = 1, . . . , n − 1

evaluated in the interval [−π, π], at the equally spaced points
xj = −π + (jπ/n), j = 0, 1, . . . , (2n − 1). The generated set of
vectors are orthonormal!
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MPEG-4 Compression :: Enter the Fourier Transform

Now, align the points xj with the pixels, numbered from j = 0 to
j = (2n − 1), horizontally or vertically. Let pj denote the pixel
value (gray-scale intensity). Now, if we let

ak =
1

n

2n−1
∑

j=0

fj cos(kxj) bk =
1

n

2n−1
∑

j=0

fj sin(kxj),

be the values of the [pixel-vector]–[cos/sin-vector] dot-products. In
our language the ak and bk coefficients are coordinates in the
cos/sin-vector basis for R2n; and given the coordinates, we can
fully reconstruct the pixel values:

pj ≡ S(xj) =
a0

2
+

an

2
cos(nxj) +

n−1
∑

k=1

[ak cos(kxj) + bk sin(kxj)] .
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MPEG-4 Compression :: 1D  2D Fourier Transform

We now have a set-up where we can go from “image coordinates” to
[cos/sin-vector] coordinates (and back) using only dot products. What
we have defined is known as the (one dimensional) Fourier transform.

Back to 2D
Even though the previos discussion gave us a nice way to build
orthonormal bases in one dimension, it is far from clear why this is
desirable.

Now, consider the Office-Scene-image we had; and lets perform the
above procedure first in the horizontal direction (which transforms the
image into 1080 lines of [cos/sin-vector] coordinates. Next, transform
that “image” in the vertical direction. This now gives us an “image” of
vertial [cos/sin-vector] coordinates of (horizonal [cos/sin-vector] of
imagef). This is known as the two dimensional Fourier transform.
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MPEG-4 Compression :: The Office Scene through “Fourier Goggles”

The two dimensional Fourier transform of the original Office Scene.
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MPEG-4 Compression :: Compressing

Next, we throw away some Fourier Coefficients.

Here, we take the time to figure out what (in magnitude) 4.0% of
coefficients are the largest. — We keep those, and discard the rest.

Then we reconstruct the Office Scene using only the leading 4.0%
of the coefficients.
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MPEG-4 Compression :: The Leading 4.0% of Fourier Coefficients

Fourier transformed, and filtered; only the largest 4.0% of coeffi-
cients have been kept.
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MPEG-4 Compression :: Office Scene — Compressed Reconstruction

Office-Scene: Fourier transformed, filtered and reconstructed: only
the largest 4.0% of coefficients have been kept.
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MPEG-4 Compression :: Wrap-up

For more details on how video compression actually is
implemented, check out the following

References:

What is H.264 — http://www.h264info.com/h264.html

Wikipedia — H.264/MPEG-4 AVC —
http://en.wikipedia.org/wiki/H.264/MPEG-4 AVC

Whitepaper: H.264 video compression standard: New
possibilities within video surveillance —
http://www.axis.com/files/whitepaper/wp h264 31669 en 0803 lo.pdf
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