Math 254: Introduction to Linear Algebra Notes #5.2 — Gram-Schmidt Process and <i>QR</i> Factorization	Outline Student Learning Objectives SLOs: Gram-Schmidt Process and QR Factorization Gram-Schmidt Orthogonalization and QR Factorization The Gram-Schmidt Orthogonalization Process The QR Factorization		
Peter Blomgren (blomgren@sdsu.edu) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/ Spring 2022 (Revised: March 24, 2022)	• Observations 3 Suggested Problems • Suggested Problems 5.2 • Lecture – Book Roadmap 3 Supplemental Material • Metacognitive Reflection • Problem Statements 5.2 • Why Orthogonal Projections Matter • Example: $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ • Example: 5.2.35 and Beyond — "Live Math" Discussion		
Peter Blomgren (blomgren@sdsu.edu) 5.2. Gram-Schmidt and QR Factorization — (1/52)	Peter Blomgren (blomgren@sdsu.edu) 5.2. Gram-Schmidt and QR Factorization — (2/52)		
Student Learning Objectives SLOs: Gram-Schmidt Process and QR Factorization	Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process The QR Factorization Observations		
SLOs 5.2 Gram-Schmidt Process and <i>QR</i> Factorization	Orthogonal Projection onto a Subspace V		
After this lecture you should know how:	From [Notes#5.1] we have:		
 to perform <i>The Gram-Schmidt Orthogonalization Process</i> on a set of vectors, and it can be used to compute <i>The QR-factorization</i> of a matrix A: A = QR ⇒ This builds an orthonormal basis (the columns of Q) for the subspace V = im(A), which gives us the means to compute the orthogonal projection proj_V(x) onto V. to orthogonally project onto <i>any</i> subspace. 	Theorem (Formula for the Orthogonal Projection) If V is a subspace of \mathbb{R}^n with an orthonormal basis $\vec{u}_1, \ldots, \vec{u}_m$, then $\operatorname{proj}_V(\vec{x}) = \vec{x}^{\parallel} = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \cdots + (\vec{u}_m \cdot \vec{x})\vec{u}_m$ $\forall x \in \mathbb{R}^n$. How do you project onto a subspace if/when the given basis is not orthonormal?!? It turns out that before we compute the projection, we have to find a new — orthonormal — basis		
EL SUBANASTY			

The Gram-Schmidt Orthogonalization Process The *QR* Factorization Observations

WARNIN

THIS IS ALL WRONG!!!!!

WARNIN

Ponder what happens if we use the formula, but the given basis is **not** orthonormal...

Let's live in \mathbb{R}^2 , let $V = \mathbb{R}^2$, with basis $\mathfrak{B} = (\vec{v_1}, \vec{v_2})$ defined by

 $ec{v_1} = egin{bmatrix} 1 \ 1 \end{bmatrix}, \quad ec{v_2} = egin{bmatrix} 1 \ 2 \end{bmatrix}; \quad ext{and} \ ec{x} = egin{bmatrix} 2 \ 3 \end{bmatrix}; \quad \|ec{x}\| = \sqrt{13}.$

Clearly $\vec{v_1}$ and $\vec{v_2}$ are linearly independent, and $\vec{x} = 1\vec{v_1} + 1\vec{v_2}$, but the projection formula goes haywire:

 $\operatorname{proj}_{V}(\vec{x}) = (\vec{v}_{1} \cdot \vec{x})\vec{v}_{1} + (\vec{v}_{2} \cdot \vec{x})\vec{v}_{2} = 5\vec{v}_{1} + 8\vec{v}_{2} = \begin{bmatrix} 13\\21 \end{bmatrix}.$

... even if we remember to correct for the non-unit length of $\vec{v}_{1,2}$:

 $\operatorname{proj}_{V}(\vec{x}) = \frac{(\vec{v}_{1} \cdot \vec{x})}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} + \frac{(\vec{v}_{2} \cdot \vec{x})}{\|\vec{v}_{2}\|^{2}} \vec{v}_{2} = \frac{5}{2} \vec{v}_{1} + \frac{8}{5} \vec{v}_{2} = \begin{bmatrix} 4.1\\ 5.7 \end{bmatrix}.$

5.2. Gram-Schmidt and QR Factorization

The OR Factorization

Observations

The Gram-Schmidt Orthogonalization Process

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems

Example: Doing it Right...

Peter Blomgren (blomgren@sdsu.edu)

Build an Orthonormal Basis

ARNING

WARNING

SAN DIEGO STA UNIVERSITY

In this case, given a basis of \mathbb{R}^2 , the answer is "obvious."

Next, we develop (still in \mathbb{R}^2 so we easily can visualize and use our intuition) a method for building an *orthonormal basis* given *any* starting basis.

Once we have the orthonormal basis, we can use the projection formula...

① The method will work in the general case: Given $\vec{x} \in \mathbb{R}^n$, and $V = \operatorname{span}(\vec{v_1}, \ldots, \vec{v_m}) \subset \mathbb{R}^n$; compute $\operatorname{proj}_V(\vec{x})$:

We find an orthonormal basis $\vec{q}_1, \ldots, \vec{q}_m$, so that

 $V = \operatorname{span}(\vec{v}_1, \ldots, \vec{v}_m) = \operatorname{span}(\vec{q}_1, \ldots, \vec{q}_m);$

and then use the projection formula.

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process The *QR* Factorization Observations

Comments

There are other ways to realize the "projection" went awry:

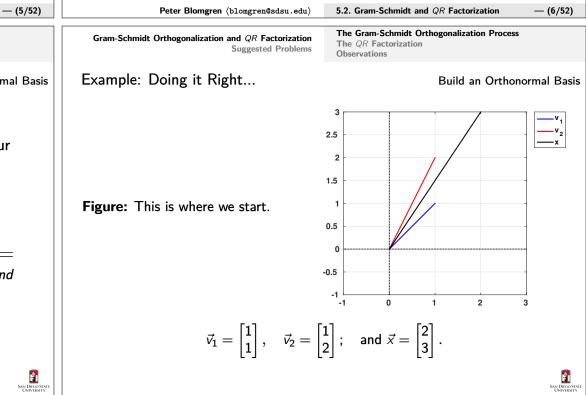
• This is "life in \mathbb{R}^2 ," and since

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

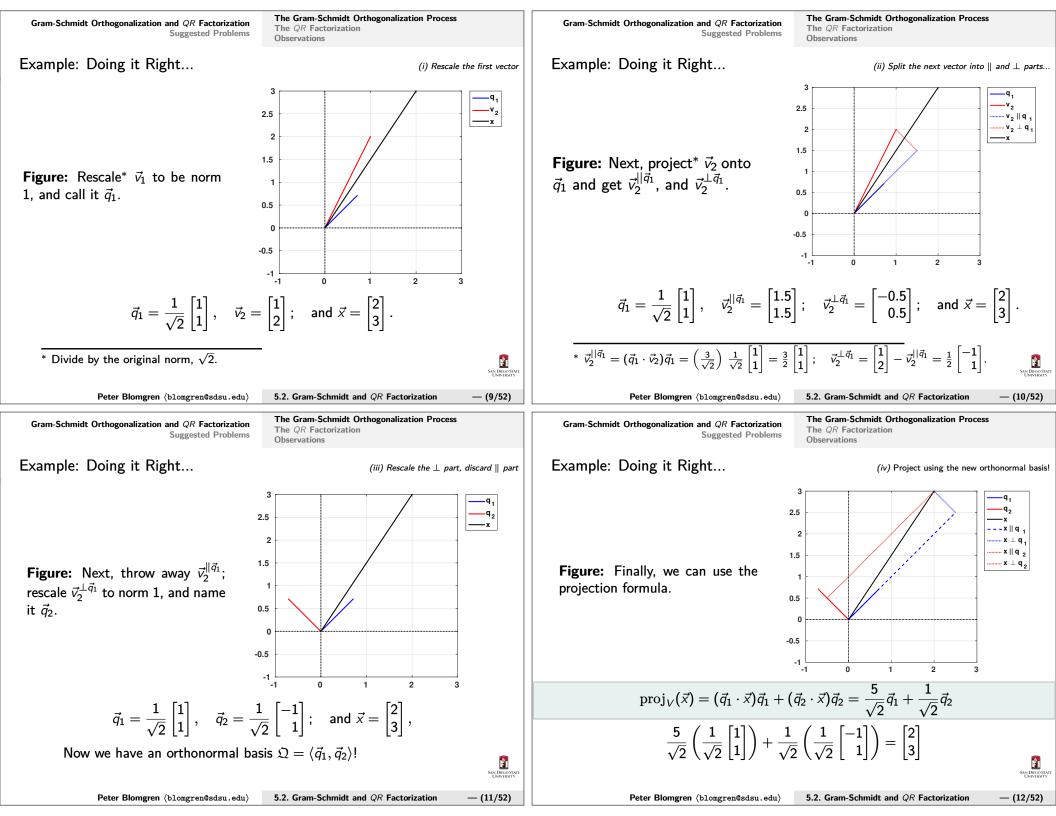
are linearly independent \rightsquigarrow they form a basis for $\mathbb{R}^2 \rightsquigarrow$ any projection of a vector $\vec{w} \in \mathbb{R}^2$ onto the subspace $V = \operatorname{span}(\vec{v_1}, \vec{v_2}) \equiv \mathbb{R}^2$ must be the original vector \vec{w} .

• Even simpler, the famous Method of the Eyeball already showed that $\vec{v_1} + \vec{v_2} = \vec{x}$:

 $\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$



— (8/52)



The Gram-Schmidt Orthogonalization Process The QR Factorization Observations

Coordinates

SAN DIEGO S UNIVERSIT — (13/52)

Ê

SAN DIEGO

Example: Doing it Right...

In the context of [COORDINATES (NOTES#3.4)], we have

BASIS:
$$\mathfrak{Q} = \langle \vec{q}_1, \vec{q}_2 \rangle$$

COORDINATES:
$$[\vec{x}]_{\mathfrak{Q}} = \begin{bmatrix} \frac{5}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Peter Blomgren $\langle blomgren@sdsu.edu \rangle$	5.2. Gram-Schmidt and QR Factorization
Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems	The Gram-Schmidt Orthogonalization Process The QR Factorization Observations

Let's Ponder Higher Dimensions

When you have more basis vectors $\vec{v_1}, \ldots, \vec{v_n}$ needing orthogonalization (to make an orthonormal basis):

Theorem (Gram-Schmidt Process (annotated))

- Start like we did:
 - $\vec{q}_1 = \vec{v}_1 / \| \vec{v}_1 \|$
 - w
 ⁱ₂ = v
 ⁱ₂ − (q
 ⁱ₁ · v
 ⁱ₂)q
 ⁱ₁, note that this is a vector in the orthogonal complement of span(q
 ⁱ₁) = span(v
 ⁱ₁).
 - $\vec{q}_2 = \vec{w}_2 / \|\vec{w}_2\|$

•
$$\vec{w}_k = \vec{v}_k - (\vec{q}_1 \cdot \vec{v}_k)\vec{q}_1 - (\vec{q}_2 \cdot \vec{v}_k)\vec{q}_2 - \dots - (\vec{q}_{k-1} \cdot \vec{v}_k)\vec{q}_{k-1}$$

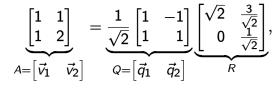
• Then
$$\vec{q}_k = \vec{w}_k / \|\vec{w}_k\|$$
.

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process The QR Factorization Observations

Milking the Example for More Details...

We have performed a *Change of Basis*, in this case for the purpose of making the projection onto the subspace easily (after the change of basis, that is) computable.

It is "easy" to see that



we have A = QR, where Q is the new orthonormal basis, and R is an upper triangular matrix.

The entries in the R matrix are — $\sqrt{2}$: the original norm of $\vec{v_1}$; $\frac{3}{\sqrt{2}}$: the dot product	
$(ec{q}_1\cdotec{v}_2);~rac{1}{\sqrt{2}}$: the norm of $ec{v}_2^{\perpec{q}_1}.$ Not likely a coincidence	San Di

/		(()
Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	5.2. Gram-Schmidt and QR Factorization	— (14/52)

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process The QR Factorization Observations

Ê

The QR Factorization

The Gram-Schmidt process computed a change of basis from the old basis (funky-script-A)

$$\mathfrak{A} = (\vec{v}_1, \ldots, \vec{v}_n)$$

to a new orthonormal basis (funky-script-Q)

$$\mathfrak{Q} = (\vec{q}_1, \ldots, \vec{q}_n).$$

We describe the result using the change-of-basis-Matrix R from ${\mathfrak A}$ to ${\mathfrak Q},$ writing

$$\underbrace{\begin{pmatrix} \vec{v_1} & \cdots & \vec{v_n} \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} \vec{q_1} & \cdots & \vec{q_n} \end{pmatrix}}_{Q} R$$

The Gram-Schmidt Orthogonalization Process The QR Factorization Observations

Interpretations and Relations

With A = QR, we have to following relations:

- $[\vec{x}]_{\mathfrak{Q}} = R[\vec{x}]_{\mathfrak{A}}$
 - Multiplication by *R* moves us from *A*-coordinates to *Q*-coordinates.
- $\vec{x} = Q[\vec{x}]_{\mathfrak{Q}} = QR[\vec{x}]_{\mathfrak{A}}$
 - Multiplying the *Q*-coordinate vector by *Q* "builds" the vector \vec{x} .
- $\vec{x} = A[\vec{x}]_{\mathfrak{A}}$
 - Multiplying the *A*-coordinate vector by *A* "builds" the (same) vector \vec{x} .

The "burning" question is *how do we construct* R? It turn out we already have all the pieces, we just need some book-keeping.

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	5.2. Gram-Schmidt and QR Factorization	— (17/52)

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems

The QR Factorization Observations

The Gram-Schmidt Orthogonalization Process

OK, let's rearrange the previous expression:

$$\vec{v}_{k} = \underbrace{(\vec{q}_{1} \cdot \vec{v}_{k})\vec{q}_{1} - (\vec{q}_{2} \cdot \vec{v}_{k})\vec{q}_{2} - \dots - (\vec{q}_{k-1} \cdot \vec{v}_{k})\vec{q}_{k-1}}_{\vec{v}_{k}^{\parallel}} + \underbrace{\vec{w}_{k}}_{\vec{v}_{k}^{\perp}}$$

The next thing we do is normalize \vec{v}_k^{\perp} to be norm 1, and name it \vec{q}_k ; which means we can write the relation above:

$$ec{v}_k = \underbrace{(ec{q}_1 \cdot ec{v}_k)ec{q}_1 + (ec{q}_2 \cdot ec{v}_k)ec{q}_2 + \dots + (ec{q}_{k-1} \cdot ec{v}_k)ec{q}_{k-1}}_{ec{v}_k^{\parallel}} + \underbrace{\|ec{v}_k^{\perp}\|ec{q}_k}_{ec{v}_k^{\perp}}$$

This is the "recipe" for rebuilding the k^{th} column of A using the first k columns of Q. The entries in R are given by

•
$$r_{\ell,k} = (\vec{q}_{\ell} \cdot \vec{v}_k), \ \ell < k; \ (r_{\ell,k} = 0, \ \ell > k), \ \text{and}$$

• $r_{k,k} = \|\vec{v}_k^{\perp}\|.$

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process **The** QR Factorization Observations

What's in R?

~

If we think back to the k^{th} step, we compute

$$ec{w}_k^{\perp} = ec{v}_k - (ec{q_1} \cdot ec{v}_k)ec{q_1} - (ec{q_2} \cdot ec{v}_k)ec{q_2} - \dots - (ec{q}_{k-1} \cdot ec{v}_k)ec{q}_{k-1}) ec{q_{k-1}} ec{v}_k^{\parallel}$$

 \vec{v}_k^{\perp} is orthogonal to $V_{k-1} = \operatorname{span}(\vec{q}_1, \ldots, \vec{q}_{k-1}) = \operatorname{span}(\vec{v}_1, \ldots, \vec{v}_{k-1})$, and $\vec{v}_k^{\parallel} \in \operatorname{span}(\vec{q}_1, \ldots, \vec{q}_{k-1})$.

Note: Subspaces, Orthogonal Complements, and Bases We are constructing a sequence of subspace-pairs

$$V_k \oplus V_k^{\perp} = \mathbb{R}^n$$
; dim $(V_k) = k$, dim $(V_k^{\perp}) = (n-k)$; $k = 1, \ldots, n$

and orthonormal bases $\mathfrak{Q}_k = (\vec{q}_1, \ldots, \vec{q}_k)$ for each of the V_k -spaces; and we have $V_{k-1} \subset V_k$ and $V_k^{\perp} \subset V_{k-1}^{\perp}$.

We are explicitly constructing V_k and \mathfrak{Q}_k ; whereas we're only concerned with a specific vector $\vec{v}_k^{\perp} \in V_k^{\perp}$.

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	5.2. Gram-Schmidt and QR Factorization	— (18/52)
Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems	The Gram-Schmidt Orthogonalization Process The <i>QR</i> Factorization Observations	

Ê

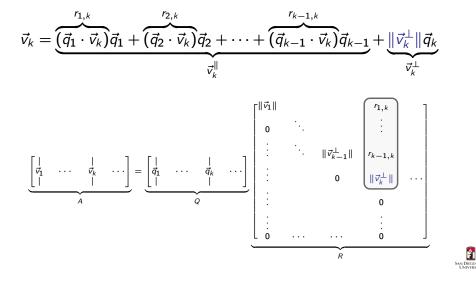
SAN DIEGO

2 of 3

Ê

SAN DIEG

3 of 3



5.2. Gram-Schmidt and QR Factorization — (20/52)

1 of 3

The Gram-Schmidt Orthogonalization Process The QR Factorization Observations

5.2. Gram-Schmidt and QR Factorization

Suggested Problems 5.2

Lecture – Book Roadmap

Summarizing \rightsquigarrow The *QR*-factorization

Theorem (QR-Factorization)

Consider an $(n \times m)$ matrix A, with linearly independent columns, $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$. Then there exists an $(n \times m)$ matrix Q whose columns $\vec{q}_1, \ldots, \vec{q}_m \in \mathbb{R}^n$ are orthonormal, and an upper triangular matrix R with positive diagonal entries such that A = QR. This representation is unique.

Further

• $r_{11} = \|\vec{v}_1\|,$ • $r_{kk} = \|\vec{v}_k^{\perp} \operatorname{span}(\vec{q}_1, \cdots, \vec{q}_{k-1})\|, k \in \{2, \dots, m\}, \text{ and}$ • $r_{\ell,k} = (\vec{q}_\ell \cdot \vec{v}_k), \ell \in \{1, \dots, k-1\}.$

Suggested Problems

Note that

Suggested Problems 5.2

[QR-factorization] = [Gram-Schmidt] + [Bookkeeping].

Available on Learning Glass videos:

Peter Blomgren (blomgren@sdsu.edu)

Gram-Schmidt Orthogonalization and QR Factorization

5.2 — 3, 7, 13, 31, 32, 33, 35, 39

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process The *QR* Factorization Observations

Observations $A = [\vec{v}_1 \cdots \vec{v}_m] = QR, \ A \in \mathbb{R}^{n \times m}$

- Note that span(q₁,..., q_k) = span(v₁,..., v_k), k = 1,..., m (that's the point — we are building an orthonormal set of vectors, describing the same subspaces spanned the columns of the matrix A)
- Let V_k = span(q₁,..., q_k) ≡ span(v₁,..., v_k); these subspaces are "nested":
 V₀ ⊂ V₁ ⊂ ··· ⊂ V_k,

$$\dim(V_0) \leq \dim(V_1) \leq \cdots \leq \dim(V_k),$$

(the maximal dimension is limited by the number of linearly independent vectors in $\{\vec{v}_1, \ldots, \vec{v}_k\}$)

• **#ProjectionFestival**

$$\operatorname{proj}_{V_k}(\vec{x}) = (\vec{x} \cdot \vec{q}_1)\vec{q}_1 + \dots + (\vec{x} \cdot \vec{q}_k)\vec{q}_k$$

Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} \rangle$	5.2. Gram-Schmidt and QR Factorization	— (22/52)
Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems	Suggested Problems 5.2 Lecture – Book Roadmap	
Lecture–Book Roadmap		

SAN DIEGO STAT UNIVERSITY

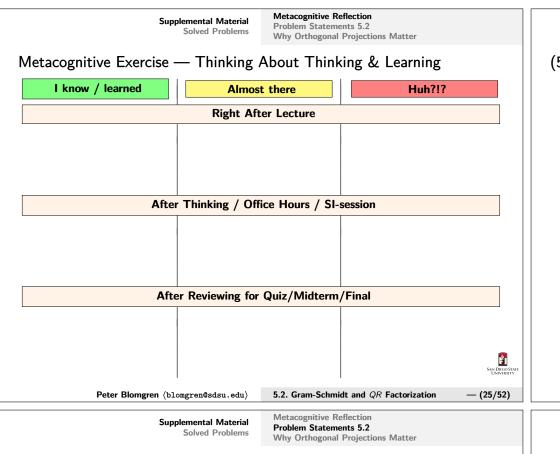
A

SAN DIEGO UNIVER

- (21/52)

Lecture	Book, [GS5–]
5.1	§4.1, §4.2, § 4.4
5.2	§4.1, §4.2, § 4.4
5.3	§4.1, §4.2, § 4.4

Êı



(5.2.13) Perform the Gram-Schmidt process on the sequence of vectors given:

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\2\\1\\-1 \end{bmatrix}.$$

(5.2.31) Perform the Gram-Schmidt process on the following basis of \mathbb{R}^3 :

	а			b			d	
$\vec{v}_1 =$	0	,	$\vec{v}_2 =$	с 0	,	$\vec{v}_3 =$	e f	
	$\begin{bmatrix} 0 \end{bmatrix}$			$\begin{bmatrix} 0 \end{bmatrix}$			$\lfloor f \rfloor$	

Supplemental Material Solved Problems

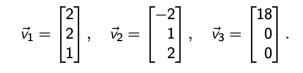
Metacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter

(5.2.3), (5.2.7)

(5.2.3) Perform the Gram-Schmidt process on the sequence of vectors given:

 $\vec{v_1} = \begin{bmatrix} 4\\0\\3 \end{bmatrix}, \quad \vec{v_2} = \begin{bmatrix} 25\\0\\-25 \end{bmatrix}.$

(5.2.7) Perform the Gram-Schmidt process on the sequence of vectors given:



Supplemental Material Solved Problems

Peter Blomgren (blomgren@sdsu.edu)

Metacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter

5.2. Gram-Schmidt and QR Factorization

Ê

Ê

SAN DIEGO SI

- (26/52)

(5.2.33), (5.2.35)

(5.2.33) Find an orthonormal basis for the kernel of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

(5.2.35) Find an orthonormal basis for the image of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & -2 & 0 \end{bmatrix}$$

Ê

SAN DIEGO UNIVERS

Supplemental Material P	Metacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter	Supplemental Material Solved Problems	Metacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter
(5.2.39)		Why Orthogonal Projections Matter	\rightsquigarrow Solving the "Unsolvable"
(5.2.39) Find an orthonormal basis	$\langle ec{u_1}, ec{u_2}, ec{u_3} angle$ of \mathbb{R}^3 , such that	Experience shows that at this point lost	nt, most students tend to be a bit
$\operatorname{span}\left(\vec{u_1}\right) = \operatorname{span}\left(\vec{u_1}\right)$	$n\left(\begin{bmatrix}1\\2\\3\end{bmatrix}\right),$	Known We need orthogonal bases to projections to higher dimensi But The previous example (projections very satisfying	ional $(n \ge 2)$ subspaces.
and ${ m span}\left(ec{u_1}, ec{u_2} ight) = { m span}$	$\left(\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right),$	Mystery Why are orthogonal projection include:) • "The professor said so." (• "It'll be on the test."	
	See Dary Star UNIVERSITY	The goal of the next example is t orthogonal projections can be use connecting several "old" ideas.	3
Peter Blomgren (blomgren@sdsu.edu) 5	5.2. Gram-Schmidt and <i>QR</i> Factorization — (29/52)	Peter Blomgren (blomgren@sdsu.edu)	5.2. Gram-Schmidt and QR Factorization — (30/52)
	Metacognitive Reflection Problem Statements 5.2	Supplemental Material	Metacognitive Reflection
Solved Floblettis V	Why Orthogonal Projections Matter	Solved Problems	Problem Statements 5.2 Why Orthogonal Projections Matter
Why Orthogonal Projections Matter ~~	Nhy Orthogonal Projections Matter	Why Orthogonal Projections Matter	Why Orthogonal Projections Matter
v	Why Orthogonal Projections Matter Solving the "Unsolvable" I projections: $I = \frac{L}{b}$ \overline{b}		Why Orthogonal Projections Matter \rightsquigarrow Solving the "Unsolvable" $\in \mathbb{R}^{n \times 1}$, the linear system $A\vec{x} = \vec{b}$, where only if $\vec{b} \in im(A) = L$. <i>by home!</i> " ${}$, or

Supplemental Material Solved Problems

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Since this is not a South Park episode, we decide to extend the concept of what it means to "solve" this problem:

We decide to look for a value \vec{x}^* which makes the **residual***

$$r(\vec{x}) = \|A\vec{x} - \vec{b}\|$$

as small as possible.

In our example, that value is $\vec{x}^* = \left(\frac{\vec{b} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right)$, which makes $A\vec{x}^* = \vec{b}^{\parallel}$, and $r(\vec{x}^*) = \|\vec{b}^{\parallel} - \vec{b}\| = \|-\vec{b}^{\perp}\| = \|\vec{b}^{\perp}\|.$ It is true in general that the shortest distance between \vec{b} and a subspace L, is $\vec{b}^{\perp} = \vec{b} - \text{proj}_{l}(\vec{b})$.

* think of is as a measure of how far we are from solving the linear system in the "traditional" sense. SAN DIEGO ST.

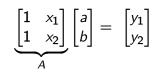
> Peter Blomgren (blomgren@sdsu.edu) 5.2. Gram-Schmidt and QR Factorization

> > Supplemental Material Solved Problems

Metacognitive Reflection **Problem Statements 5.2** Why Orthogonal Projections Matter

Why Orthogonal Projections Matter ~ Solving the "Unsolvable"

Case (n = 2, two distinct points): In this case we have a unique solution. In our notation the solutions are given by



which gives

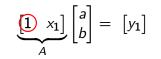
 $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \end{bmatrix}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

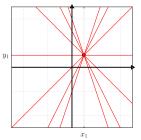
where the inverse is guaranteed to exist when $x_1 \neq x_2$.

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Next we consider a slightly different category of problems: fitting a straight line y = a + bx to some number of given points in the x-y-plane, $\{(x_k, y_k)\}_{k=1}^n$.

Case (n = 1**, a single point):** In this case we have infinitely many solutions. In our notation the solutions are given by





which gives

Ê

Ê

SAN DIEGO

- (33/52)

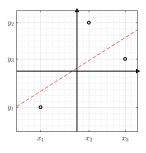
 $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -x_1 \\ 1 \end{bmatrix}$

Peter Blomgren $\langle blomgren@sdsu.edu \rangle$	5.2. Gram-Schmidt and QR Factorization	— (34/52)
Supplemental Material Solved Problems	Metacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter	

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Case (n = 3, three distinct points): In this case we have no solution. In our notation the solutions would be given by

$$\underbrace{\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix}}_{A} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$



which gives

 $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \text{MAGIC} \\ \text{MATRIX} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} ???$

There is no solution, unless the 3 points are on a common line...

 x_2

5.2. Gram-Schmidt and QR Factorization

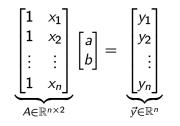
- (36/52)

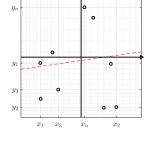
Êı

Supplemental Material Solved Problems Solved Problems

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Case (n = large, many (distinct) points): In this case we have no solution. In our notation the solutions would be given by





- (37/52)

Ê

SAN DIEGO UNIVER

which gives

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \text{MAGIC} \\ \text{MATRIX} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} ???$$

There is no solution, unless the ALL points are on a common line...

Supplemental Material Solved Problems

Peter Blomgren (blomgren@sdsu.edu)

Metacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter

5.2. Gram-Schmidt and QR Factorization

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Now, if we are looking for a best-extended-concept-of-solution candidate; we compute $\operatorname{proj}_{P}(\vec{y}) \equiv \vec{y}^{\parallel}$, and the system

$$\underbrace{\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}}_{A \in \mathbb{R}^{n \times 2}} \underbrace{\begin{bmatrix} a \\ b \end{bmatrix}}_{\vec{c}} = \operatorname{proj}_P(\vec{y})$$

does have a unique solution, call it \vec{c}^* ; and the residual

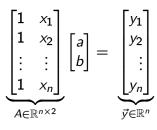
$$r(\vec{c}^*) = \|A\vec{c}^* - \vec{y}\| = \|\vec{y}^{\parallel} - \vec{y}\| = \|\vec{y}^{\perp}\|$$

is minimized.

Supplemental Material Solved Problems Solved Problems

Why Orthogonal Projections Matter ~ Solving the "Unsolvable"

Staying in the general n = large case, with



In our linear algebra language, we "know" that P = im(A) is a 2-dimensional subspace of \mathbb{R}^n (the two columns are different, unless all the x_k s coincide)...

and, of course, we only have a solution if/when \vec{y} can be written as a linear combination of the columns of $A \Leftrightarrow "\vec{y} \in im(A)$."

Peter Blomgren (blomgren@sdsu.edu)	5.2. Gram-Schmidt and QR Factorization — (38/52)
Supplemental Material Solved Problems	Metacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter

Why Orthogonal Projections Matter \rightsquigarrow Solving the "Unsolvable"

We have defined a new type of "solution" for inconsistent non-square (matrix) problems.

The way we have discussed it, the best name would be a

• "Minimum Residual Solution"

However, the most common mathematical name is the

• "Least Squares Solution"

In many applications (related to statistics), the most common name is the

• "Linear Regression Solution"

Êı

Supplemental Material Solved ProblemsExample: $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion	Supplemental Material Solved ProblemsExample: $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion
$V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4 $ 1 of 8	$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4 $ 2 of 8
What is your problem?!? Find an orthonormal basis for the subspace $V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4,$ then project the vectors $\vec{y_1} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \text{ and } \vec{y_2} = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$	• First, we need a basis for V; finding ker($\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$) will do the trick. • Since $A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ already is in rref, we can identify the solutions to $\vec{A}\vec{x} = 0$: $ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, $ so our basis is $B_V = (\vec{v}_1, \vec{v}_2, \vec{v}_3) = \left(\begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right); A = \begin{bmatrix} -1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} $
onto V.	as an added bonus we will compute the <i>QR</i> -factorization of <i>A</i> .
Peter Blomgren (blomgren@sdsu.edu) 5.2. Gram-Schmidt and QR Factorization — (41/52)	Peter Blomgren (blomgren@sdsu.edu) 5.2. Gram-Schmidt and QR Factorization - (42/52)
Supplemental Material Solved ProblemsExample: $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion	Supplemental Material Solved ProblemsExample: $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion
$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$ 3 of 8	$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4 $ 4 of 8
• $\ \vec{v}_1\ = \sqrt{(-1)^2 + 1^1 + 0^2 + 0^2} = \sqrt{2}$	• $\vec{q}_1 \cdot \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix} = \frac{1}{\sqrt{2}} \left((-1)^2 + 1 \times 0 + 0 \times 1 + 0 \times 0 \right) = \frac{1}{\sqrt{2}}$
$\bullet \vec{q}_1 = \frac{1}{\ \vec{v}_1\ } \vec{v}_1$	• $\vec{v}_2^{\perp} = \vec{v}_2 - (\vec{q}_1 \cdot \vec{v}_2)\vec{q}_1 = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix} - \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}\right) = \frac{1}{2}\begin{bmatrix} -1\\-1\\2\\0 \end{bmatrix}$
$Q = \begin{bmatrix} -1/\sqrt{2} & \times & \times \\ 1/\sqrt{2} & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}, R = \begin{bmatrix} \sqrt{2} & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}$	$ \ \vec{v}_{2}^{\perp}\ = \frac{1}{2}\sqrt{1+1+4+0} = \frac{\sqrt{6}}{2} $ $ \vec{q}_{2} = \frac{1}{\ \vec{v}_{2}^{\perp}\ }\vec{v}_{2}^{\perp} = \frac{1}{\sqrt{6}}\begin{bmatrix}-1\\-1\\2\\0\end{bmatrix} $
• We move on to \vec{v}_2 Deter Pleasers (black and the state) E.2 Corre Schwidt and 00 Extension (12 (5))	• $Q = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & \times \\ 1/\sqrt{2} & -1/\sqrt{6} & \times \\ 0 & 2/\sqrt{6} & \times \\ 0 & 0 & \times \end{bmatrix}, R = \begin{bmatrix} \sqrt{2} & 1/\sqrt{2} & \times \\ 0 & \sqrt{6}/2 & \times \\ 0 & 0 & \times \end{bmatrix}$
Peter Blomgren (blomgren@sdsu.edu) 5.2. Gram-Schmidt and QR Factorization - (43/52)	Peter Blomgren (blomgren@sdsu.edu)5.2. Gram-Schmidt and QR Factorization (44/52)

