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Student Learning Objectives SLOs: Gram-Schmidt Process and QR Factorization

SLOs 5.2 Gram-Schmidt Process and QR Factorization

After this lecture you should know how:

to perform The Gram-Schmidt Orthogonalization Process on
a set of vectors, and

it can be used to compute The QR-factorization of a matrix
A: A = QR

⇒ This builds an orthonormal basis (the columns of Q) for the
subspace V = im(A), which gives us the means to compute
the orthogonal projection projV (~x) onto V .

to orthogonally project onto any subspace.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Orthogonal Projection onto a Subspace V

From [Notes#5.1] we have:

Theorem (Formula for the Orthogonal Projection)

If V is a subspace of R
n with an orthonormal basis ~u1, . . . , ~um,

then
projV (~x) = ~x‖ = (~u1 · ~x)~u1 + · · ·+ (~um · ~x)~um

∀x ∈ R
n.

How do you project onto a subspace if/when the given basis is not
orthonormal?!?

It turns out that before we compute the projection, we have to find
a new — orthonormal — basis...
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

THIS IS ALL WRONG!!!!!

Ponder what happens if we use the formula, but the given basis is not
orthonormal...

Let’s live in R
2, let V = R

2, with basis B = (~v1, ~v2) defined by

~v1 =

[
1
1

]

, ~v2 =

[
1
2

]

; and ~x =

[
2
3

]

; ‖~x‖ =
√
13.

Clearly ~v1 and ~v2 are linearly independent, and ~x = 1~v1 + 1~v2, but the
projection formula goes haywire:

projV (~x) = (~v1 · ~x)~v1 + (~v2 · ~x)~v2 = 5~v1 + 8~v2 =

[
13
21

]

.

... even if we remember to correct for the non-unit length of ~v1,2 :

projV (~x) =
(~v1 · ~x)
‖~v1‖2

~v1 +
(~v2 · ~x)
‖~v2‖2

~v2 =
5

2
~v1 +

8

5
~v2 =

[
4.1
5.7

]

.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Comments

There are other ways to realize the “projection” went awry:

This is “life in R
2,” and since

~v1 =

[
1
1

]

, ~v2 =

[
1
2

]

,

are linearly independent  they form a basis for R2
 any

projection of a vector ~w ∈ R
2 onto the subspace

V = span(~v1, ~v2) ≡ R
2 must be the original vector ~w .

Even simpler, the famous Method of the Eyeball already
showed that ~v1 + ~v2 = ~x :

[
1
1

]

+

[
1
2

]

=

[
2
3

]

.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Example: Doing it Right... Build an Orthonormal Basis

In this case, given a basis of R2, the answer is “obvious.”

Next, we develop (still in R
2 so we easily can visualize and use our

intuition) a method for building an orthonormal basis given any
starting basis.

Once we have the orthonormal basis, we can use the projection
formula...

! The method will work in the general case: Given ~x ∈ R
n, and

V = span (~v1, . . . , ~vm) ⊂ R
n; compute projV (~x):

We find an orthonormal basis ~q1, . . . , ~qm, so that

V = span (~v1, . . . , ~vm) = span (~q1, . . . , ~qm) ;

and then use the projection formula.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Example: Doing it Right... Build an Orthonormal Basis

Figure: This is where we start.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Example: Doing it Right... (i) Rescale the first vector

Figure: Rescale∗ ~v1 to be norm
1, and call it ~q1.
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∗ Divide by the original norm,
√
2.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Example: Doing it Right... (ii) Split the next vector into ‖ and ⊥ parts...

Figure: Next, project∗ ~v2 onto
~q1 and get ~v

||~q1
2 , and ~v⊥~q1

2 .
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, ~v
||~q1
2 =

[
1.5
1.5

]

; ~v⊥~q1
2 =

[
−0.5
0.5

]

; and ~x =

[
2
3

]

.

∗ ~v
||~q1
2 = (~q1 · ~v2)~q1 =

(
3√
2

)
1√
2

[
1
1

]

= 3
2

[
1
1

]

; ~v⊥~q1
2 =

[
1
2

]

− ~v
||~q1
2 = 1

2

[
−1
1

]

.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Example: Doing it Right... (iii) Rescale the ⊥ part, discard ‖ part

Figure: Next, throw away ~v
‖~q1
2 ;

rescale ~v⊥~q1
2 to norm 1, and name

it ~q2.
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Now we have an orthonormal basis Q = 〈~q1, ~q2〉!
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Example: Doing it Right... (iv) Project using the new orthonormal basis!

Figure: Finally, we can use the
projection formula.
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projV (~x) = (~q1 · ~x)~q1 + (~q2 · ~x)~q2 =
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Example: Doing it Right... Coordinates

In the context of [Coordinates (Notes#3.4)], we have

Basis: Q = 〈~q1, ~q2〉

Coordinates: [~x ]
Q
=








5√
2

1√
2







=

1√
2

[
5
1

]
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Milking the Example for More Details...

We have performed a Change of Basis, in this case for the purpose
of making the projection onto the subspace easily (after the
change of basis, that is) computable.

It is “easy” to see that

[
1 1
1 2

]

︸ ︷︷ ︸

A=
[

~v1 ~v2
]

=
1√
2

[
1 −1
1 1

]

︸ ︷︷ ︸

Q=
[

~q1 ~q2
]

[√
2 3√

2

0 1√
2

]

︸ ︷︷ ︸

R

,

we have A = QR , where Q is the new orthonormal basis, and R is
an upper triangular matrix.

The entries in the R matrix are —
√
2: the original norm of ~v1;

3√
2
: the dot product

(~q1 · ~v2); 1√
2
: the norm of ~v⊥~q1

2 . Not likely a coincidence...
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Let’s Ponder Higher Dimensions

When you have more basis vectors ~v1, . . . , ~vn needing
orthogonalization (to make an orthonormal basis):

Theorem (Gram-Schmidt Process (annotated))

Start like we did:
~q1 = ~v1/‖~v1‖
~w2 = ~v2 − (~q1 · ~v2)~q1, note that this is a vector in the
orthogonal complement of span(~q1) = span(~v1).
~q2 = ~w2/‖~w2‖

Each time we grab a new vector (~vk), find a “help vector” ~wk

in the orthogonal complement of the space spanned by the
previously computed ~q-vectors:

~wk = ~vk − (~q1 · ~vk)~q1 − (~q2 · ~vk)~q2 − · · · − (~qk−1 · ~vk)~qk−1

Then ~qk = ~wk/‖~wk‖.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

The QR Factorization

The Gram-Schmidt process computed a change of basis from the
old basis (funky-script-A)

A = (~v1, . . . , ~vn)

to a new orthonormal basis (funky-script-Q)

Q = (~q1, . . . , ~qn).

We describe the result using the change-of-basis-Matrix R from A

to Q, writing

(
~v1 · · · ~vn

)

︸ ︷︷ ︸

A

=
(
~q1 · · · ~qn

)

︸ ︷︷ ︸

Q

R
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Interpretations and Relations

With A = QR , we have to following relations:

[~x ]Q = R[~x ]A

Multiplication by R moves us from A-coordinates to
Q-coordinates.

~x = Q[~x ]Q = QR[~x ]A

Multiplying the Q-coordinate vector by Q “builds” the vector
~x .

~x = A[~x ]A

Multiplying the A-coordinate vector by A “builds” the (same)
vector ~x .

The “burning” question is how do we construct R? It turn out we
already have all the pieces, we just need some book-keeping.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

What’s in R? 1 of 3

If we think back to the kth step, we compute

~wk
︸︷︷︸

~v⊥
k

= ~vk − (~q1 · ~vk)~q1 − (~q2 · ~vk)~q2 − · · · − (~qk−1 · ~vk)~qk−1
︸ ︷︷ ︸

~v
‖
k

~v⊥
k is orthogonal to Vk−1 = span(~q1, . . . , ~qk−1) = span(~v1, . . . , ~vk−1),

and ~v
‖
k ∈ span(~q1, . . . , ~qk−1).

Note: Subspaces, Orthogonal Complements, and Bases

We are constructing a sequence of subspace-pairs

Vk ⊕ V⊥
k = R

n; dim(Vk ) = k, dim(V⊥
k ) = (n − k); k = 1, . . . , n

and orthonormal bases Qk = (~q1, . . . , ~qk ) for each of the Vk -spaces; and we have
Vk−1 ⊂ Vk and V⊥

k
⊂ V⊥

k−1.

We are explicitly constructing Vk and Qk ; whereas we’re only concerned with a specific vector ~v⊥k ∈ V⊥
k .
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

What’s in R? 2 of 3

OK, let’s rearrange the previous expression:

~vk = (~q1 · ~vk)~q1 − (~q2 · ~vk)~q2 − · · · − (~qk−1 · ~vk)~qk−1
︸ ︷︷ ︸

~v
‖
k

+ ~wk
︸︷︷︸

~v⊥
k

The next thing we do is normalize ~v⊥
k to be norm 1, and name it ~qk ;

which means we can write the relation above:

~vk = (~q1 · ~vk)~q1 + (~q2 · ~vk)~q2 + · · ·+ (~qk−1 · ~vk)~qk−1
︸ ︷︷ ︸

~v
‖
k

+ ‖~v⊥
k ‖~qk

︸ ︷︷ ︸

~v⊥
k

This is the “recipe” for rebuilding the kth column of A using the first k
columns of Q. The entries in R are given by
• rℓ,k = (~qℓ · ~vk), ℓ < k ; (rℓ,k = 0, ℓ > k), and
• rk,k = ‖~v⊥

k ‖.
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

What’s in R? 3 of 3

~vk =

r1,k
︷ ︸︸ ︷

(~q1 · ~vk)~q1 +
r2,k

︷ ︸︸ ︷

(~q2 · ~vk)~q2 + · · ·+
rk−1,k

︷ ︸︸ ︷

(~qk−1 · ~vk)~qk−1
︸ ︷︷ ︸

~v
‖
k

+ ‖~v⊥k ‖~qk
︸ ︷︷ ︸

~v⊥
k





| |
~v1 · · · ~vk · · ·
| |





︸ ︷︷ ︸

A

=





| |
~q1 · · · ~qk · · ·
| |





︸ ︷︷ ︸

Q

























‖~v1‖ r1,k

0
. . .

.

.

.

.

.

.
. . . ‖~v⊥k−1‖ rk−1,k

.

.

. 0 ‖~v⊥k ‖ · · ·

.

.

. 0

.

.

.

.

.

.
0 · · · · · · 0

























︸ ︷︷ ︸

R
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Summarizing  The QR-factorization

Theorem (QR-Factorization)

Consider an (n ×m) matrix A, with linearly independent columns,
~v1, . . . , ~vm ∈ R

n. Then there exists an (n ×m) matrix Q whose
columns ~q1, . . . , ~qm ∈ R

n are orthonormal, and an upper triangular
matrix R with positive diagonal entries such that A = QR . This
representation is unique.

Further

r11 = ‖~v1‖,
rkk = ‖~v ⊥ span(~q1,··· ,~qk−1)

k ‖, k ∈ {2, . . . ,m}, and
rℓ,k = (~qℓ · ~vk), ℓ ∈ {1, . . . , k − 1}.

Note that

[QR-factorization] = [Gram-Schmidt] + [Bookkeeping].
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

Observations A = [~v1 · · · ~vm] = QR , A ∈ R
n×m

Note that span(~q1, . . . , ~qk) = span(~v1, . . . , ~vk), k = 1, . . . ,m
(that’s the point — we are building an orthonormal set of vectors,
describing the same subspaces spanned the columns of the matrix A)

Let Vk = span(~q1, . . . , ~qk) ≡ span(~v1, . . . , ~vk); these subspaces are
“nested”:

V0 ⊂ V1 ⊂ · · · ⊂ Vk ,

dim(V0) ≤ dim(V1) ≤ · · · ≤ dim(Vk),

(the maximal dimension is limited by the number of linearly
independent vectors in {~v1, . . . , ~vk})
#ProjectionFestival

projVk
(~x) = (~x · ~q1)~q1 + · · ·+ (~x · ~qk)~qk
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

Suggested Problems 5.2
Lecture –Book Roadmap

Suggested Problems 5.2

Available on Learning Glass videos:
5.2 — 3, 7, 13, 31, 32, 33, 35, 39
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Gram-Schmidt Orthogonalization and QR Factorization
Suggested Problems

Suggested Problems 5.2
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

5.1 §4.1, §4.2, §4.4
5.2 §4.1, §4.2, §4.4
5.3 §4.1, §4.2, §4.4
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Supplemental Material
Solved Problems

Metacognitive Reflection
Problem Statements 5.2
Why Orthogonal Projections Matter

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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Supplemental Material
Solved Problems

Metacognitive Reflection
Problem Statements 5.2
Why Orthogonal Projections Matter

(5.2.3), (5.2.7)

(5.2.3) Perform the Gram-Schmidt process on the sequence of
vectors given:

~v1 =





4
0
3



 , ~v2 =





25
0

−25



 .

(5.2.7) Perform the Gram-Schmidt process on the sequence of
vectors given:

~v1 =





2
2
1



 , ~v2 =





−2
1
2



 , ~v3 =





18
0
0



 .
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Supplemental Material
Solved Problems

Metacognitive Reflection
Problem Statements 5.2
Why Orthogonal Projections Matter

(5.2.13), (5.2.31)

(5.2.13) Perform the Gram-Schmidt process on the sequence of
vectors given:

~v1 =







1
1
1
1






, ~v2 =







1
0
0
1






, ~v3 =







0
2
1

−1






.

(5.2.31) Perform the Gram-Schmidt process on the following basis
of R3:

~v1 =





a

0
0



 , ~v2 =





b

c

0



 , ~v3 =





d

e

f



 .
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Supplemental Material
Solved Problems

Metacognitive Reflection
Problem Statements 5.2
Why Orthogonal Projections Matter

(5.2.33), (5.2.35)

(5.2.33) Find an orthonormal basis for the kernel of the matrix

A =

[
1 1 1 1
1 −1 −1 1

]

.

(5.2.35) Find an orthonormal basis for the image of the matrix

A =





1 2 1
2 1 1
2 −2 0



 .
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(5.2.39)

(5.2.39) Find an orthonormal basis 〈~u1, ~u2, ~u3〉 of R3, such that

span (~u1) = span









1
2
3







 ,

and

span (~u1, ~u2) = span









1
2
3



 ,





1
1

−1







 ,
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Experience shows that at this point, most students tend to be a bit
lost...

Known We need orthogonal bases to perform (correct) orthogonal
projections to higher dimensional (n ≥ 2) subspaces.

But The previous example (projecting from R
2 → R

2) was not
very satisfying...

Mystery Why are orthogonal projections such a big deal? (Bad reasons
include:)

“The professor said so.” (multiple times)
“It’ll be on the test.”

The goal of the next example is to give some idea as to why
orthogonal projections can be useful... while re-visiting and
connecting several “old” ideas.
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Recall our old cartoon of orthogonal projections:

-5 0 5
-5

0

5

where ~w ∈ R
n, L = { k ~w , k ∈ R } is the (line) subspace of Rn.

Important Note:
~b ‖ is the point (in the subspace L) which is closest to ~b.
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Now, let

A =





|
~w
|



 ∈ R
n×1,

then we are interested in solving the linear system A~x = ~b, where
~x ∈ R

1 (for now), and ~b ∈ R
n.

The system has a solution if and only if ~b ∈ im(A) = L.

When ~b 6∈ im(A) we can either

say “ you guys, I’m going home!” , or

extend the concept of a “solution” to the problem...
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Since this is not a South Park episode, we decide to extend the
concept of what it means to “solve” this problem:

We decide to look for a value ~x∗ which makes the residual∗

r(~x) = ‖A~x − ~b‖

as small as possible.

In our example, that value is ~x∗ =
(

~b·~w
~w ·~w

)

, which makes A~x∗ = ~b ‖,

and r(~x∗) = ‖~b ‖ − ~b‖ = ‖ − ~b⊥‖ = ‖~b⊥‖.
It is true in general that the shortest distance between ~b and a
subspace L, is ~b⊥ = ~b − projL(~b).

∗ think of is as a measure of how far we are from solving the linear
system in the “traditional” sense.
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Next we consider a slightly different category of problems: fitting a
straight line y = a+ bx to some number of given points in the
x-y–plane, {(xk , yk)}nk=1.

Case (n = 1, a single point): In this case
we have infinitely many solutions. In our
notation the solutions are given by

[
1 x1

]

︸ ︷︷ ︸

A

[
a

b

]

=
[
y1
]

which gives
[
a

b

]

=

[
y1
0

]

+ s

[
−x1

1

]
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Case (n = 2, two distinct points): In this
case we have a unique solution. In our no-
tation the solutions are given by

[
1 x1
1 x2

]

︸ ︷︷ ︸

A

[
a

b

]

=

[
y1
y2

]

which gives
[
a

b

]

=

[
1 x1
1 x2

]−1 [
y1
y2

]

where the inverse is guaranteed to exist when x1 6= x2.
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Case (n = 3, three distinct points): In
this case we have no solution. In our nota-
tion the solutions would be given by





1 x1
1 x2
1 x3





︸ ︷︷ ︸

A

[
a

b

]

=





y1
y2
y3





which gives
[
a

b

]

=

[
Magic
Matrix

] [
y1
y2

]

???

There is no solution, unless the 3 points are on a common line...
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Case (n = large, many (distinct) points):
In this case we have no solution. In our no-
tation the solutions would be given by








1 x1
1 x2
...

...
1 xn








︸ ︷︷ ︸

A∈Rn×2

[
a

b

]

=








y1
y2
...

yn








︸ ︷︷ ︸

~y∈Rn

which gives
[
a

b

]

=

[
Magic
Matrix

] [
y1
y2

]

???

There is no solution, unless the ALL points are on a common line...
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Staying in the general n = large case, with








1 x1
1 x2
...

...
1 xn








︸ ︷︷ ︸

A∈Rn×2

[
a

b

]

=








y1
y2
...

yn








︸ ︷︷ ︸

~y∈Rn

In our linear algebra language, we “know” that P = im(A) is a
2-dimensional subspace of Rn (the two columns are different,
unless all the xk s coincide)...

and, of course, we only have a solution if/when ~y can be written
as a linear combination of the columns of A ⇔ “~y ∈ im(A).”
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

Now, if we are looking for a best-extended-concept-of-solution
candidate; we compute projP(~y) ≡ ~y‖, and the system








1 x1
1 x2
...

...
1 xn








︸ ︷︷ ︸

A∈Rn×2

[
a

b

]

︸︷︷︸

~c

= projP (~y)

does have a unique solution, call it ~c∗; and the residual

r(~c∗) = ‖A~c∗ − ~y‖ = ‖~y‖ − ~y‖ = ‖~y⊥‖

is minimized.
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Why Orthogonal Projections Matter  Solving the “Unsolvable”

We have defined a new type of “solution” for inconsistent
non-square (matrix) problems.

The way we have discussed it, the best name would be a

“Minimum Residual Solution”

However, the most common mathematical name is the

“Least Squares Solution”

In many applications (related to statistics), the most common
name is the

“Linear Regression Solution”
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Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4 1 of 8

What is your problem?!?

Find an orthonormal basis for the subspace

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4,

then project the vectors

~y1 =







1
1
1
1






, and ~y2 =







1
2
3
4







onto V .
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Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4 2 of 8

First, we need a basis for V ; finding ker(
[
1 1 1 1

]
) will do the trick.

Since A =
[
1 1 1 1

]
already is in rref, we can identify the solutions to

~A~x = 0: 





x1
x2
x3
x4







= s







−1
1
0
0






+ t







−1
0
1
0






+ u







−1
0
0
1






,

so our basis is

BV = (~v1, ~v2, ~v3) =













−1
1
0
0






,







−1
0
1
0






,







−1
0
0
1













; A =







−1 −1 −1
1 0 0
0 1 0
0 1 1







as an added bonus we will compute the QR-factorization of A.
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Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4 3 of 8

‖~v1‖ =
√

(−1)2 + 11 + 02 + 02 =
√
2

~q1 =
1

‖~v1‖
~v1

Q =







−1/
√
2 × ×

1/
√
2 × ×
0 × ×
0 × ×






, R =





√
2 × ×
0 × ×
0 0 ×





We move on to ~v2...
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Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4 4 of 8

~q1 · ~v2 =
1√
2







−1
1
0
0






·







−1
0
1
0







=
1√
2

(
(−1)2 + 1× 0 + 0× 1 + 0× 0

)
=

1√
2

~v⊥
2 = ~v2 − (~q1 · ~v2)~q1 =







−1
0
1
0






−

(
1√
2

)







1√
2







−1
1
0
0













=
1

2







−1
−1
2
0







‖~v⊥
2 ‖ =

1

2

√
1 + 1 + 4 + 0 =

√
6

2

~q2 =
1

‖~v⊥
2 ‖

~v⊥
2 =

1√
6







−1
−1
2
0







Q =







−1/
√
2 −1/

√
6 ×

1/
√
2 −1/

√
6 ×

0 2/
√
6 ×

0 0 ×






, R =





√
2 1/

√
2 ×

0
√
6/2 ×

0 0 ×




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Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4 5 of 8

~q1 · ~v3 =
1√
2







−1
1
0
0






·







−1
0
0
1







=
1√
2

(
(−1)2 + 1× 0 + 0× 1 + 0× 0

)
=

1√
2

~q2 · ~v3 =
1√
6







−1
−1
2
0






·







−1
0
0
1







=
1√
6

(
(−1)2 + (−1)× 0 + 0× 1 + 0× 1

)
=

1√
6

Q =







−1/
√
2 −1/

√
6 ×

1/
√
2 −1/

√
6 ×

0 2/
√
6 ×

0 0 ×






, R =





√
2 1/

√
2 1/

√
2

0
√
6/2 1/

√
6

0 0 ×




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Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4 6 of 8

~v⊥
3 = ~v3 − (~q1 · ~v3)~q1 − (~q2 · ~v3)~q2:







−1
0
0
1






−

(
1√
2

)







1√
2







−1
1
0
0













−
(

1√
6

)







1√
6







−1
−1
2
0













=
1

3







−1
−1
−1
3







‖~v⊥
3 ‖ =

1

3

√
1 + 1 + 1 + 9 =

√
12

3

~q3 =
1

‖~v⊥
3 ‖

~v⊥
3 =

1√
12







−1
−1
−1
3







Q =







−1/
√
2 −1/

√
6 −1/

√
12

1/
√
2 −1/

√
6 −1/

√
12

0 2/
√
6 −1/

√
12

0 0 3/
√
12






, R =





√
2 1/

√
2 1/

√
2

0
√
6/2 1/

√
6

0 0
√
12/3




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Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4 Projections! 7 of 8

~y1 =







1
1
1
1







~q1 · ~y1 =
1
√
2







−1
1
0
0







·







1
1
1
1







=
1
√
2
(−1 + 1 + 0 + 0) = 0

~q2 · ~y1 =
1
√
6







−1
−1
2
0







·







1
1
1
1







=
1
√
6
(−1 − 1 + 2 + 0) = 0

~q3 · ~y1 =
1

√
12







−1
−1
−1
3







·







1
1
1
1







=
1

√
12

(−1 − 1 − 1 + 3) = 0

projV (~y1) = ~0

Of course! We constructed BV = (~v1, ~v2, ~v3) by finding all vectors orthogonal to ~y1
((Solving [1 1 1 1]~x = ~0))
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Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4 Projections! 8 of 8

~y2 =







1
2
3
4







~q1 · ~y2 =
1
√
2







−1
1
0
0







·







1
2
3
4







=
1
√
2
(−1 + 2 + 0 + 0) =

1
√

2

~q2 · ~y2 =
1
√
6







−1
−1
2
0







·







1
2
3
4







=
1
√
6
(−1 − 2 + 6 + 0) =

3
√
6

~q3 · ~y2 =
1

√
12







−1
−1
−1
3







·







1
2
3
4







=
1

√
12

(−1 − 2 − 3 + 12) =
6

√
12

projV (~y2) = 1
2







−1
1
0
0







+ 3
6







−1
−1
2
0







+ 6
12







−1
−1
−1
3







= 1
2







−3
−1
1
3






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Supplemental Material
Solved Problems

Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

5.2.35 and Beyond 1 of 4

What is your problem?!?

Given A, find an orthonormal basis for im(A), and the QR-factorization QR = A:

A =





1 2 1
2 1 1
2 −2 0



 , Q =





. . .

. . .

. . .



 , R =





. . .
0 . .
0 0 .





~v1 :: ‖~v1‖ =
√

12 + 22 + 22 =
√
9 = 3; ~q1 =

~v1

‖~v1‖
=

1

3





1
2
2





Q =





1/3 . .
2/3 . .
2/3 . .



 , R =





3 . .
0 . .
0 0 .




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Supplemental Material
Solved Problems

Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

5.2.35 and Beyond 2 of 4

~v2 :: ~v⊥
2 = ~v2 − (~q1 · ~v2) ~q1 =





2
1

−2



−




1

3





2
1

−2



 ·





1
2
2









︸ ︷︷ ︸

0




1

3





2
1

−2







 =





2
1

−2



 .

‖~v⊥
2 ‖ =

√

22 + 12 + (−2)2 =
√
9 = 3, ~q2 =

~v⊥
2

‖~v⊥
2 ‖

=
1

3





2
1

−2





Q =





1/3 2/3 .
2/3 1/3 .
2/3 −2/3 .



 , R =





3 0 .
0 3 .
0 0 .




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Supplemental Material
Solved Problems

Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

5.2.35 and Beyond 3 of 4

~v⊥
3 = ~v3 − (~q1 · ~v3) ~q1 − (~q2 · ~v3) ~q2

=





1
1
0



−




1

3





1
2
2



 ·





1
1
0









︸ ︷︷ ︸

1




1

3





1
2
2







−




1

3





2
1

−2



 ·





1
1
0









︸ ︷︷ ︸

1




1

3





2
1

−2









=
1

3





3
3
0



− 1

3





1
2
2



− 1

3





2
1

−2



 =





0
0
0





‖~v⊥
3 ‖ = 0, ~qq =

~v⊥
3

‖~v⊥
3 ‖

=





?
?
?





Q =





1/3 2/3 ?
2/3 1/3 ?
2/3 −2/3 ?



 , R =





3 0 1
0 3 1
0 0 0




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Supplemental Material
Solved Problems

Example: V = { x1 + x2 + x3 + x4 = 0 } ⊂ R
4

Example: 5.2.35 and Beyond — “Live Math” Discussion

5.2.35 and Beyond 4 of 4

~v⊥
3 = 0 means that ~v3 is a linear combination of ~v1 and ~v2.

Therefore im(A) = span (~v1, ~v2) = span (~q1, ~q2)

We have 2 options for the QR-factorization:

A =





1/3 2/3
2/3 1/3
2/3 −2/3





[
3 0 1
0 3 1

]

︸ ︷︷ ︸

”Economy Size” QR-factorization

, or





1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3









3 0 1
0 3 1
0 0 0





︸ ︷︷ ︸

”Full” QR-factorization

.

Note that in the second version, we have added a third orthonormal
vector to the Q-matrix, and a row of zeros to the R-matrix.
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