Math 254: Introduction to Linear Algebra Notes #5.2 — Gram-Schmidt Process and QR Factorization

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2022

(Revised: March 24, 2022)

— (1/52)

イロト イポト イヨト イヨト

Outline

- Student Learning Objectives
 - SLOs: Gram-Schmidt Process and QR Factorization
- 2 Gram-Schmidt Orthogonalization and QR Factorization
 - The Gram-Schmidt Orthogonalization Process
 - The QR Factorization
 - Observations
- 3 Suggested Problems
 - Suggested Problems 5.2
 - Lecture Book Roadmap
- 4 Supplemental Material
 - Metacognitive Reflection
 - Problem Statements 5.2
 - Why Orthogonal Projections Matter
 - Example: $V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$
 - Example: 5.2.35 and Beyond "Live Math" Discussion

— (2/52)

イロト イポト イヨト イヨト

— (3/52)

SLOs 5.2

Gram-Schmidt Process and QR Factorization

After this lecture you should know how:

- to perform *The Gram-Schmidt Orthogonalization Process* on a set of vectors, and
- it can be used to compute *The QR-factorization* of a matrix *A*: *A* = *QR*
 - ⇒ This builds an orthonormal basis (the columns of Q) for the subspace V = im(A), which gives us the means to compute the orthogonal projection $proj_V(\vec{x})$ onto V.
- to orthogonally project onto any subspace.

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems Deservations

Orthogonal Projection onto a Subspace V

From [NOTES #5.1] we have:

Theorem (Formula for the Orthogonal Projection)

If V is a subspace of \mathbb{R}^n with an orthonormal basis $\vec{u_1},\ldots,\vec{u_m},$ then

$$\operatorname{proj}_V(\vec{x}) = \vec{x}^{\parallel} = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \dots + (\vec{u}_m \cdot \vec{x})\vec{u}_m$$

 $\forall x \in \mathbb{R}^n.$

How do you project onto a subspace if/when the given basis is <u>not</u> orthonormal?!?

It turns out that before we compute the projection, we have to find a new — *orthonormal* — basis...

- (4/52)

イロト イボト イヨト イヨト

Gram-S	chmidt Ortho	gonalization	and QR F Suggest	actorization ed Problems	The Gram-Schmidt Orth The <i>QR</i> Factorization Observations	nogonalization	1 Process	
							No. of Concession, Name	_

THIS IS ALL WRONG!!!!!

Ponder what happens if we use the formula, but the given basis is **not** orthonormal...

Let's live in \mathbb{R}^2 , let $V = \mathbb{R}^2$, with basis $\mathfrak{B} = (\vec{v_1}, \vec{v_2})$ defined by

$$ec{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad ec{v_2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \quad \text{and } ec{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}; \quad \|ec{x}\| = \sqrt{13}.$$

Clearly $\vec{v_1}$ and $\vec{v_2}$ are linearly independent, and $\vec{x} = 1\vec{v_1} + 1\vec{v_2}$,

N DIRGO STR

・ 何 ト ・ ヨ ト ・ ヨ ト

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process The QR Factorization Observations

THIS IS ALL WRONG!!!!!

Ponder what happens if we use the formula, but the given basis is **not** orthonormal...

Let's live in \mathbb{R}^2 , let $V = \mathbb{R}^2$, with basis $\mathfrak{B} = (\vec{v_1}, \vec{v_2})$ defined by

$$\vec{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}; \text{ and } \vec{x} = \begin{bmatrix} 2\\3 \end{bmatrix}; \quad \|\vec{x}\| = \sqrt{13}.$$

Clearly $\vec{v_1}$ and $\vec{v_2}$ are linearly independent, and $\vec{x} = 1\vec{v_1} + 1\vec{v_2}$, but the projection formula goes haywire:

$$\operatorname{proj}_{V}(\vec{x}) = (\vec{v}_{1} \cdot \vec{x})\vec{v}_{1} + (\vec{v}_{2} \cdot \vec{x})\vec{v}_{2} = 5\vec{v}_{1} + 8\vec{v}_{2} = \begin{bmatrix} 13\\21 \end{bmatrix}$$

N DIEGO STAT

— (5/52)

イロト イポト イヨト イヨト

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems
The Gram-Schmidt Orthogonalization Process
The QR Factorization
Observations

THIS IS ALL WRONG!!!!!

Ponder what happens if we use the formula, but the given basis is **not** orthonormal...

Let's live in \mathbb{R}^2 , let $V = \mathbb{R}^2$, with basis $\mathfrak{B} = (\vec{v_1}, \vec{v_2})$ defined by

$$\vec{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}; \text{ and } \vec{x} = \begin{bmatrix} 2\\3 \end{bmatrix}; \quad \|\vec{x}\| = \sqrt{13}.$$

Clearly $\vec{v_1}$ and $\vec{v_2}$ are linearly independent, and $\vec{x} = 1\vec{v_1} + 1\vec{v_2}$, but the projection formula goes haywire:

$$\operatorname{proj}_{V}(\vec{x}) = (\vec{v}_{1} \cdot \vec{x})\vec{v}_{1} + (\vec{v}_{2} \cdot \vec{x})\vec{v}_{2} = 5\vec{v}_{1} + 8\vec{v}_{2} = \begin{bmatrix} 13\\21 \end{bmatrix}.$$

... even if we remember to correct for the non-unit length of $\vec{v}_{1,2}$:

$$\operatorname{proj}_{V}(\vec{x}) = \frac{(\vec{v}_{1} \cdot \vec{x})}{\|\vec{v}_{1}\|^{2}} \vec{v}_{1} + \frac{(\vec{v}_{2} \cdot \vec{x})}{\|\vec{v}_{2}\|^{2}} \vec{v}_{2} = \frac{5}{2} \vec{v}_{1} + \frac{8}{5} \vec{v}_{2} = \begin{bmatrix} 4.1\\ 5.7 \end{bmatrix}.$$
Peter Blomgren (blomgren@sdsu.edu)
5.2. Gram-Schmidt and *QR* Factorization (5/52)

Come Schwidt Orthogonalization and OD Fortanization	The Gram-Schmidt Orthogonalization Process
Gram-Schmidt Orthogonalization and QR Factorization	The QR Factorization
Suggested Troblems	Observations

Comments

There are other ways to realize the "projection" went awry:

• This is "life in \mathbb{R}^2 ," and since

$$ec{v_1} = egin{bmatrix} 1 \ 1 \end{bmatrix}, \quad ec{v_2} = egin{bmatrix} 1 \ 2 \end{bmatrix},$$

are linearly independent \rightsquigarrow they form a basis for $\mathbb{R}^2 \rightsquigarrow$ any projection of a vector $\vec{w} \in \mathbb{R}^2$ onto the subspace $V = \operatorname{span}(\vec{v_1}, \vec{v_2}) \equiv \mathbb{R}^2$ must be the original vector \vec{w} .

• Even simpler, the famous *Method of the Eyeball* already showed that $\vec{v_1} + \vec{v_2} = \vec{x}$:

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

— (6/52)

Example: Doing it Right...

Build an Orthonormal Basis

In this case, given a basis of \mathbb{R}^2 , the answer is "obvious."

Next, we develop (still in \mathbb{R}^2 so we easily can visualize and use our intuition) a method for building an *orthonormal basis* given *any* starting basis.

Once we have the orthonormal basis, we can use the projection formula...

① The method will work in the general case: Given $\vec{x} \in \mathbb{R}^n$, and $V = \operatorname{span}(\vec{v_1}, \ldots, \vec{v_m}) \subset \mathbb{R}^n$; compute $\operatorname{proj}_V(\vec{x})$:

We find an orthonormal basis $\vec{q}_1, \ldots, \vec{q}_m$, so that

$$V = \operatorname{span}(\vec{v}_1, \ldots, \vec{v}_m) = \operatorname{span}(\vec{q}_1, \ldots, \vec{q}_m);$$

and then use the projection formula.

— (7/52)

イロト イボト イヨト イヨト

Example: Doing it Right...

Build an Orthonormal Basis

3 2.5 2 1.5 1 Figure: This is where we start. 0.5 0 -0.5 -1 -1 0 1 2 3 $\vec{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{v_2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}; \text{ and } \vec{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$ SAN DIEGO STATE イロト イボト イヨト イヨト Peter Blomgren (blomgren@sdsu.edu) 5.2. Gram-Schmidt and QR Factorization — (8/52)

イロト イヨト イヨト イヨト

Example: Doing it Right...

(i) Rescale the first vector

3 2.5 2 1.5 **Figure:** Rescale* $\vec{v_1}$ to be norm 1 1, and call it \vec{q}_1 . 0.5 -0.5 -1 -1 n 2 3 $\vec{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\2 \end{bmatrix}; \text{ and } \vec{x} = \begin{bmatrix} 2\\3 \end{bmatrix}.$

* Divide by the original norm, $\sqrt{2}$.

— (9/52)

Example: Doing it Right...

(ii) Split the next vector into \parallel and \perp parts...

- (10/52)

Figure: Next, project^{*} \vec{v}_2 onto \vec{q}_1 and get $\vec{v}_2^{\parallel \mid \vec{q}_1}$, and $\vec{v}_2^{\perp \vec{q}_1}$.

$$\vec{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \vec{v}_2^{\parallel \vec{q}_1} = \begin{bmatrix} 1.5\\1.5 \end{bmatrix}; \quad \vec{v}_2^{\perp \vec{q}_1} = \begin{bmatrix} -0.5\\0.5 \end{bmatrix}; \text{ and } \vec{x} = \begin{bmatrix} 2\\3 \end{bmatrix}$$

$$\overline{\mathbf{v}_{2}^{||\vec{q}_{1}} = (\vec{q}_{1} \cdot \vec{v}_{2})\vec{q}_{1} = \left(\frac{3}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix} = \frac{3}{2}\begin{bmatrix}1\\1\end{bmatrix}; \quad \vec{v}_{2}^{\perp \vec{q}_{1}} = \begin{bmatrix}1\\2\end{bmatrix} - \vec{v}_{2}^{||\vec{q}_{1}} = \frac{1}{2}\begin{bmatrix}-1\\1\end{bmatrix}.$$

Example: Doing it Right...

(iii) Rescale the \perp part, discard || part

- (11/52)

イロト イボト イヨト イヨト

Example: Doing it Right...

(iv) Project using the new orthonormal basis!

q1

2.5 x∥q, 2 x || q , 1.5 ⊥q₂ Figure: Finally, we can use the 1 projection formula. 0.5 0 -0.5 -1 -1 n 1 2 3 $\operatorname{proj}_{V}(\vec{x}) = (\vec{q}_{1} \cdot \vec{x})\vec{q}_{1} + (\vec{q}_{2} \cdot \vec{x})\vec{q}_{2} = \frac{5}{\sqrt{2}}\vec{q}_{1} + \frac{1}{\sqrt{2}}\vec{q}_{2}$ $\frac{5}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ AN DIEGO STAT イロト イヨト イヨト イヨト Peter Blomgren (blomgren@sdsu.edu) 5.2. Gram-Schmidt and OR Factorization - (12/52)

3

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process The *QR* Factorization Observations

Example: Doing it Right...

Coordinates

AN DIEGO STATE

æ

In the context of [COORDINATES (NOTES #3.4)], we have

BASIS:
$$\mathfrak{Q} = \langle \vec{q}_1, \vec{q}_2 \rangle$$

COORDINATES:
$$[\vec{x}]_{\mathfrak{Q}} = \begin{bmatrix} \frac{5}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

イロト イヨト イヨト イヨト

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems Description

Milking the Example for More Details...

We have performed a *Change of Basis*, in this case for the purpose of making the projection onto the subspace easily (after the change of basis, that is) computable.

It is "easy" to see that

$$\underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}}_{A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}} = \underbrace{\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}}_{Q = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 \end{bmatrix}} \underbrace{\begin{bmatrix} \sqrt{2} & \frac{3}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix}}_{R},$$

we have A = QR, where Q is the new orthonormal basis, and R is an upper triangular matrix.

The entries in the *R* matrix are — $\sqrt{2}$: the original norm of \vec{v}_1 ; $\frac{3}{\sqrt{2}}$: the dot product $(\vec{q}_1 \cdot \vec{v}_2)$; $\frac{1}{\sqrt{2}}$: the norm of $\vec{v}_2^{\perp}\vec{q}_1$. Not likely a coincidence...

イロト イヨト イヨト

N DIEGO STAT

- (15/52)

Let's Ponder Higher Dimensions

When you have more basis vectors $\vec{v_1}, \ldots, \vec{v_n}$ needing orthogonalization (to make an orthonormal basis):

Theorem (Gram-Schmidt Process (annotated))

• Start like we did:

•
$$\vec{q}_1 = \vec{v}_1 / \| \vec{v}_1 \|$$

w₂ = v₂ − (q₁ · v₂)q₁, note that this is a vector in the orthogonal complement of span(q₁) = span(v₁).
 q_i = v_i / ||v_i + ||

•
$$\vec{q}_2 = \vec{w}_2 / \| \vec{w}_2 \|$$

•
$$\vec{w}_k = \vec{v}_k - (\vec{q}_1 \cdot \vec{v}_k)\vec{q}_1 - (\vec{q}_2 \cdot \vec{v}_k)\vec{q}_2 - \dots - (\vec{q}_{k-1} \cdot \vec{v}_k)\vec{q}_{k-1}$$

• Then $\vec{q}_k = \vec{w}_k / \|\vec{w}_k\|$.

The QR Factorization

The Gram-Schmidt process computed a change of basis from the old basis (funky-script-A)

$$\mathfrak{A} = (\vec{v}_1, \ldots, \vec{v}_n)$$

to a new orthonormal basis (funky-script-Q)

$$\mathfrak{Q} = (\vec{q}_1, \ldots, \vec{q}_n).$$

We describe the result using the change-of-basis-Matrix R from \mathfrak{A} to \mathfrak{Q} , writing

$$\underbrace{\left(\vec{v_1} \cdots \vec{v_n}\right)}_{A} = \underbrace{\left(\vec{q_1} \cdots \vec{q_n}\right)}_{Q} R$$

$$(\Box \mapsto \langle \overline{\Box} \rangle \langle \overline{z} \rangle$$

Interpretations and Relations

With A = QR, we have to following relations:

- $[\vec{x}]_{\mathfrak{Q}} = R[\vec{x}]_{\mathfrak{A}}$
 - Multiplication by *R* moves us from *A*-coordinates to *Q*-coordinates.

•
$$\vec{x} = Q[\vec{x}]_{\mathfrak{Q}} = QR[\vec{x}]_{\mathfrak{A}}$$

- Multiplying the Q-coordinate vector by Q "builds" the vector \vec{x} .
- $\vec{x} = A[\vec{x}]_{\mathfrak{A}}$
 - Multiplying the *A*-coordinate vector by *A* "builds" the (same) vector \vec{x} .

The "burning" question is *how do we construct* R? It turn out we already have all the pieces, we just need some book-keeping.

- (17/52)

イロト イポト イヨト イヨト

What's in R?

N DIEGO STAT

- (18/52)

If we think back to the k^{th} step, we compute

$$\underbrace{\vec{w}_k}_{\vec{v}_k^{\perp}} = \vec{v}_k - \underbrace{(\vec{q}_1 \cdot \vec{v}_k)\vec{q}_1 - (\vec{q}_2 \cdot \vec{v}_k)\vec{q}_2 - \dots - (\vec{q}_{k-1} \cdot \vec{v}_k)\vec{q}_{k-1}}_{\vec{v}_k^{\parallel}}$$

 \vec{v}_k^{\perp} is orthogonal to $V_{k-1} = \operatorname{span}(\vec{q}_1, \ldots, \vec{q}_{k-1}) = \operatorname{span}(\vec{v}_1, \ldots, \vec{v}_{k-1})$, and $\vec{v}_k^{\parallel} \in \operatorname{span}(\vec{q}_1, \ldots, \vec{q}_{k-1})$.

Note: Subspaces, Orthogonal Complements, and Bases

We are constructing a sequence of subspace-pairs

$$V_k \oplus V_k^{\perp} = \mathbb{R}^n$$
; dim $(V_k) = k$, dim $(V_k^{\perp}) = (n-k)$; $k = 1, \ldots, n$

and orthonormal bases $\mathfrak{Q}_k = (\vec{q}_1, \dots, \vec{q}_k)$ for each of the V_k -spaces; and we have $V_{k-1} \subset V_k$ and $V_k^{\perp} \subset V_{k-1}^{\perp}$.

We are explicitly constructing V_k and \mathfrak{Q}_k ; whereas we're only concerned with a specific vector $\vec{v}_k^{\perp} \in V_k^{\perp}$.

What's in R?

OK, let's rearrange the previous expression:

$$ec{v}_k = \underbrace{(ec{q}_1 \cdot ec{v}_k)ec{q}_1 - (ec{q}_2 \cdot ec{v}_k)ec{q}_2 - \cdots - (ec{q}_{k-1} \cdot ec{v}_k)ec{q}_{k-1}}_{ec{v}_k^{\parallel}} + \underbrace{ec{w}_k}_{ec{v}_k^{\perp}}$$

The next thing we do is normalize \vec{v}_k^{\perp} to be norm 1, and name it \vec{q}_k ; which means we can write the relation above:

$$\vec{v}_{k} = \underbrace{(\vec{q}_{1} \cdot \vec{v}_{k})\vec{q}_{1} + (\vec{q}_{2} \cdot \vec{v}_{k})\vec{q}_{2} + \dots + (\vec{q}_{k-1} \cdot \vec{v}_{k})\vec{q}_{k-1}}_{\vec{v}_{k}^{\parallel}} + \underbrace{\|\vec{v}_{k}^{\perp}\|\vec{q}_{k}}_{\vec{v}_{k}^{\perp}}$$

This is the "recipe" for rebuilding the k^{th} column of A using the first k columns of Q. The entries in R are given by

•
$$r_{\ell,k} = (\vec{q}_{\ell} \cdot \vec{v}_k), \ \ell < k; \ (r_{\ell,k} = 0, \ \ell > k), \ \text{and}$$

•
$$r_{k,k} = \| \vec{v}_k^{\perp} \|.$$

- (19/52)

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems The Gram-Schmidt Orthogonalization Process The QR Factorization Observations

What's in R?

Summarizing ~>> The QR-factorization

Theorem (*QR*-Factorization)

Consider an $(n \times m)$ matrix A, with linearly independent columns, $\vec{v_1}, \ldots, \vec{v_m} \in \mathbb{R}^n$. Then there exists an $(n \times m)$ matrix Q whose columns $\vec{q_1}, \ldots, \vec{q_m} \in \mathbb{R}^n$ are orthonormal, and an upper triangular matrix R with positive diagonal entries such that A = QR. This representation is unique.

Further

•
$$r_{11} = \|\vec{v}_1\|,$$

• $r_{kk} = \|\vec{v}_k^{\perp \operatorname{span}(\vec{q}_1, \cdots, \vec{q}_{k-1})}\|, k \in \{2, \dots, m\}, \text{ and}$
• $r_{\ell,k} = (\vec{q}_\ell \cdot \vec{v}_k), \ell \in \{1, \dots, k-1\}.$

Note that

[QR-factorization] = [Gram-Schmidt] + [Bookkeeping].

- (21/52)

Crow Solumidt Orthogonalization and OR Easterization	The Gram-Schmidt Orthogonalization Process
Gram-Schmidt Orthogonalization and QR Factorization	The QR Factorization
Suggested Problems	Observations

Observations $A = [\vec{v_1} \cdots \vec{v_m}] = QR, A \in \mathbb{R}^{n \times m}$

- Note that span(q₁,..., q_k) = span(v₁,..., v_k), k = 1,..., m (that's the point — we are building an orthonormal set of vectors, describing the same subspaces spanned the columns of the matrix A)
- Let V_k = span(q₁,..., q_k) ≡ span(v₁,..., v_k); these subspaces are "nested":

 $V_0 \subset V_1 \subset \cdots \subset V_k,$ $\dim(V_0) \leq \dim(V_1) \leq \cdots \leq \dim(V_k),$

(the maximal dimension is limited by the number of linearly independent vectors in $\{\vec{v}_1, \ldots, \vec{v}_k\}$)

#ProjectionFestival

$$\operatorname{proj}_{V_k}(\vec{x}) = (\vec{x} \cdot \vec{q}_1)\vec{q}_1 + \dots + (\vec{x} \cdot \vec{q}_k)\vec{q}_k$$

イロト イポト イヨト イヨト

- (22/52)

Gram-Schmidt Orthogonalization and QR Factorization Suggested Problems Suggested Problems 5.2 Lecture – Book Roadmap

Suggested Problems 5.2

Available on Learning Glass videos: 5.2 — 3, 7, 13, 31, 32, 33, 35, 39

- (23/52)

イロト イヨト イヨト イヨト

Suggested Problems 5.2 Lecture – Book Roadmap

Lecture – Book Roadmap

Lecture	Book, [GS5–]
5.1	§4.1, §4.2, §4.4
5.2	§4.1, §4.2, §4.4
5.3	§4.1, §4.2, §4.4

э

- (24/52)

イロト イヨト イヨト イヨト

Supplemental Material Solved Problems Metacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter

Metacognitive Exercise — Thinking About Thinking & Learning

(5.2.3), (5.2.7)

(5.2.3) Perform the Gram-Schmidt process on the sequence of vectors given:

$$\vec{v}_1 = \begin{bmatrix} 4\\0\\3 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 25\\0\\-25 \end{bmatrix}$$

(5.2.7) Perform the Gram-Schmidt process on the sequence of vectors given:

$$\vec{v_1} = \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \quad \vec{v_2} = \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \quad \vec{v_3} = \begin{bmatrix} 18\\0\\0 \end{bmatrix}.$$

N DIEGO STAT

- (26/52)

イロト イボト イヨト

(5.2.13), (5.2.31)

(5.2.13) Perform the Gram-Schmidt process on the sequence of vectors given:

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\2\\1\\-1 \end{bmatrix},$$

(5.2.31) Perform the Gram-Schmidt process on the following basis of \mathbb{R}^3 :

$$\vec{v_1} = \begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}, \quad \vec{v_2} = \begin{bmatrix} b \\ c \\ 0 \end{bmatrix}, \quad \vec{v_3} = \begin{bmatrix} d \\ e \\ f \end{bmatrix}$$

N DIEGO STAT

- (27/52)

イロト イポト イヨト イヨト

(5.2.33), (5.2.35)

(5.2.33) Find an orthonormal basis for the kernel of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \end{bmatrix}.$$

(5.2.35) Find an orthonormal basis for the image of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & -2 & 0 \end{bmatrix}.$$

AN DIEGO STAT

- (28/52)

イロト イボト イヨト イヨト

Supplemental Material Solved Problems Wetacognitive Reflection Problem Statements 5.2 Why Orthogonal Projections Matter

(5.2.39)

(5.2.39) Find an orthonormal basis $\langle \vec{u_1}, \vec{u_2}, \vec{u_3} \rangle$ of \mathbb{R}^3 , such that

$$\operatorname{span}\left(\vec{u_1}\right) = \operatorname{span}\left(\begin{bmatrix} 1\\2\\3 \end{bmatrix} \right),$$

and

$$\operatorname{span}\left(ec{u_1}, ec{u_2}
ight) = \operatorname{span}\left(egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, egin{bmatrix} 1 \\ -1 \end{bmatrix}
ight),$$

SAN DIEGO STATE

— (29/52)

イロト イボト イヨト

Why Orthogonal Projections Matter ~~ Solving the "Unsolvable"

Experience shows that at this point, most students tend to be a bit lost...

- Known We need orthogonal bases to perform (correct) orthogonal projections to higher dimensional $(n \ge 2)$ subspaces.
 - But The previous example (projecting from $\mathbb{R}^2 \to \mathbb{R}^2$) was not very satisfying...
- Mystery Why are orthogonal projections such a big deal? (Bad reasons include:)
 - "The professor said so." (multiple times)
 - "It'll be on the test."

The goal of the next example is to give some idea as to why orthogonal projections can be useful... while re-visiting and connecting several "old" ideas.

— (30/52)

イロト イヨト イヨト イヨト

Supplemental Material Solved Problems Why Orthogonal Projections Matter

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Recall our old cartoon of orthogonal projections:

where $\vec{w} \in \mathbb{R}^n$, $L = \{k\vec{w}, k \in \mathbb{R}\}$ is the (line) subspace of \mathbb{R}^n .

Important Note: \vec{b}^{\parallel} is the point (in the subspace *L*) which is closest to \vec{b} .

(31/52)

Supplemental Material Solved Problems Solved Problems Solved Problems

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Now, let

$$A = \begin{bmatrix} | \\ \vec{w} \\ | \end{bmatrix} \in \mathbb{R}^{n \times 1},$$

then we are interested in solving the linear system $A\vec{x} = \vec{b}$, where $\vec{x} \in \mathbb{R}^1$ (for now), and $\vec{b} \in \mathbb{R}^n$.

The system has a solution if and only if $\vec{b} \in im(A) = L$.

,

When $\vec{b} \notin \operatorname{im}(A)$ we can either

- 🛭 say "🚛 you guys, I'm going home!" 🛁, or
- extend the concept of a "solution" to the problem...

- (32/52)

イロト イボト イヨト イヨト

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Since this is not a South Park episode, we decide to extend the concept of what it means to "solve" this problem:

We decide to look for a value \vec{x}^* which makes the **residual***

$$r(\vec{x}) = \|A\vec{x} - \vec{b}\|$$

as small as possible.

In our example, that value is $\vec{x}^* = \left(\frac{\vec{b} \cdot \vec{w}}{\vec{w} \cdot \vec{w}}\right)$, which makes $A\vec{x}^* = \vec{b}^{\parallel}$, and $r(\vec{x}^*) = \|\vec{b}^{\parallel} - \vec{b}\| = \| - \vec{b}^{\perp} \| = \|\vec{b}^{\perp}\|$. It is true in general that the shortest distance between \vec{b} and a subspace L, is $\vec{b}^{\perp} = \vec{b} - \operatorname{proj}_{L}(\vec{b})$.

* think of is as a measure of how far we are from solving the linear system in the "traditional" sense.

— (33/52)

N DIEGO STAT

Why Orthogonal Projections Matter ~~ Solving the "Unsolvable"

Next we consider a slightly different category of problems: fitting a straight line y = a + bx to some number of given points in the *x*-*y*-plane, $\{(x_k, y_k)\}_{k=1}^n$.

 $\begin{vmatrix} a \\ b \end{vmatrix} = \begin{vmatrix} y_1 \\ 0 \end{vmatrix} + s \begin{vmatrix} -x_1 \\ 1 \end{vmatrix}$

Case (n = 1**, a single point):** In this case we have infinitely many solutions. In our notation the solutions are given by

$$\underbrace{\left[1 \atop A \right]}_{A} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \end{bmatrix}$$

N DIEGO STAT

— (**34/52**)

which gives

イロト イポト イヨト イヨト

Supplemental Material Solved Problems Solved P

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Case (n = 2, two distinct points): In this case we have a unique solution. In our notation the solutions are given by

$$\underbrace{\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \end{bmatrix}}_{A} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

1 (F) + 1 (F)

which gives

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \end{bmatrix}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

where the inverse is guaranteed to exist when $x_1 \neq x_2$.

(35/52)

Supplemental Material Solved Problems Solved Problems

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Case (n = 3, three distinct points): In this case we have no solution. In our notation the solutions would be given by

$$\underbrace{\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix}}_{A} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

which gives

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \text{MAGIC} \\ \text{MATRIX} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} ???$$

There is no solution, unless the 3 points are on a common line...

(36/52)

Supplemental Material Solved Problems Why Orthogonal Projections Matter

Why Orthogonal Projections Matter ~~ Solving the "Unsolvable"

Case (n =large, **many (distinct) points):** In this case we have no solution. In our notation the solutions would be given by

SAN DIEGO STATE UNIVERSITY

(37/52)

which gives

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \text{MAGIC} \\ \text{MATRIX} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} ???$$

There is no solution, unless the ALL points are on a common line...

Supplemental Material Solved Problems Why Orthogonal Projections Matter

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Staying in the general n = large case, with

In our linear algebra language, we "know" that P = im(A) is a 2-dimensional subspace of \mathbb{R}^n (the two columns are different, unless all the x_k s coincide)...

and, of course, we only have a solution if/when \vec{y} can be written as a linear combination of the columns of $A \Leftrightarrow "\vec{y} \in im(A)$."

- (38/52)

Supplemental Material Solved Problems Solved P

Why Orthogonal Projections Matter ~> Solving the "Unsolvable"

Now, if we are looking for a best-extended-concept-of-solution candidate; we compute $\operatorname{proj}_{P}(\vec{y}) \equiv \vec{y}^{\parallel}$, and the system

$$\underbrace{\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}}_{A \in \mathbb{R}^{n \times 2}} \underbrace{\begin{bmatrix} a \\ b \end{bmatrix}}_{\vec{c}} = \operatorname{proj}_{P}(\vec{y})$$

does have a unique solution, call it \vec{c}^* ; and the residual

$$r(\vec{c}^*) = \|A\vec{c}^* - \vec{y}\| = \|\vec{y}^{\parallel} - \vec{y}\| = \|\vec{y}^{\perp}\|$$

is minimized.

DIRGO STA

— (39/52)

・ロト ・同ト ・ヨト ・ヨト

Why Orthogonal Projections Matter ~~ Solving the "Unsolvable"

We have defined a new type of "solution" for inconsistent non-square (matrix) problems.

The way we have discussed it, the best name would be a

"Minimum Residual Solution"

However, the most common mathematical name is the

"Least Squares Solution"

In many applications (related to statistics), the most common name is the

• "Linear Regression Solution"

DIRGO STR

イロト イボト イヨト イヨト

Example: $V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion

1 of 8

AN DIEGO STAT

- (41/52)

$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$

What is your problem?!?

Find an orthonormal basis for the subspace

$$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4,$$

then project the vectors

$$\vec{y}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, and $\vec{y}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$

onto V.

イロン 不同 とくほど 不良 とう

Example: $V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion

イロト イポト イヨト イヨト 二日

$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$

- First, we need a basis for V; finding ker([1 1 1 1]) will do the trick.
- Since $A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$ already is in rref, we can identify the solutions to $\vec{A}\vec{x} = 0$: $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix},$

so our basis is

$$B_{V} = (\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}) = \left(\begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \right); \quad A = \begin{bmatrix} -1 & -1 & -1\\1 & 0 & 0\\0 & 1 & 0\\0 & 1 & 1 \end{bmatrix}$$

as an added bonus we will compute the QR-factorization of A.

- (42/52)

Example: $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion

イロン 不良 とくほど 不良 とう

$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$

•
$$\|\vec{v_1}\| = \sqrt{(-1)^2 + 1^1 + 0^2 + 0^2} = \sqrt{2}$$

•
$$ec{q}_1 = rac{1}{\|ec{v}_1\|}ec{v}_1$$

$$Q = \begin{bmatrix} -1/\sqrt{2} & \times & \times \\ 1/\sqrt{2} & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}, \quad R = \begin{bmatrix} \sqrt{2} & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{bmatrix}$$

• We move on to \vec{v}_2 ...

3 of 8

SAN DIEGO STATE

3

Supplemental Material Solved Problems **Example:** $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion

4 of 8

SAN DIEGO STATE UNIVERSITY

э

- (44/52)

$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$

•
$$\vec{q}_1 \cdot \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix} \cdot \begin{bmatrix} -1\\ 0\\ 1\\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \left((-1)^2 + 1 \times 0 + 0 \times 1 + 0 \times 0 \right) = \frac{1}{\sqrt{2}}$$

• $\vec{v}_2^{\perp} = \vec{v}_2 - (\vec{q}_1 \cdot \vec{v}_2) \vec{q}_1 = \begin{bmatrix} -1\\ 0\\ 1\\ 0 \end{bmatrix} - \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix}\right) = \frac{1}{2} \begin{bmatrix} -1\\ -1\\ 2\\ 0 \end{bmatrix}$
• $\|\vec{v}_2^{\perp}\| = \frac{1}{2} \sqrt{1 + 1 + 4 + 0} = \frac{\sqrt{6}}{2}$
• $\vec{q}_2 = \frac{1}{\|\vec{v}_2^{\perp}\|} \vec{v}_2^{\perp} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\ -1\\ 2\\ 0 \end{bmatrix}$
• $Q = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & \times \\ 1/\sqrt{2} & -1/\sqrt{6} & \times \\ 0 & 2/\sqrt{6} & \times \\ 0 & 0 & \times \end{bmatrix}$, $R = \begin{bmatrix} \sqrt{2} & 1/\sqrt{2} & \times \\ 0 & \sqrt{6}/2 & \times \\ 0 & 0 & \times \end{bmatrix}$

Peter Blomgren (blomgren@sdsu.edu)

Example: $V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion

イロン 不良 とくほど 不良 とう

Supplemental Material Solved Problems

 $V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$

۲

•
$$\vec{q}_1 \cdot \vec{v}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix} \cdot \begin{bmatrix} -1\\ 0\\ 0\\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \left((-1)^2 + 1 \times 0 + 0 \times 1 + 0 \times 0 \right) = \frac{1}{\sqrt{2}}$$

•
$$\vec{q}_2 \cdot \vec{v}_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\ -1\\ 2\\ 0 \end{bmatrix} \cdot \begin{bmatrix} -1\\ 0\\ 0\\ 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \left((-1)^2 + (-1) \times 0 + 0 \times 1 + 0 \times 1 \right) = \frac{1}{\sqrt{6}}$$

$$Q = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & \times \\ 1/\sqrt{2} & -1/\sqrt{6} & \times \\ 0 & 2/\sqrt{6} & \times \\ 0 & 0 & \times \end{bmatrix}, \quad R = \begin{bmatrix} \sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & \sqrt{6}/2 & 1/\sqrt{6} \\ 0 & 0 & \times \end{bmatrix}$$

э

- (45/52)

5 of 8

Supplemental Material Solved Problems **Example:** $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion

イロン 不良 とくほど 不良とう

$V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$

•
$$\vec{v}_3^{\perp} = \vec{v}_3 - (\vec{q}_1 \cdot \vec{v}_3)\vec{q}_1 - (\vec{q}_2 \cdot \vec{v}_3)\vec{q}_2$$
:

$$\begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} - \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix}\right) - \left(\frac{1}{\sqrt{6}}\right) \left(\frac{1}{\sqrt{6}} \begin{bmatrix} -1\\-1\\2\\0 \end{bmatrix}\right) = \frac{1}{3} \begin{bmatrix} -1\\-1\\-1\\3 \end{bmatrix}$$

•
$$\|\vec{v}_{3}^{\perp}\| = \frac{1}{3}\sqrt{1+1+1+9} = \frac{\sqrt{12}}{3}$$

• $\vec{q}_{3} = \frac{1}{\|\vec{v}_{3}^{\perp}\|}\vec{v}_{3}^{\perp} = \frac{1}{\sqrt{12}}\begin{bmatrix} -1\\ -1\\ -1\\ 1\\ 3 \end{bmatrix}$
• $Q = \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{12}\\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{12}\\ 0 & 2/\sqrt{6} & -1/\sqrt{12}\\ 0 & 0 & 3/\sqrt{12} \end{bmatrix}, \quad R = \begin{bmatrix} \sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2}\\ 0 & \sqrt{6}/2 & 1/\sqrt{6}\\ 0 & 0 & \sqrt{12}/3 \end{bmatrix}$

SAN DIEGO STATE UNIVERSITY

э

- (46/52)

6 of 8

Supplemental Material Solved Problems	Example: $V = \{x_1 + x_2 + x_3 + x_4 = 0\}$ Example: 5.2.35 and Beyond — "Live M	$\subset \mathbb{R}^4$ ath" Discussion
$Y = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$	Projections!	7 of 8
$ \vec{y}_1 = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} $		
• $\vec{q}_1 \cdot \vec{y}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \frac{1}{\sqrt{2}} (-1+1+0)$	(0+0) = 0	
• $\vec{q}_2 \cdot \vec{y}_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\ -1\\ 2\\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} = \frac{1}{\sqrt{6}} (-1 - 1 + 2)$	(2+0) = 0	
$\begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} $	1 + 2) = 0	

•
$$\vec{q}_3 \cdot \vec{y}_1 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1 \\ -1 \\ -1 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{12}} (-1 - 1 - 1 + 3) = 0$$

 \bigcirc proj_V(\vec{y}_1) = $\vec{0}$

Of course! We constructed B_V = (v₁, v₂, v₃) by finding all vectors orthogonal to y₁ ((Solving [1 1 1]x = 0))

- (47/52)

イロン 不良 とくほど 不良とう

•
$$\vec{y}_2 = \begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}$$

• $\vec{q}_1 \cdot \vec{y}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix} = \frac{1}{\sqrt{2}} (-1+2+0+0) = \frac{1}{\sqrt{2}}$
• $\vec{q}_2 \cdot \vec{y}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\ -1\\ 2\\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix} = \frac{1}{\sqrt{6}} (-1-2+6+0) = \frac{3}{\sqrt{6}}$
• $\vec{q}_3 \cdot \vec{y}_2 = \frac{1}{\sqrt{12}} \begin{bmatrix} -1\\ -1\\ -1\\ 3\\ \end{bmatrix} \cdot \begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix} = \frac{1}{\sqrt{12}} (-1-2-3+12) = \frac{6}{\sqrt{12}}$
• $\operatorname{proj}_V(\vec{y}_2) = \frac{1}{2} \begin{bmatrix} -1\\ 1\\ 0\\ 0 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -1\\ -1\\ 2\\ 0 \end{bmatrix} + \frac{6}{12} \begin{bmatrix} -1\\ -1\\ -1\\ 3\\ \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -3\\ -1\\ 1\\ 3\\ 3 \end{bmatrix}$

E+7

$$= \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$$

Example: $V = \{ x_1 + x_2 + x_3 + x_4 = 0 \} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion

イロン イボン イヨン イヨン 三日

- (48/52)

8

(日) (問) (注) (注) (注)

5.2.35 and Beyond

What is your problem?!?

Given A, find an orthonormal basis for im(A), and the QR-factorization QR = A: $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & -2 & 0 \end{bmatrix}, \quad Q = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}, \quad R = \begin{bmatrix} \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 0 & 0 & \cdot \end{bmatrix}$

$$\vec{v}_{1} :: \|\vec{v}_{1}\| = \sqrt{1^{2} + 2^{2} + 2^{2}} = \sqrt{9} = 3; \quad \vec{q}_{1} = \frac{\vec{v}_{1}}{\|\vec{v}_{1}\|} = \frac{1}{3} \begin{bmatrix} 1\\2\\2 \end{bmatrix}$$
$$Q = \begin{bmatrix} 1/3 & . & .\\ 2/3 & . & .\\ 2/3 & . & .\\ 2/3 & . & . \end{bmatrix}, \quad R = \begin{bmatrix} 3 & . & .\\ 0 & . & .\\ 0 & 0 & . \end{bmatrix}$$

- (49/52)

Example: $V = \{x_1 + x_2 + x_3 + x_4 = 0\} \subset \mathbb{R}^4$ Example: 5.2.35 and Beyond — "Live Math" Discussion

5.2.35 and Beyond

$$\vec{v}_{2} :: \quad \vec{v}_{2}^{\perp} = \vec{v}_{2} - (\vec{q}_{1} \cdot \vec{v}_{2}) \vec{q}_{1} = \begin{bmatrix} 2\\1\\-2 \end{bmatrix} - \underbrace{\left(\frac{1}{3} \begin{bmatrix} 2\\1\\-2 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\2 \end{bmatrix}\right)}_{0} \left(\frac{1}{3} \begin{bmatrix} 2\\1\\-2 \end{bmatrix}\right) = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$$
$$\|\vec{v}_{2}^{\perp}\| = \sqrt{2^{2} + 1^{2} + (-2)^{2}} = \sqrt{9} = 3, \quad \vec{q}_{2} = \frac{\vec{v}_{2}^{\perp}}{\|\vec{v}_{2}^{\perp}\|} = \frac{1}{3} \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$$
$$Q = \begin{bmatrix} 1/3 & 2/3 \\ 2/3 & 1/3 \\ 2/3 & -2/3 \end{bmatrix}, \quad R = \begin{bmatrix} 3 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$$

Supplemental Material Solved Problems

— (50/52)

э

イロン 不良 とくほど 不良と

SAN DIEGO STATE UNIVERSITY

٠

5.2.35 and Beyond

3 of 4

SAN DIEGO STATE UNIVERSITY

(日) (周) (日) (日) (日)

- $\vec{v}_3^{\perp} = 0$ means that \vec{v}_3 is a linear combination of \vec{v}_1 and \vec{v}_2 .
- Therefore $im(A) = span(\vec{v}_1, \vec{v}_2) = span(\vec{q}_1, \vec{q}_2)$
- We have 2 options for the *QR*-factorization:

$$A = \underbrace{\begin{bmatrix} 1/3 & 2/3 \\ 2/3 & 1/3 \\ 2/3 & -2/3 \end{bmatrix}}_{\text{"Economy Size" QR-factorization}} \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{bmatrix}, \text{ or } \underbrace{\begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}}_{\text{"Full" QR-factorization}} \begin{bmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}}_{\text{"Full" QR-factorization}}$$

Note that in the second version, we have added a third orthonormal vector to the Q-matrix, and a row of zeros to the R-matrix.