Math 254: Introduction to Linear Algebra

Notes #5.3 — Orthogonal Transformations and Orthogonal Matrices

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics

Dynamical Systems Group Computational Sciences Research Center

San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2022

(Revised: April 4, 2022)

Outline

- Student Learning Objectives
 - SLOs: Orthogonal Transformations and Orthogonal Matrices
- Orthogonal Transformations and Orthogonal Matrices
 - Examples, and Fundamental Theorems
 - Products, Inverses, and Transposes of Orthogonal Matrices
 - Matrix of Orthogonal Projection, using Orthonormal Basis
- 3 Suggested Problems
 - Suggested Problems 5.3
 - Lecture Book Roadmap
- Supplemental Material
 - Metacognitive Reflection
 - Problem Statements 5.3
 - Orthogonal Complements: Redux
 - Orthogonal Projections: Redux
 - Least Squares Data Fitting

SLOs 5.3

Orthogonal Transformations and Orthogonal Matrices

After this lecture you should:

- Know what Orthogonal Transformations are; and their relation to Orthonormal Bases.
- Know the Properties of Orthogonal Matrices.
- Be able to perform an Orthogonal Projection using Orthonormal Basis you have constructed.

Orthogonal Transformations

For many reasons, we tend to "like" linear transformations that preserve the norm (length) of vectors; and angles between vectors:

Definition (Orthogonal Transformations)

A linear transformation $T: \mathbb{R}^n \mapsto \mathbb{R}^n$ is called orthogonal if it preserves the norm (length) of vectors:

$$||T(\vec{x})|| = ||\vec{x}||, \ \forall \vec{x} \in \mathbb{R}^n.$$

If $T(\vec{x}) = A\vec{x}$ is an orthogonal transformation, we say that A is an orthogonal (or *unitary*, when it has complex entries) matrix.

Related topic: "Isometries" in [MATH 524 (NOTES#7.2)].

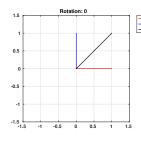
Example: Rotations

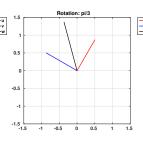
Example (Rotations)

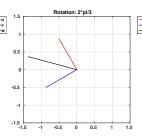
The rotation

$$T(\vec{x}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{x}$$

is an orthogonal transformation from \mathbb{R}^2 to \mathbb{R}^2 , and $\forall \theta$.







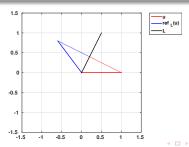
Example: Reflections

Example (Reflections)

Consider a subspace V of \mathbb{R}^n . For a vector $\vec{x} \in \mathbb{R}^n$, the vector $\operatorname{ref}_V(\vec{x}) = \vec{x}^{\parallel} - \vec{x}^{\perp} \equiv 2\operatorname{proj}_V(\vec{x}) - \vec{x}$ is the reflection of \vec{x} in V. We show that reflections are orthogonal transformations:

By the [Pythagorean Theorem], we have

$$\|\operatorname{ref}_{V}(\vec{x})\|^{2} = \|\vec{x}^{\parallel} - \vec{x}^{\perp}\|^{2} = \|\vec{x}^{\parallel}\|^{2} + \|-\vec{x}^{\perp}\|^{2} = \|\vec{x}^{\parallel}\|^{2} + \|\vec{x}^{\perp}\|^{2} = \|\vec{x}\|^{2}$$



Preservation of Orthogonality

Theorem (Preservation of Orthogonality)

Consider an orthogonal transformation $T: \mathbb{R}^n \mapsto \mathbb{R}^n$. If the vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$ are orthogonal, then so are $T(\vec{v})$ and $T(\vec{w})$.

Proof (Preservation of Orthogonality {Short: relies on fundamental properties/definitions})

By the theorem of Pythagoras, we have to show that

$$||T(\vec{v}) + T(\vec{w})||^2 = ||T(\vec{v})||^2 + ||T(\vec{w})||^2$$
:

$$||T(\vec{v}) + T(\vec{w})||^2 = ||T(\vec{v} + \vec{w})||^2$$
 [Linearity of T]

$$= ||\vec{v} + \vec{w}||^2$$
 [Orthogonality of T]

$$= ||\vec{v}||^2 + ||\vec{w}||^2$$
 [$\vec{v} \perp \vec{w}$]

$$= ||T(\vec{v})||^2 + ||T(\vec{w})||^2$$
 [Orthogonality of T]

Orthogonal Transformations and Orthonormal Bases

Theorem (Orthogonal Transformations and Orthonormal Bases)

a. A linear transformation $T: \mathbb{R}^n \mapsto \mathbb{R}^n$ is orthogonal if and only if the vectors $T(\vec{e_1}), \ldots, T(\vec{e_n})$ form an orthonormal basis of \mathbb{R}^n .

b. An $(n \times n)$ matrix A is orthogonal if and only if its columns form an orthonormal basis of \mathbb{R}^n .

[PROOF IN SUPPLEMENTAL SLIDES]

[Proof] Orthogonal Transformations and Orthonormal Bases

[Focus :: Math]

Proof (Part (a))

- \Rightarrow If T is orthogonal, then, by definition, the $T(\vec{e_k})$ are unit vectors, and orthogonal by the previous theorem; hence a basis for \mathbb{R}^n .
- \leftarrow Conversely, suppose $T(\vec{e_1}), \ldots, T(\vec{e_n})$ form an orthonormal basis. Consider a vector $\vec{x} = x_1 \vec{e_1} + \cdots + x_n \vec{e_n} \in \mathbb{R}^n$. Then

$$||T(\vec{x})||^{2} = ||x_{1}T(\vec{e_{1}}) + \dots + x_{n}T(\vec{e_{n}})||^{2}$$
 [Linearity]

$$= ||x_{1}T(\vec{e_{1}})||^{2} + \dots + ||x_{n}T(\vec{e_{n}})||^{2}$$
 [Pythagoras]

$$= x_{1}^{2} ||T(\vec{e_{1}})||^{2} + \dots + x_{n}^{2} ||T(\vec{e_{n}})||^{2}$$

$$= x_{1}^{2} + \dots + x_{n}^{2}$$

$$= ||\vec{x}||^{2}.$$

Products, Inverses, and Transposes of Orthogonal Matrices The Matrix of an Ortho. Projection, using an Ortho. Basis

[Proof] Orthogonal Transformations and Orthonormal Bases

[Focus :: Math]

Proof (Part (b))

This follows from the result from [NOTES#2.1] restated below...

Theorem (The Columns of the Matrix of a Linear Transformation)

Consider a linear transformation $T : \mathbb{R}^m \mapsto \mathbb{R}^n$. Then, the matrix of T is

$$A = \left[\begin{array}{ccc} | & | & | \\ T(\vec{e_1}) & T(\vec{e_2}) & \dots & T(\vec{e_m}) \\ | & | & | \end{array} \right],$$

where $\vec{e_i} \in \mathbb{R}^m$ is the vector of all zeros, except entry #i which is 1.

A Warning

WARNING!!! WARNING

A matrix with orthogonal columns need not be an orthogonal matrix, e.g.

$$A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}.$$

Example
$$A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}$$
 has Orthogonal Columns, but is Not Orthogonal)

$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \|\vec{x}\| = \sqrt{2}, \quad A\vec{x} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}, \quad \|A\vec{x}\| = \sqrt{50}$$

Products and Inverses of Orthogonal Matrices

Theorem (Products and Inverses of Orthogonal Matrices)

- **a.** The product AB of two orthogonal $(n \times n)$ matrices A and B is orthogonal.
- **b.** The inverse A^{-1} of an orthogonal $(n \times n)$ matrix A is orthogonal.

Proof ({Short: relies on fundamental properties/definitions})

- a. the linear transformation $T(\vec{x}) = AB\vec{x}$ preserves norm (length), since $||T(\vec{x})|| = ||A(B\vec{x})|| = ||B\vec{x}|| = ||\vec{x}||$.
- **b.** the linear transformation $T(\vec{x}) = A^{-1}\vec{x}$ preserves norm (length), since $||A^{-1}\vec{x}|| = ||AA^{-1}\vec{x}|| = ||\vec{x}||$.

Example: Properties of the Transpose of an Orthonormal Matrix

Example

Consider the orthogonal matrix A, and the matrix where the ij entry has been shifted to the ji position (B):

$$A = \frac{1}{7} \begin{bmatrix} 2 & 6 & 3 \\ 3 & 2 & 6 \\ 6 & -3 & 2 \end{bmatrix}, \quad B = \frac{1}{7} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix}.$$

We compute

$$BA = \frac{1}{49} \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

The $k\ell$ entry in BA is the dot product of the k^{th} row of B, and the ℓ^{th} column of A; by construction this is the dot product of the k^{th} and ℓ^{th} columns of A; since A is orthogonal this gives 1 when $k=\ell$, and 0 otherwise.

Matrix Transpose, Symmetric and Skew-symmetric Matrices

Definition (Matrix Transpose, Symmetric and Skew-symmetric Matrices)

Consider an $(m \times n)$ matrix A.

- The *transpose* A^T of A is the $(n \times m)$ matrix whose ij^{th} entry is the ji^{th} entry of A: The roles of rows and columns are reversed.
- We say that a square matrix A is symmetric if $A^T = A$, and
- A is called *skew-symmetric* if $A^T = -A$.

Example (Transpose)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

[FOCUS :: MATH] Symmetric (2×2) Matrices

[Linear Spaces]

Example (Symmetric (2×2) Matrices)

The symmetric (2×2) matrices are of the form

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

They form a 3-dimensional subspace of $\mathbb{R}^{2\times 2}$ with basis

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Note: $\mathbb{R}^{2\times 2}$ (the collection of all 2-by-2 matrices) is a linear space (formal definition on the next slide)...

[FOCUS :: MATH] Linear Space

Definition

[Linear Spaces]

Definition (Linear Space)

A Linear Space V is a set with a definition (rule) for addition "+", and a definition (rule) for scalar multiplication; and the following must hold $(\forall u, v, w \in V, \forall c, k \in \mathbb{R})$

- a. $v + w \in V$.
- **b.** $kv \in V$.
- c. (u+v)+w=u+(v+w).
- **d.** u + v = v + u.
- e. $\exists n \in V$: u + n = u, [Neutral Element, denoted by 0]
- f. $\exists \hat{u}$: $u + \hat{u} = 0$; \hat{u} unique, and denoted by -u.
- $g. \ k(u+v) = ku + kv.$
- h. (c+k)u = cu + ku.
- i. c(ku) = (ck)u.
- j. 1u = u.

in $\mathbb{R}^{2\times 2}$, the neutral element is $n=\begin{bmatrix}0&0\\0&0\end{bmatrix}$.

[FOCUS :: MATH] Skew-Symmetric (2×2) Matrices

[Linear Spaces]

Example (Skew-Symmetric (2×2) Matrices)

The symmetric (2×2) matrices are of the form

$$\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$$

They form a 1-dimensional subspace of $\mathbb{R}^{2\times 2}$ with basis

$$\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Note:
$$\dim(\mathbb{R}^{2\times 2})=4$$
; $\left\{\begin{bmatrix}1&0\\0&0\end{bmatrix},\begin{bmatrix}0&1\\0&0\end{bmatrix},\begin{bmatrix}0&0\\1&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}\right\}$ is a basis.



Transpose of a Vector

Example (Transpose of a Vector)

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad \Rightarrow \quad \vec{v}^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

We use this all the time:

Theorem

If \vec{v} and \vec{w} are two (column) vectors $\in \mathbb{R}^n$, then

$$\vec{v} \cdot \vec{w} \equiv \vec{v}^T \vec{w}$$

Dot Product

"MATRIX" PRODUCT

Orthogonal Matrices: A^T and A^{-1}

Theorem

Consider an $(n \times n)$ matrix A. The matrix A is orthogonal if and only if $A^{T}A = I_{n}$ or, equivalently, if $A^{-1} = A^{T}$.

Proof ({Short: relies on fundamental properties/definitions})

Write A in terms of its columns:

$$A = \begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_n, \end{bmatrix}$$

then

$$A^{T}A = \begin{bmatrix} \vec{v}_{1}^{T} \\ \vdots \\ \vec{v}_{n}^{T} \end{bmatrix} \begin{bmatrix} \vec{v}_{1} & \dots & \vec{v}_{n} \end{bmatrix} = \begin{bmatrix} \vec{v}_{1}^{T}\vec{v}_{1} & \dots & \vec{v}_{1}^{T}\vec{v}_{n} \\ \vdots & \ddots & \vdots \\ \vec{v}_{n}^{T}\vec{v}_{1} & \dots & \vec{v}_{n}^{T}\vec{v}_{n} \end{bmatrix}$$

this is I_n if and only if A is orthogonal.

Orthogonal Matrices: Summary

Summary:: Orthogonal Matrices

Consider an $(n \times n)$ matrix A. The following statements are equivalent:

- i. A is an orthogonal matrix.
- ii. The transformation $T(\vec{x}) = A\vec{x}$ preserves norm (length), that is, $||A\vec{x}|| = ||\vec{x}|| \ \forall \vec{x} \in \mathbb{R}^n$.
- iii. The columns of A form an orthonormal basis of \mathbb{R}^n .
- iv. $A^T A = I_n$.
- $V. A^{-1} = A^{T}.$
- vi. A preserves the dot product, meaning that $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$ $\forall \vec{x}, \vec{y} \in \mathbb{R}^n$.

5.3. Orthogonal Transforms and Matrices

Properties of the Matrix Transpose

Theorem (Properties of the Transpose)

a.
$$(A+B)^T = A^T + B^T \quad \forall A, B \in \mathbb{R}^{m \times n}$$

b.
$$(kA)^T = kA^T$$
 $\forall A \in \mathbb{R}^{m \times n}, \forall k \in \mathbb{R}$

c.
$$(AB)^T = (B^T A^T)$$
 $\forall A \in \mathbb{R}^{m \times p}, \forall B \in \mathbb{R}^{p \times n}$

d.
$$rank(A) = rank(A^T) \quad \forall matrices A$$

e.
$$(A^T)^{-1} = (A^{-1})^T$$
 $\forall invertible \ matrices \ A$

The Matrix of an Orthogonal Projection

We can use our expanded matrix-notation-language to express orthogonal projections.... First consider

$$\operatorname{proj}_{L}(\vec{x}) = (\vec{u}_{1} \cdot \vec{x})\vec{u}_{1}$$

onto a line L in \mathbb{R}^n ; where $\vec{u_1}$ is a unit vector in L. Think of this vector as an $(n \times 1)$ matrix, and the scalar $(\vec{u_1} \cdot \vec{x})$ as an (1×1) matrix; we can rearrange

$$\operatorname{proj}_{L}(\vec{x}) = \vec{u}_{1}(\vec{u}_{1} \cdot \vec{x}) \stackrel{\textcircled{1}}{=} \vec{u}_{1}(\vec{u}_{1}^{T} \vec{x}) \stackrel{\textcircled{2}}{=} \vec{u}_{1} \vec{u}_{1}^{T} \vec{x} \stackrel{\textcircled{3}}{=} (\vec{u}_{1} \vec{u}_{1}^{T}) \vec{x} \stackrel{\textcircled{4}}{=} A \vec{x}$$

where $A = \vec{u}_1 \vec{u}_1^T$.

 \bigcirc We derived an expression for A (for action in \mathbb{R}^2) back in [Notes#2.2].

①Notation; ②Associative property for matrix multiplication; ③Associative property for matrix multiplication; ④"Book-keeping" /interpretation.

Vector-Vector Products

New: Outer Product

$$\mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^{n \times n}$$

$$A = \vec{u}\vec{v}^T$$
 is known as the outer product.

Old: Inner Product / Dot Product

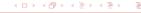
$$\mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^1$$

$$\underbrace{s}_{[1\times1]} = \underbrace{\vec{u}^T \vec{v}}_{[1\times n]\times[n\times1]}$$

Upcoming: Cross Product

$$\mathbb{R}^3 \times \mathbb{R}^3 \mapsto \mathbb{R}^3$$
, (or $\mathbb{R}^7 \times \mathbb{R}^7 \mapsto \mathbb{R}^7$)

$$\underbrace{\vec{q}}_{3\times1]} = \underbrace{\vec{u}}_{[3\times1]} \times \underbrace{\vec{v}}_{[3\times1]}, \quad \left(\text{or} \quad \underbrace{\vec{w}}_{[7\times1]} = \underbrace{\vec{u}}_{[7\times1]} \times \underbrace{\vec{v}}_{[7\times1]}\right)$$



The Matrix of an Orthogonal Projection

We can apply the same idea to the general projection formula

$$\operatorname{proj}_{V}(\vec{x}) = (\vec{u}_{1} \cdot \vec{x})\vec{u}_{1} + \dots + (\vec{u}_{n} \cdot \vec{x})\vec{u}_{n}$$

$$= \vec{u}_{1}\vec{u}_{1}^{T}\vec{x} + \dots + \vec{u}_{n}\vec{u}_{n}^{T}\vec{x}$$

$$= (\vec{u}_{1}\vec{u}_{1}^{T} + \dots + \vec{u}_{n}\vec{u}_{n}^{T})\vec{x}$$

and we can also write

$$A = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} \begin{bmatrix} \vec{u}_1^T \\ \vdots \\ \vec{u}_n^T \end{bmatrix}$$

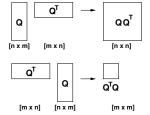
We summarize on the next slide...

The Matrix of an Orthogonal Projection: Summary

Theorem (The Matrix of an Orthogonal Projection: Summary)

Consider a subspace V of \mathbb{R}^n with orthonormal basis $\vec{q}_1, \ldots, \vec{q}_m$. The matrix P of the orthogonal projection onto V is

$$P = QQ^T$$
, where $Q = \begin{bmatrix} \vec{q}_1 & \cdots & \vec{q}_m \end{bmatrix}$.



- Note that it is QQ^T not Q^TQ
- P is symmetric $P^T = (QQ^T)^T = (Q^T)^T Q^T = QQ^T = P$.

Example

1 of 2

In (5.2.7) [SEE LEARNING GLASS] we orthogonaliz(ed) the vectors

$$\vec{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 18 \\ 0 \\ 0 \end{bmatrix},$$

using the Gram-Schmidt method, and get(got)

$$\vec{q}_1 = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \quad \vec{q}_2 = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}, \quad \vec{q}_3 = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix},$$

Let's define $\{Q_1 \in \mathbb{R}^{3 \times 1}, \ Q_2 \in \mathbb{R}^{3 \times 2}, \ Q_3 \in \mathbb{R}^{3 \times 3}\}$

$$Q_1 = \begin{bmatrix} \vec{q}_1 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 \end{bmatrix}, \quad Q_3 = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 & \vec{q}_3 \end{bmatrix}.$$

Projection Matrices Orthonormality Confirmation

$$P_{1} = Q_{1}Q_{1}^{T} = \frac{1}{9} \begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{bmatrix} \qquad Q_{1}^{T}Q_{1} = \begin{bmatrix} 1 \end{bmatrix}$$

$$P_{2} = Q_{2}Q_{2}^{T} = \frac{1}{9} \begin{bmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{bmatrix} \qquad Q_{2}^{T}Q_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$P_{3} = Q_{3}Q_{3}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Q_{3}^{T}Q_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note, $Q_1Q_1^T$, $Q_2Q_2^T$, and $Q_3Q_3^T$ are the matrices of orthogonal projections onto a line $L=\mathrm{span}(\vec{q}_1)$, a plane $V=\mathrm{span}(\vec{q}_1,\vec{q}_2)$, and $\mathbb{R}^3=\mathrm{span}(\vec{q}_1,\vec{q}_2,\vec{q}_3)$.

5.3. Orthogonal Transforms and Matrices

Suggested Problems 5.3

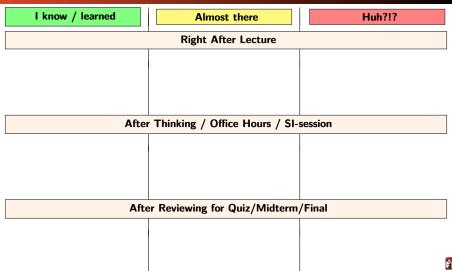
Available on Learning Glass videos:

5.3 — 1, 2, 5, 6, 13, 15, 17, 19, 28, 32, 33, <u>36</u>, 41

Lecture – Book Roadmap

Lecture	Book, [GS5-]
5.1	§4.1, §4.2, §4.4
5.2	§4.1, §4.2, §4.4
5.3	§4.1, §4.2, §4.4

Metacognitive Exercise — Thinking About Thinking & Learning



5.3. Orthogonal Transforms and Matrices

(5.3.1), (5.3.2)

(5.3.1) Is the given matrix Orthogonal?

$$A = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & 0.6 \end{bmatrix}$$

(5.3.2) Is the given matrix Orthogonal?

$$A = \begin{bmatrix} -0.8 & 0.6 \\ 0.6 & 0.8 \end{bmatrix}$$

If the $(n \times n)$ matrices A and B are orthogonal, are the following matrices orthogonal as well?

(5.3.5)
$$C = 3A$$

(5.3.6)
$$D = -B$$

$$(5.3.13), (5.3.15), (5.3.17), (5.3.19)$$

If the $(n \times n)$ matrices A and B are symmetric, and B is invertible; are the following matrices symmetric as well?

(5.3.13)
$$C = 3A$$

(5.3.15)
$$D = AB$$

(5.3.17)
$$F = B^{-1}$$

$$(5.3.19) G = 2I_n + 3A - 4A^2$$

(5.3.28)

(5.3.28) Consider an $(n \times n)$ matrix A. Show that A is orthogonal if-and-only-if: A preserves the dot product; *i.e.*

$$(A\vec{x})\cdot(A\vec{y})=\vec{x}\cdot\vec{y}$$

for all $\vec{x}, \vec{y} \in \mathbb{R}^n$.

Hint, show:

- $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y} \Rightarrow L(\vec{x}) = A\vec{x} \text{ is norm (length)-preserving.}$

(5.3.32), (5.3.33)

- **(5.3.32–a)** Consider an $(n \times m)$ matrix A such that $A^T A = I_m$. Is is necessarily true that $AA^T = I_n$? (Explain!)
- **(5.3.32-b)** Consider an $(n \times n)$ matrix A such that $A^T A = I_n$. Is is necessarily true that $AA^T = I_n$? (Explain!)
- (5.3.33) Find all orthogonal (2×2) matrices.

(5.3.36)

(5.3.36) Find an orthogonal matrix of the form

$$A = \begin{bmatrix} 2/3 & 1\sqrt{2} & a \\ 2/3 & -1/\sqrt{2} & b \\ 1/3 & 0 & c \end{bmatrix}$$

(5.3.41)

(5.3.41) Find the matrix A of the orthogonal projection onto the line in \mathbb{R}^n spanned by the vector

$$\vec{1}_n = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^n$$

Revisiting the "Why?!?"

This section provides one important answer to "why?!" we should care about orthogonality, orthogonal complements, and orthogonal projections.

We will talk about *Least Squares Solutions* to non-consistent linear systems. (From a slightly different point of view than [Notes#5.2: Supplement].)

The least squares formulation is useful for fitting model parameters to data and has applications in a wide range of fields: chemistry, physics, engineering, finance, economics, etc.

It is sometimes (often?) referred to as "Linear Regression."

The Orthogonal Complement of the Image

Example (The Orthogonal Complement of im(A))

Consider a subspace $V = \operatorname{im}(A)$ of \mathbb{R}^n , where

$$A = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_m \end{bmatrix}.$$

Then the orthogonal complement is,

$$V^{\perp} = \{ \vec{x} \in \mathbb{R}^n : \vec{v} \cdot \vec{x} = 0, \ \forall \vec{v} \in V \}$$

=
$$\{ \vec{x} \in \mathbb{R}^n : \vec{v}_i \cdot \vec{x} = 0, \ i = 1, \dots, m \}$$

=
$$\{ \vec{x} \in \mathbb{R}^n : \vec{v}_i^T \vec{x} = 0, \ i = 1, \dots, m \}.$$

In other words, V^{\perp} is the kernel of the matrix

$$A^T = \begin{bmatrix} \vec{\mathbf{v}}_1^T \\ \vdots \\ \vec{\mathbf{v}}_m^T \end{bmatrix}.$$

The Orthogonal Complement of the Image

Theorem (The Orthogonal Complement of the Image)

For any matrix A,

$$(\operatorname{im}(A))^{\perp} = \ker\left(A^{T}\right)$$

A Line in \mathbb{R}^3

Example (A Line in \mathbb{R}^3)

Consider the line

$$V = \operatorname{im} \left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right)$$

Then

$$V^{\perp} = \ker \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \end{pmatrix}$$

is the plane with equation $x_1 + 2x_2 + 3x_3 = 0$; as usual we can parameterize (to get a basis), and Gram-Schmidt Orthogonalize (to make it orthonormal)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} = \tilde{s} \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + \tilde{t} \frac{1}{\sqrt{70}} \begin{bmatrix} -3 \\ -6 \\ 5 \end{bmatrix}.$$

[FOCUS:: MATH] $\ker(A)$, $\ker(A^TA)$, and Invertibility of A^TA

Theorem

- **a.** If A is an $(m \times n)$ matrix, then $\ker(A) = \ker(A^T A)$.
- **b.** If A is an $(m \times n)$ matrix with $ker(A) = {\vec{0}}$, then $A^T A$ is invertible.

Proof (Proof)

- a. Clearly, the kernel of A is contained in the kernel of A^TA . Conversely, consider a vector $\vec{x} \in \ker(A^TA)$, so that $A^TA\vec{x} = \vec{0}$. Then, $A\vec{x}$ is in the image of A and in the kernel of A^T . Since $\ker(A^T)$ is the orthogonal complement of $\operatorname{im}(A)$ by the previous theorem, the vector $A\vec{x}$ is $\vec{0}$, [Notes#5.1], that is, $\vec{x} \in \ker(A)$.
- **b.** Note that A^TA is an $(n \times n)$ matrix. By part (a), $\ker(A^TA) = \{\vec{0}\}$, and A^TA is therefore invertible. [Notes#3.3]

Orthogonal Projections

Theorem

Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then, the orthogonal projection $\operatorname{proj}_V(\vec{x})$ is the vector in V closest to \vec{x} , in that

$$\|\vec{x} - \operatorname{proj}_V(\vec{x})\| < \|\vec{x} - \vec{v}\|, \ \forall \vec{v} \in V \setminus \operatorname{proj}_V(\vec{x}).$$

As usual $\vec{x}^{\parallel} \equiv \mathrm{proj}_{V}(\vec{x})$, and $\vec{x}^{\perp} = \vec{x} - \vec{x}^{\parallel}$ is the orthogonal "left-over" of \vec{x} after the projection. The distance $\|\vec{x}^{\perp}\|$ is the shortest distance from V to \vec{x} .

If we move, in V, a distance ϵ away from \vec{x}^{\parallel} , the distance from that point to \vec{x} is $\sqrt{\epsilon^2 + \|\vec{x}^{\perp}\|^2}$. [PYTHAGOREAN THEOREM].

The Error, or Residual

Consider a linear system $A\vec{x} = \vec{b}$, which is inconsistent; meaning that $\vec{b} \not\in \operatorname{im}(A)$.

An inconsistent linear system *does not have a solution* (in the traditional sense).

However, we can find the \vec{x}^* which is the best candidate in that it minimizes the distance between $A\vec{x}^*$ and \vec{b} (even though that distance is not zero).

We measure that distance

$$||A\vec{x} - \vec{b}|| \equiv ||\vec{b} - A\vec{x}||$$

and call it the error, or residual.

Least-Squares Solution

Definition (Least-Squares Solution)

Consider a linear system

$$A\vec{x}=\vec{b},$$

where A is an $(m \times n)$ matrix. A vector $\vec{x}^* \in \mathbb{R}^n$ is called a *least-squares solution* of this system if

$$\|\vec{b} - A\vec{x}^*\| \le \|\vec{b} - A\vec{x}\|, \ \forall \vec{x} \in \mathbb{R}^n.$$

The name *least-squares solution* comes from the fact that we a minimizing the sum-of-squares norm (length) of the error vector $\vec{e} = \vec{b} - A\vec{x}$.

If/When the system $A\vec{x} = \vec{b}$ is consistent the least-squares solution is the exact solution, and $\|\vec{b} - A\vec{x}^*\| = 0$.

Finding Least-Squares Solutions

How do we hunt down this wild beast?!

- We want the least-squares solutions \vec{x}^* to $A\vec{x} = \vec{b}$
- By definition we are looking for

$$\bullet \|\vec{b} - A\vec{x}^*\| \le \|\vec{b} - A\vec{x}\|, \ \forall \vec{x} \in \mathbb{R}^n.$$

- Our projection theorem says:
 - $A\vec{x}^* = \operatorname{proj}_V(\vec{b})$, where $V = \operatorname{im}(A)$.
- So, the error is in the orthogonal complement of im(A):

•
$$\vec{b} - A\vec{x}^* \in V^{\perp} = (\operatorname{im}(A))^{\perp} = \ker(A^T).$$

- Which means:
 - $A^T(\vec{b} A\vec{x}^*) = 0 \Leftrightarrow A^T A\vec{x} = A^T \vec{b}$.

Finding Least-Squares Solutions

The Normal Equations

Theorem (The Normal Equations)

The least-squares solutions of the system $A\vec{x} = \vec{b}$, are the exact solutions of the (consistent) system $A^T A \vec{x} = A^T \vec{b}$. The system $A^T A \vec{x} = A^T \vec{b}$ is called the **normal equations** of $A \vec{x} = \vec{b}$.

The case where $\ker(A) = \{\vec{0}\}\$ is of particular importance, since in that case the matrix A^TA is invertible, and we can give a closed form expression for the solution:

Closed Form Least Square Solutions

Theorem (Closed Form Expression for the Least Squares Solution)

If $\ker(A) = \{\vec{0}\}\$, the linear system $A\vec{x} = \vec{b}$ has the unique least-squares solution

$$\vec{x}^* = (A^T A)^{-1} A^T \vec{b},$$

and

$$A\vec{x}^* = \operatorname{proj}_{\operatorname{im}(A)}(\vec{b}) = \underbrace{A(A^TA)^{-1}A^T}_{P}\vec{b},$$

where the matrix $P = A(A^TA)^{-1}A^T$ is the matrix of the orthogonal projection onto im(A).

Note: Just because you can write down a mathematical expression, it does not mean using it for anything practical is a good idea.

A BIG Warning!

WARNING

Whereas the least-squares solution, and orthogonal projection CAN be expressed as

$$(A^TA)^{-1}A^T\vec{b}$$
, and $A(A^TA)^{-1}A^T\vec{b}$, respectively.

Anyone using these expressions outside of small homework problems are likely to run into **Big Trouble**!!!

We do not have the tools (eigenvalues) to explain why yet, but the warning stands!

So... What Should One Do?

Well, recall the Gram-Schmidt Process, and the QR-factorization... If we have computed QR = A, then the following is true:

THE SOLUTION	$A\vec{x}$	=	$ec{b}$
	QRx	=	$ec{b}$
multiply by Q^T	$Q^T Q R \vec{x}$	=	$Q^T ec{b}$
$Q^T Q = I_n$	$R\vec{x}$	=	$Q^T \vec{b}$
solve	<i>x</i> **	=	$R^{-1}Q^{T}\tilde{\mathbf{b}}$
THE PROJECTION	QR <i>x</i> **	=	$QRR^{-1}Q^T\vec{b}$
	QR <i>就</i> *	=	$\mathbf{Q}\mathbf{Q}^T\mathbf{\tilde{b}}$

		use	not
$ec{ec{x}^*}$ $ ext{proj}_{ ext{im}(\mathcal{A})}(ec{b})$	=	$R^{-1}Q^{T}\vec{b}$ $QQ^{T}\vec{b}$	$(A^T A)^{-1} A^T \vec{b}$ $A(A^T A)^{-1} A^T \vec{b}$

More Examples and Discussion???

It makes sense to return to the Least-Squares solutions with more tools (eigenvalues) in hand; but, alas, we will run out of time this semester.

Some additional examples and discussion can be found in [AVAILABLE ONLINE]:

Notes#
10, 11
6
8, 14
22, 23, 24

Clearly, there's a lot more to say...

