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Student Learning Objectives SLOs: Orthogonal Transformations and Orthogonal Matrices

SLOs 5.3 Orthogonal Transformations and Orthogonal Matrices

After this lecture you should:

Know what Orthogonal Transformations are; and their
relation to Orthonormal Bases.

Know the Properties of Orthogonal Matrices.

Be able to perform an Orthogonal Projection using
Orthonormal Basis you have constructed.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Orthogonal Transformations

For many reasons, we tend to “like” linear transformations that
preserve the norm (length) of vectors; and angles between vectors:

Definition (Orthogonal Transformations)

A linear transformation T : Rn 7→ R
n is called orthogonal if it

preserves the norm (length) of vectors:

‖T (~x)‖ = ‖~x‖, ∀~x ∈ R
n.

If T (~x) = A~x is an orthogonal transformation, we say that A is an
orthogonal (or unitary, when it has complex entries) matrix.

Related topic: “Isometries” in [Math 524 (Notes#7.2)].
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Example: Rotations

Example (Rotations)

The rotation

T (~x) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

~x

is an orthogonal transformation from R
2 to R

2, and ∀θ.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Rotation: 0

u

v

w

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Rotation: pi/3

u

v

w

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Rotation: 2*pi/3

u

v

w

Peter Blomgren 〈blomgren@sdsu.edu〉 5.3. Orthogonal Transforms and Matrices — (5/51)



Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Example: Reflections

Example (Reflections)

Consider a subspace V of Rn. For a vector ~x ∈ R
n, the vector

refV (~x) = ~x‖ − ~x⊥ ≡ 2projV (~x)− ~x is the reflection of ~x in V . We show
that reflections are orthogonal transformations:

By the [Pythagorean Theorem], we have

‖refV (~x)‖2 =
∥
∥
∥~x‖ − ~x⊥

∥
∥
∥

2

=
∥
∥
∥~x‖

∥
∥
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+
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2
=

∥
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∥~x‖

∥
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∥
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+
∥
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∥
2
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Preservation of Orthogonality

Theorem (Preservation of Orthogonality)

Consider an orthogonal transformation T : Rn 7→ R
n. If

the vectors ~v , ~w ∈ R
n are orthogonal, then so are T (~v) and

T (~w). Pr
oo
f

Proof (Preservation of Orthogonality {Short: relies on fundamental properties/definitions})

By the theorem of Pythagoras, we have to show that

‖T (~v) + T (~w)‖2 = ‖T (~v)‖2 + ‖T (~w)‖2 :

‖T (~v) + T (~w)‖2 = ‖T (~v + ~w)‖2 [Linearity of T ]

= ‖~v + ~w‖2 [Orthogonality of T ]

= ‖~v‖2 + ‖~w‖2 [~v ⊥ ~w ]

= ‖T (~v)‖2 + ‖T (~w)‖2 [Orthogonality of T ]
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Orthogonal Transformations and Orthonormal Bases

Theorem (Orthogonal Transformations and Orthonormal Bases)

a. A linear transformation T : Rn 7→ R
n is

orthogonal if and only if the vectors
T (~e1), . . . ,T (~en) form an orthonormal basis of
R
n.

b. An (n × n) matrix A is orthogonal if and only if
its columns form an orthonormal basis of Rn.

Pr
oo
f

[Proof in Supplemental Slides]
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

[Proof] Orthogonal Transformations and Orthonormal Bases [Focus ::Math]

Proof (Part (a))

⇒ If T is orthogonal, then, by definition, the T (~ek) are unit vectors,
and orthogonal by the previous theorem; hence a basis for Rn.

⇐ Conversely, suppose T (~e1), . . . ,T (~en) form an orthonormal ba-
sis. Consider a vector ~x = x1~e1 + · · ·+ xn~en ∈ R

n. Then

‖T (~x)‖2 = ‖x1T (~e1) + · · ·+ xnT (~en)‖2 [Linearity]

= ‖x1T (~e1)‖2 + · · ·+ ‖xnT (~en)‖2 [Pythagoras]

= x21 ‖T (~e1)‖2 + · · ·+ x2n ‖T (~en)‖2

= x21 + · · ·+ x2n

= ‖~x‖2 .
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

[Proof] Orthogonal Transformations and Orthonormal Bases [Focus ::Math]

Proof (Part (b))

This follows from the result from [Notes#2.1] restated below...

Theorem (The Columns of the Matrix of a Linear Transformation)

Consider a linear transformation T : Rm 7→ R
n. Then, the matrix

of T is

A =





| | |
T (~e1) T (~e2) . . . T (~em)

| | |



 ,

where ~ei ∈ R
m is the vector of all zeros, except entry #i which is 1.

Peter Blomgren 〈blomgren@sdsu.edu〉 5.3. Orthogonal Transforms and Matrices — (10/51)



Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

A Warning

WARNING!!!

A matrix with orthogonal columns need not be an orthogonal
matrix, e.g.

A =

[
4 −3
3 4

]

.

Example (A =

[
4 −3
3 4

]
has Orthogonal Columns, but is Not Orthogonal)

~x =

[
1
1

]

, ‖~x‖ =
√
2, A~x =

[
1
7

]

, ‖A~x‖ =
√
50
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Products and Inverses of Orthogonal Matrices

Theorem (Products and Inverses of Orthogonal Matrices)

a. The product AB of two orthogonal (n × n) matrices A and B

is orthogonal.

b. The inverse A−1 of an orthogonal (n × n) matrix A is
orthogonal.

Proof ( {Short: relies on fundamental properties/definitions})

a. the linear transformation T (~x) = AB~x preserves norm
(length), since ‖T (~x)‖ = ‖A(B~x)‖ = ‖B~x‖ = ‖~x‖.

b. the linear transformation T (~x) = A−1~x preserves norm
(length), since

∥
∥A−1~x

∥
∥ =

∥
∥AA−1~x

∥
∥ = ‖~x‖.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Example: Properties of the Transpose of an Orthonormal Matrix

Example

Consider the orthogonal matrix A, and the matrix where the ij entry has been shifted
to the ji position (B):

A =
1

7




2 6 3
3 2 −6
6 −3 2



 , B =
1

7




2 3 6
6 2 −3
3 −6 2



 .

We compute

BA =
1

49




49 0 0
0 49 0
0 0 49



 =




1 0 0
0 1 0
0 0 1



 .

The kℓ entry in BA is the dot product of the kth row of B, and the ℓth column of A;

by construction this is the dot product of the kth and ℓth columns of A; since A is
orthogonal this gives 1 when k = ℓ, and 0 otherwise.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Matrix Transpose, Symmetric and Skew-symmetric Matrices

Definition (Matrix Transpose, Symmetric and Skew-symmetric Matrices)

Consider an (m × n) matrix A.

The transpose AT of A is the (n×m) matrix whose ijth entry is the
ji th entry of A: The roles of rows and columns are reversed.

We say that a square matrix A is symmetric if AT = A, and

A is called skew-symmetric if AT = −A.

Example (Transpose)

A =

[
1 2 3
4 5 6

]

, AT =





1 4
2 5
3 6




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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

[Focus ::Math] Symmetric (2× 2) Matrices [Linear Spaces]

Example (Symmetric (2× 2) Matrices)

The symmetric (2× 2) matrices are of the form

[
a b

b c

]

They form a 3-dimensional subspace of R2×2 with basis

{[
1 0
0 0

]

,

[
0 1
1 0

]

,

[
0 0
0 1

]}

Note: R2×2 (the collection of all 2-by-2 matrices) is a linear space
(formal definition on the next slide)...
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

[Focus ::Math] Linear Space Definition [Linear Spaces]

Definition (Linear Space)

A Linear Space V is a set with a definition (rule) for addition “+”, and a definition
(rule) for scalar multiplication; and the following must hold (∀u, v ,w ∈ V , ∀c, k ∈ R)

a. v + w ∈ V .

b. kv ∈ V .

c. (u + v) + w = u + (v + w).

d. u + v = v + u.

e. ∃n ∈ V : u + n = u, [Neutral Element, denoted by 0]

f. ∃û: u + û = 0; û unique, and denoted by −u.

g. k(u + v) = ku + kv .

h. (c + k)u = cu + ku.

i. c(ku) = (ck)u.

j. 1u = u.

in R
2×2, the neutral element is n =

[
0 0
0 0

]
.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

[Focus ::Math] Skew-Symmetric (2× 2) Matrices [Linear Spaces]

Example (Skew-Symmetric (2× 2) Matrices)

The symmetric (2× 2) matrices are of the form

[
0 b

−b 0

]

They form a 1-dimensional subspace of R2×2 with basis

{[
0 1

−1 0

]}

Note: dim(R2×2) = 4;

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is a basis.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Transpose of a Vector

Example (Transpose of a Vector)

~v =





1
2
3



 ⇒ ~vT =
[
1 2 3

]

We use this all the time:

Theorem

If ~v and ~w are two (column) vectors ∈ R
n, then

~v · ~w ≡ ~vT ~w
Dot Product ”Matrix” Product
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Orthogonal Matrices: AT and A−1

Theorem

Consider an (n × n) matrix A. The matrix A is orthogonal if and only if
ATA = In or, equivalently, if A−1 = AT .

Proof ( {Short: relies on fundamental properties/definitions})

Write A in terms of its columns:

A =
[
~v1 . . . ~vn,

]

then

ATA =






~vT
1
...
~vT
n






[
~v1 . . . ~vn

]
=






~vT
1 ~v1 . . . ~vT

1 ~vn
...

. . .
...

~vT
n ~v1 . . . ~vT

n ~vn






this is In if and only if A is orthogonal.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Orthogonal Matrices: Summary

Summary :: Orthogonal Matrices

Consider an (n × n) matrix A. The following statements are
equivalent:

i. A is an orthogonal matrix.

ii. The transformation T (~x) = A~x preserves norm (length), that
is, ‖A~x‖ = ‖~x‖ ∀~x ∈ R

n.

iii. The columns of A form an orthonormal basis of Rn.

iv. ATA = In.

v. A−1 = AT .

vi. A preserves the dot product, meaning that (A~x) · (A~y) = ~x · ~y
∀~x , ~y ∈ R

n.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Properties of the Matrix Transpose

Theorem (Properties of the Transpose)

a. (A+ B)T = AT + BT ∀A,B ∈ R
m×n

b. (kA)T = kAT ∀A ∈ R
m×n, ∀k ∈ R

c. (AB)T = (BTAT ) ∀A ∈ R
m×p, ∀B ∈ R

p×n

d. rank(A) = rank(AT ) ∀matrices A

e. (AT )−1 = (A−1)T ∀invertible matrices A
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

The Matrix of an Orthogonal Projection

We can use our expanded matrix-notation-language to express orthogonal
projections.... First consider

projL(~x) = (~u1 · ~x)~u1

onto a line L in R
n; where ~u1 is a unit vector in L. Think of this vector as

an (n × 1) matrix, and the scalar (~u1 · ~x) as an (1× 1) matrix; we can
rearrange

projL(~x) = ~u1(~u1 · ~x) 1
= ~u1(~u

T
1 ~x)

2
= ~u1~u

T
1 ~x

3
= (~u1~u

T
1 )~x

4
= A~x

where A = ~u1~u
T
1 .

! We derived an expression for A (for action in R
2) back in [Notes#2.2].

1 Notation; 2 Associative property for matrix multiplication; 3 Associative property
for matrix multiplication; 4 “Book-keeping”/interpretation.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Vector-Vector Products

New: Outer Product R
n × R

n 7→ R
n×n

A
︸︷︷︸

[n×n]

= ~u~vT
︸︷︷︸

[n×1]×[1×n]

is known as the outer product.

Old: Inner Product / Dot Product R
n × R

n 7→ R
1

s
︸︷︷︸

[1×1]

= ~uT~v
︸︷︷︸

[1×n]×[n×1]

Upcoming: Cross Product R
3 × R

3 7→ R
3, (or R7 × R

7 7→ R
7)

~q
︸︷︷︸

[3×1]

= ~u
︸︷︷︸

[3×1]

× ~v
︸︷︷︸

[3×1]

,
(

or ~w
︸︷︷︸

[7×1]

= ~u
︸︷︷︸

[7×1]

× ~v
︸︷︷︸

[7×1]

)

Peter Blomgren 〈blomgren@sdsu.edu〉 5.3. Orthogonal Transforms and Matrices — (23/51)



Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

The Matrix of an Orthogonal Projection

We can apply the same idea to the general projection formula

projV (~x) = (~u1 · ~x)~u1 + · · ·+ (~un · ~x)~un
= ~u1~u

T
1 ~x + · · ·+ ~un~u

T
n ~x

= (~u1~u
T
1 + · · ·+ ~un~u

T
n )

︸ ︷︷ ︸

A

~x

and we can also write

A =
[
~u1 · · · ~un

]






~uT1
...
~uTn






We summarize on the next slide...
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

The Matrix of an Orthogonal Projection: Summary

Theorem (The Matrix of an Orthogonal Projection: Summary)

Consider a subspace V of Rn with orthonormal basis ~q1, . . . , ~qm.
The matrix P of the orthogonal projection onto V is

P = QQT , where Q =
[
~q1 · · · ~qm

]
.

T
Q

T
Q

T
Q

T
Q

Q

[n x m] [m x n]

[m x m][n x m][m x n]

[n x n]

Q

QQ

Note that it is QQT not QTQ

P is symmetric — PT = (QQT )T = (QT )TQT = QQT = P .
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Example 1 of 2

In (5.2.7) [see learning glass] we orthogonaliz(ed) the vectors

~v1 =





2
2
1



 , ~v2 =





−2
1
2



 , ~v3 =





18
0
0



 ,

using the Gram-Schmidt method, and get(got)

~q1 =





2/3
2/3
1/3



 , ~q2 =





−2/3
1/3
2/3



 , ~q3 =





1/3
−2/3
2/3



 ,

Let’s define {Q1 ∈ R
3×1, Q2 ∈ R

3×2, Q3 ∈ R
3×3}

Q1 =
[
~q1
]
, Q2 =

[
~q1 ~q2

]
, Q3 =

[
~q1 ~q2 ~q3

]
.
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Examples, and Fundamental Theorems
Products, Inverses, and Transposes of Orthogonal Matrices
The Matrix of an Ortho. Projection, using an Ortho. Basis

Example 2 of 2

Projection Matrices Orthonormality Confirmation

P1 = Q1Q
T
1 =

1

9





4 4 2
4 4 2
2 2 1



 QT
1 Q1 =

[
1
]

P2 = Q2Q
T
2 =

1

9





8 2 −2
2 5 4

−2 4 5



 QT
2 Q2 =

[
1 0
0 1

]

P3 = Q3Q
T
3 =





1 0 0
0 1 0
0 0 1



 QT
3 Q3 =





1 0 0
0 1 0
0 0 1





Note, Q1Q
T
1 , Q2Q

T
2 , and Q3Q

T
3 are the matrices of orthogonal

projections onto a line L = span(~q1), a plane V = span(~q1, ~q2), and
R

3 = span(~q1, ~q2, ~q3).
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Suggested Problems 5.3
Lecture –Book Roadmap

Suggested Problems 5.3

Available on Learning Glass videos:
5.3 — 1, 2, 5, 6, 13, 15, 17, 19, 28, 32, 33, 36, 41
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Orthogonal Transformations and Orthogonal Matrices
Suggested Problems

Suggested Problems 5.3
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

5.1 §4.1, §4.2, §4.4
5.2 §4.1, §4.2, §4.4
5.3 §4.1, §4.2, §4.4
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Supplemental Material
Supplemental Examples, Revisited

Metacognitive Reflection
Problem Statements 5.3

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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Supplemental Material
Supplemental Examples, Revisited

Metacognitive Reflection
Problem Statements 5.3

(5.3.1), (5.3.2)

(5.3.1) Is the given matrix Orthogonal?

A =

[
0.6 0.8
0.8 0.6

]

(5.3.2) Is the given matrix Orthogonal?

A =

[
−0.8 0.6
0.6 0.8

]
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Supplemental Material
Supplemental Examples, Revisited

Metacognitive Reflection
Problem Statements 5.3

(5.3.5), (5.3.6)

If the (n × n) matrices A and B are orthogonal, are the following
matrices orthogonal as well?

(5.3.5) C = 3A

(5.3.6) D = −B
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Supplemental Material
Supplemental Examples, Revisited

Metacognitive Reflection
Problem Statements 5.3

(5.3.13), (5.3.15), (5.3.17), (5.3.19)

If the (n× n) matrices A and B are symmetric, and B is invertible;
are the following matrices symmetric as well?

(5.3.13) C = 3A

(5.3.15) D = AB

(5.3.17) F = B−1

(5.3.19) G = 2In + 3A− 4A2
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Supplemental Material
Supplemental Examples, Revisited

Metacognitive Reflection
Problem Statements 5.3

(5.3.28)

(5.3.28) Consider an (n× n) matrix A. Show that A is orthogonal
if-and-only-if: A preserves the dot product; i.e.

(A~x) · (A~y) = ~x · ~y

for all ~x , ~y ∈ R
n.

Hint, show:

1 ATA = In ⇒ (A~x) · (A~y) = ~x · ~y
2 (A~x) · (A~y) = ~x · ~y ⇒ L(~x) = A~x is norm (length)-preserving.
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Supplemental Material
Supplemental Examples, Revisited

Metacognitive Reflection
Problem Statements 5.3

(5.3.32), (5.3.33)

(5.3.32–a) Consider an (n×m) matrix A such that ATA = Im. Is
is necessarily true that AAT = In? (Explain!)

(5.3.32–b) Consider an (n × n) matrix A such that ATA = In. Is
is necessarily true that AAT = In? (Explain!)

(5.3.33) Find all orthogonal (2× 2) matrices.

Peter Blomgren 〈blomgren@sdsu.edu〉 5.3. Orthogonal Transforms and Matrices — (35/51)



Supplemental Material
Supplemental Examples, Revisited

Metacognitive Reflection
Problem Statements 5.3

(5.3.36)

(5.3.36) Find an orthogonal matrix of the form

A =





2/3 1
√
2 a

2/3 −1/
√
2 b

1/3 0 c




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Supplemental Material
Supplemental Examples, Revisited

Metacognitive Reflection
Problem Statements 5.3

(5.3.41)

(5.3.41) Find the matrix A of the orthogonal projection onto the
line in R

n spanned by the vector

~1n =








1
1
...
1







∈ R

n
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Supplemental Material
Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

Revisiting the “Why?!?”

This section provides one important answer to “why?!” we should
care about orthogonality, orthogonal complements, and orthogonal
projections.

We will talk about Least Squares Solutions to non-consistent linear
systems. (From a slightly different point of view than [Notes#5.2:

Supplement].)

The least squares formulation is useful for fitting model parameters
to data and has applications in a wide range of fields: chemistry,
physics, engineering, finance, economics, etc.

It is sometimes (often?) referred to as “Linear Regression.”
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Supplemental Material
Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

The Orthogonal Complement of the Image

Example (The Orthogonal Complement of im(A))

Consider a subspace V = im(A) of Rn, where

A =
[
~v1 · · · ~vm

]
.

Then the orthogonal complement is,

V⊥ = {~x ∈ R
n : ~v · ~x = 0, ∀~v ∈ V }

= {~x ∈ R
n : ~vi · ~x = 0, i = 1, . . . ,m}

=
{
~x ∈ R

n : ~vT
i
~x = 0, i = 1, . . . ,m

}
.

In other words, V⊥ is the kernel of the matrix

AT =





~vT
1

...

~vT
m




.
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Supplemental Material
Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

The Orthogonal Complement of the Image

Theorem (The Orthogonal Complement of the Image)

For any matrix A,

(im(A))⊥ = ker
(

AT
)
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Supplemental Material
Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

A Line in R
3

Example (A Line in R
3)

Consider the line

V = im









1
2
3









Then
V⊥ = ker

([
1 2 3

])

is the plane with equation x1 + 2x2 + 3x3 = 0; as usual we can
parameterize (to get a basis), and Gram-Schmidt Orthogonalize (to make
it orthonormal)





x1
x2
x3



 = s





−2
1
0



+ t





−3
0
1



 = s̃
1√
5





−2
1
0



+ t̃
1√
70





−3
−6
5



 .
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Supplemental Material
Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

[Focus ::Math] ker(A), ker(ATA), and Invertibility of ATA

Theorem

a. If A is an (m × n) matrix, then ker(A) = ker(ATA).

b. If A is an (m× n) matrix with ker(A) = {~0}, then ATA is invertible.

Proof (Proof)

a. Clearly, the kernel of A is contained in the kernel of ATA.
Conversely, consider a vector ~x ∈ ker(ATA), so that ATA~x = ~0.
Then, A~x is in the image of A and in the kernel of AT . Since
ker(AT ) is the orthogonal complement of im(A) by the previous
theorem, the vector A~x is ~0, [Notes#5.1], that is, ~x ∈ ker(A).

b. Note that ATA is an (n × n) matrix. By part (a), ker(ATA) = {~0},
and ATA is therefore invertible. [Notes#3.3]

Peter Blomgren 〈blomgren@sdsu.edu〉 5.3. Orthogonal Transforms and Matrices — (42/51)



Supplemental Material
Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

Orthogonal Projections

Theorem

Consider a vector ~x ∈ R
n and a subspace V of Rn. Then, the

orthogonal projection projV (~x) is the vector in V closest to ~x , in
that

‖~x − projV (~x)‖ < ‖~x − ~v‖, ∀~v ∈ V \ projV (~x).

As usual ~x‖ ≡ projV (~x), and ~x⊥ = ~x − ~x‖ is the orthogonal
“left-over” of ~x after the projection. The distance ‖~x⊥‖ is the
shortest distance from V to ~x .

If we move, in V , a distance ǫ away from ~x‖, the distance from
that point to ~x is

√

ǫ2 + ‖~x⊥‖2. [Pythagorean Theorem].
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Supplemental Material
Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

The Error, or Residual

Consider a linear system A~x = ~b, which is inconsistent; meaning
that ~b 6∈ im(A).

An inconsistent linear system does not have a solution (in the
traditional sense).

However, we can find the ~x∗ which is the best candidate in that it
minimizes the distance between A~x∗ and ~b (even though that
distance is not zero).

We measure that distance

‖A~x − ~b‖ ≡ ‖~b − A~x‖

and call it the error, or residual.
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Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

Least-Squares Solution

Definition (Least-Squares Solution)

Consider a linear system
A~x = ~b,

where A is an (m × n) matrix. A vector ~x∗ ∈ R
n is called a

least-squares solution of this system if

‖~b − A~x∗‖ ≤ ‖~b − A~x‖, ∀~x ∈ R
n.

The name least-squares solution comes from the fact that we a
minimizing the sum-of-squares norm (length) of the error vector
~e = ~b − A~x .

If/When the system A~x = ~b is consistent the least-squares solution
is the exact solution, and ‖~b − A~x∗‖ = 0.
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Supplemental Material
Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

Finding Least-Squares Solutions

How do we hunt down this wild beast?!

We want the least-squares solutions ~x∗ to A~x = ~b

By definition we are looking for

‖~b − A~x∗‖ ≤ ‖~b − A~x‖, ∀~x ∈ R
n.

Our projection theorem says:

A~x∗ = projV (~b), where V = im(A).

So, the error is in the orthogonal complement of im(A):

~b − A~x∗ ∈ V⊥ = (im(A))⊥ = ker(AT ).

Which means:

AT (~b − A~x∗) = 0 ⇔ ATA~x = AT~b.
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Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

Finding Least-Squares Solutions The Normal Equations

Theorem (The Normal Equations)

The least-squares solutions of the system A~x = ~b, are the exact
solutions of the (consistent) system ATA~x = AT~b. The system
ATA~x = AT~b is called the normal equations of A~x = ~b.

The case where ker(A) = {~0} is of particular importance, since in
that case the matrix ATA is invertible, and we can give a closed
form expression for the solution:
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Supplemental Examples, Revisited

Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

Closed Form Least Square Solutions

Theorem (Closed Form Expression for the Least Squares Solution)

If ker(A) = {~0}, the linear system A~x = ~b has the unique least-squares
solution

~x∗ = (ATA)−1AT~b,

and
A~x∗ = proj

im(A)(~b) = A(ATA)−1AT

︸ ︷︷ ︸

P

~b,

where the matrix P = A(ATA)−1AT is the matrix of the orthogonal
projection onto im(A).

Note: Just because you can write down a mathematical expression, it does
not mean using it for anything practical is a good idea.
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Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

A BIG Warning!

WARNING

Whereas the least-squares solution, and orthogonal projection CAN
be expressed as

(ATA)−1AT~b, and A(ATA)−1AT~b, respectively.

Anyone using these expressions outside of small homework
problems are likely to run into Big Trouble!!!

We do not have the tools (eigenvalues) to explain why yet, but the
warning stands!
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Orthogonal Complements: Redux
Orthogonal Projections: Redux
Least Squares Data Fitting

So... What Should One Do?

Well, recall the Gram-Schmidt Process, and the QR-factorization...
If we have computed QR = A, then the following is true:

The Solution A~x = ~b

QR~x = ~b

multiply by QT QTQR~x = QT~b

QTQ = In R~x = QT~b

solve ~x∗ = R−1QTb̃

The Projection QR~x∗ = QRR−1QT~b

QR~x∗ = QQTb̃

use not

~x∗ = R−1QT~b (ATA)−1AT~b

proj
im(A)(~b) = QQT~b A(ATA)−1AT~b
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Orthogonal Projections: Redux
Least Squares Data Fitting

More Examples and Discussion???

It makes sense to return to the Least-Squares solutions with more tools
(eigenvalues) in hand; but, alas, we will run out of time this semester.

Some additional examples and discussion can be found in [Available Online]:

Class Notes#

Math 541R.I.P. 10, 11
Math 524 6
Math 543 8, 14
Math 693a 22, 23, 24

Clearly, there’s a lot more to say...
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