Math 254：Introduction to Linear Algebra
Notes \＃5．3－Orthogonal Transformations and Orthogonal Matrices

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

$$
\text { Spring } 2022
$$

（Revised：April 4，2022）
5．3．Orthogonal Transforms and Matrices
SLOs：Orthogonal Transformations and Orthogonal Matrices
Orthogonal Transformations and Orthogonal Matrices
（1）Student Learning Objectives
－SLOs：Orthogonal Transformations and Orthogonal Matrices

（2）
Orthogonal Transformations and Orthogonal Matrices
－Examples，and Fundamental Theorems
－Products，Inverses，and Transposes of Orthogonal Matrices
－Matrix of Orthogonal Projection，using Orthonormal BasisSuggested Problems
－Suggested Problems 5.3
－Lecture－Book Roadmap
4）Supplemental Material
－Metacognitive Reflection
－Problem Statements 5.3
－Orthogonal Complements：Redux
－Orthogonal Projections：Redux
－Least Squares Data Fitting

Peter Blomgren＜blomgren＠sdsu．edu〉	5．3．Orthogonal Transforms and Matrices－（2／51）
Orthogonal Transformations and Orthogonal Matrices Suggested Problems	Examples，and Fundamental Theorems Products，Inverses，and Transposes of Orthogonal Matrices The Matrix of an Ortho．Projection，using an Ortho．Basis

Orthogonal Transformations
For many reasons，we tend to＂like＂linear transformations that preserve the norm（length）of vectors；and angles between vectors：

Definition（Orthogonal Transformations）

A linear transformation $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is called orthogonal if it preserves the norm（length）of vectors：

$$
\|T(\vec{x})\|=\|\vec{x}\|, \forall \vec{x} \in \mathbb{R}^{n}
$$

If $T(\vec{x})=A \vec{x}$ is an orthogonal transformation，we say that A is an orthogonal（or unitary，when it has complex entries）matrix．

Related topic：＂Isometries＂in［Math 524 （Notes\＃7．2）］． The Matrix of an Ortho．Projection，using an Ortho．Basis

Orthogonal Transformations and Orthogonal Matrices Suggested Problems
xamples，and Fundamental Theorem
Inverses，and Transposes of Orthogonal Matrices The Matrix of an Ortho．Projection，using an Ortho．Basis

Example：Rotations

Example（Rotations）

The rotation

$$
T(\vec{x})=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \vec{x}
$$

is an orthogonal transformation from \mathbb{R}^{2} to \mathbb{R}^{2} ，and $\forall \theta$ ．

Peter Blomgren 〈blomgren＠sdsu．edu〉
5．3．Orthogonal Transforms and Matrices
－$(5 / 51)$
Orthogonal Transformations and Orthogonal Matrices Examples，and Fundamental Theorems Products，Inverses，and Transposes of Orthogonal Matrice The Matrix of an Ortho．Projection，using an Ortho．Basis

Preservation of Orthogonality

Theorem（Preservation of Orthogonality）

Consider an orthogonal transformation $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ ．If the vectors $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ are orthogonal，then so are $T(\vec{v})$ and $T(\vec{w})$ ．

Proof（Preservation of Orthogonality \｛Short：relies on fundamental properties／definitions\})
By the theorem of Pythagoras，we have to show that

$$
\begin{array}{rlrl}
\| T(\vec{v}) & +T(\vec{w})\left\|^{2}=\right\| T(\vec{v})\left\|^{2}+\right\| T(\vec{w}) \|^{2}: \\
\|T(\vec{v})+T(\vec{w})\|^{2} & =\|T(\vec{v}+\vec{w})\|^{2} & & {[\text { Linearity of } T]} \\
& =\|\vec{v}+\vec{w}\|^{2} & & {[\text { Orthogonality of } T]} \\
& =\|\vec{v}\|^{2}+\|\vec{w}\|^{2} & & {[\vec{v} \perp \vec{w}]} \\
& =\|T(\vec{v})\|^{2}+\|T(\vec{w})\|^{2} & & {[\text { Orthogonality of } T]}
\end{array}
$$

Theorem（Orthogonal Transformations and Orthonormal Bases）

a．A linear transformation $T: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is orthogonal if and only if the vectors $T\left(\vec{e}_{1}\right), \ldots, T\left(\vec{e}_{n}\right)$ form an orthonormal basis of \mathbb{R}^{n} ．

b．An $(n \times n)$ matrix A is orthogonal if and only if its columns form an orthonormal basis of \mathbb{R}^{n} ．

Proof（Part（a））

\Rightarrow If T is orthogonal，then，by definition，the $T\left(\vec{e}_{k}\right)$ are unit vectors，
Proof（Part（b））
This follows from the result from［Notes\＃2．1］restated below．．． and orthogonal by the previous theorem；hence a basis for \mathbb{R}^{n} ．
\Leftarrow Conversely，suppose $T\left(\vec{e}_{1}\right), \ldots, T\left(\vec{e}_{n}\right)$ form an orthonormal ba－ sis．Consider a vector $\vec{x}=x_{1} \vec{e}_{1}+\cdots+x_{n} \vec{e}_{n} \in \mathbb{R}^{n}$ ．Then

$$
\begin{array}{rlrl}
\|T(\vec{x})\|^{2} & =\left\|x_{1} T\left(\vec{e}_{1}\right)+\cdots+x_{n} T\left(\vec{e}_{n}\right)\right\|^{2} & & \text { [Linearity] } \\
& =\left\|x_{1} T\left(\vec{e}_{1}\right)\right\|^{2}+\cdots+\left\|x_{n} T\left(\vec{e}_{n}\right)\right\|^{2} & \text { [Pythagoras] } \\
& =x_{1}^{2}\left\|T\left(\vec{e}_{1}\right)\right\|^{2}+\cdots+x_{n}^{2}\left\|T\left(\vec{e}_{n}\right)\right\|^{2} & \\
& =x_{1}^{2}+\cdots+x_{n}^{2} & \\
& =\|\vec{x}\|^{2} . &
\end{array}
$$

Theorem（The Columns of the Matrix of a Linear Transformation） Consider a linear transformation $T: \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ ．Then，the matrix of T is

$$
A=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \ldots & T\left(\vec{e}_{m}\right) \\
\mid & \mid & & \mid
\end{array}\right]
$$

where $\vec{e}_{i} \in \mathbb{R}^{m}$ is the vector of all zeros，except entry $\# i$ which is 1 ．

Peter Blomgren 〈blomgren＠sdsu．edu〉
5．3．Orthogonal Transforms and Matrices
Examples，and Fundamental Theorems
Products，Inverses and Transposes of Orthogomal Matrices The Matrix of an Ortho．Projection，using an Ortho．Basis

A Warning

．．．．．．．．WARNING！！

A matrix with orthogonal columns need not be an orthogonal matrix，e．g．

$$
A=\left[\begin{array}{rr}
4 & -3 \\
3 & 4
\end{array}\right] .
$$

$$
\text { Example (} A=\left[\begin{array}{rr}
4 & -3 \\
3 & 4
\end{array}\right] \text { has Orthogonal Columns, but is Not Orthogonal) }
$$

$$
\vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\|\vec{x}\|=\sqrt{2}, \quad A \vec{x}=\left[\begin{array}{l}
1 \\
7
\end{array}\right], \quad\|A \vec{x}\|=\sqrt{50}
$$

Proof（

\｛Short：relies on fundamental properties／definitions\})
a．the linear transformation $T(\vec{x})=A B \vec{x}$ preserves norm （length），since $\|T(\vec{x})\|=\|A(B \vec{x})\|=\|B \vec{x}\|=\|\vec{x}\|$ ．
b．the linear transformation $T(\vec{x})=A^{-1} \vec{x}$ preserves norm （length），since $\left\|A^{-1} \vec{x}\right\|=\left\|A A^{-1} \vec{x}\right\|=\|\vec{x}\|$ ．
Theorem（Products and Inverses of Orthogonal Matrices）
a．The product $A B$ of two orthogonal $(n \times n)$ matrices A and B is orthogonal．
b．The inverse A^{-1} of an orthogonal $(n \times n)$ matrix A is

5．3．Orthogonal Transforms and Matrices

Orthogonal Transformations and Orthogonal Matrices Suggested Problems

Examples，and Fundamental Theorems
Examples，and Fundamental Theorems Products，Inverses，and Transposes of Orthogonal Matrices
The Matrix of an Ortho．Projection，using an Ortho．Basis

Products and Inverses of Orthogonal Matrices
orthogonal． The Matrix of an Ortho．Projection，using an Ortho．Basis

Orthogonal Transformations and Orthogonal Matrices Suggested Problems
xamples，and Fundamental Theorems
roducts，Inverses，and Transposes of Orthogonal Matrices The Matrix of an Ortho．Projection，using an Ortho．Basis

Matrix Transpose，Symmetric and Skew－symmetric Matrices

Definition（Matrix Transpose，Symmetric and Skew－symmetric Matrices）

 Consider an（ $m \times n$ ）matrix A ．－The transpose A^{T} of A is the（ $n \times m$ ）matrix whose $i j^{\text {th }}$ entry is the $j i^{\text {th }}$ entry of A ：The roles of rows and columns are reversed．
－We say that a square matrix A is symmetric if $A^{T}=A$ ，and
－A is called skew－symmetric if $A^{T}=-A$ ．

Example（Transpose）

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Peter Blomgren 〈blongrenosdsu．eduy	5．3．Orthogonal Transorms and Matrices $\quad-(14 / 51)$
Orthogonal Transformations and Orthogonal Matrices Suggested Problems	Products，Inverses，and Transposes of Orthogonal Matrices The Matrix of an Ortho．Projection，using an Ortho．Basis
［Focus ：：Math］Linear Space	Definition［Linear Spaces］

Definition（Linear Space）

A Linear Space V is a set with a definition（rule）for addition＂+ ＂，and a definition （rule）for scalar multiplication；and the following must hold（ $\forall u, v, w \in V, \forall c, k \in \mathbb{R}$ ）
a．$v+w \in V$ ．
b．$k v \in V$ ．
c．$(u+v)+w=u+(v+w)$ ．
d．$u+v=v+u$
e．$\exists n \in V: u+n=u$ ，［Neutral Element，denoted by 0 ］
f．$\exists \hat{u}: u+\widehat{u}=0$ ；\widehat{u} unique，and denoted by $-u$ ．
g．$k(u+v)=k u+k v$ ．
h．$(c+k) u=c u+k u$ ．
i．$c(k u)=(c k) u$ ．
j． $1 u=u$ ．
in $\mathbb{R}^{2 \times 2}$ ，the neutral element is $n=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ ．

Note： $\mathbb{R}^{2 \times 2}$（the collection of all 2－by－2 matrices）is a linear space （formal definition on the next slide）．．．

Examples，and Fundamental Theorems Orthogonal Matrices Prod Matix of ans，and Transposes of Orthogonal Matrices

Orthogonal Transformations and Orthogonal Matrices Suggested Problems

Example（Skew－Symmetric（ 2×2 ）Matrices）

The symmetric (2×2) matrices are of the form

$$
\left[\begin{array}{rr}
0 & b \\
-b & 0
\end{array}\right]
$$

They form a 1－dimensional subspace of $\mathbb{R}^{2 \times 2}$ with basis

$$
\left\{\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\right\}
$$

Note： $\operatorname{dim}\left(\mathbb{R}^{2 \times 2}\right)=4 ;\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is a basis．

5．3．Orthogonal Transforms and Matrices
－（17／51）

Orthogonal Transformations and Orthogonal Matrices Examples，and Fundamental Theorems
Products，Inverses，and Transposes of Orthogonal Matrice The Matrix of an Ortho．Projection，using an Ortho．Basis
Orthogonal Matrices：A^{T} and A^{-1}

Theorem

Consider an（ $n \times n$ ）matrix A ．The matrix A is orthogonal if and only if $A^{T} A=I_{n}$ or，equivalently，if $A^{-1}=A^{T}$ ．

Proof（

\｛Short：relies on fundamental properties／definitions\})
Write A in terms of its columns：

$$
A=\left[\begin{array}{lll}
\vec{v}_{1} & \ldots & \vec{v}_{n}
\end{array}\right]
$$

then

$$
A^{T} A=\left[\begin{array}{c}
\vec{v}_{1}^{T} \\
\vdots \\
\vec{v}_{n}^{T}
\end{array}\right]\left[\begin{array}{lll}
\vec{v}_{1} & \ldots & \vec{v}_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\vec{v}_{1}^{T} \vec{v}_{1} & \ldots & \vec{v}_{1}^{T} \vec{v}_{n} \\
\vdots & \ddots & \vdots \\
\vec{v}_{n}^{T} \vec{v}_{1} & \ldots & \vec{v}_{n}^{T} \vec{v}_{n}
\end{array}\right]
$$

this is I_{n} if and only if A is orthogonal．

Example（Transpose of a Vector）

$$
\vec{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \Rightarrow \quad \vec{v}^{T}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

We use this all the time：
Theorem
If \vec{v} and \vec{w} are two（column）vectors $\in \mathbb{R}^{n}$ ，then

$$
\underset{\text { Dot Product }}{\vec{v} \cdot \vec{w}} \equiv \underset{\text { "Matrix" Product }}{\vec{v}^{\top} \vec{w}}
$$

Peter Blomgren＜blomgren＠sdsu．edu〉	5．3．Orthogonal Transforms and Matrices－（18／51）
Orthogonal Transformations and Orthogonal Matrices Suggested Problems	Examples，and Fundamental Theorems Products，Inverses，and Transposes of Orthogonal Matrices The Matrix of an Ortho．Projection，using an Ortho．Basis

Summary ：：Orthogonal Matrices

Consider an $(n \times n)$ matrix A ．The following statements are equivalent：
i．A is an orthogonal matrix．
ii．The transformation $T(\vec{x})=A \vec{x}$ preserves norm（length），that is，$\|A \vec{x}\|=\|\vec{x}\| \forall \vec{x} \in \mathbb{R}^{n}$ ．
iii．The columns of A form an orthonormal basis of \mathbb{R}^{n} ．
iv．$A^{T} A=I_{n}$ ．
v．$A^{-1}=A^{T}$ ．
vi．A preserves the dot product，meaning that $(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$ $\forall \vec{x}, \vec{y} \in \mathbb{R}^{n}$ ．

Theorem（Properties of the Transpose）

a．$(A+B)^{T}=A^{T}+B^{T} \quad \forall A, B \in \mathbb{R}^{m \times n}$
b．$(k A)^{T}=k A^{T}$ $\forall A \in \mathbb{R}^{m \times n}, \forall k \in \mathbb{R}$
c．$(A B)^{T}=\left(B^{T} A^{T}\right)$ $\forall A \in \mathbb{R}^{m \times p}, \forall B \in \mathbb{R}^{p \times n}$
d．$\quad \operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right) \quad \forall$ matrices A
e．$\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
\forall invertible matrices A

Upcoming：Cross Product $\quad \mathbb{R}^{3} \times \mathbb{R}^{3} \mapsto \mathbb{R}^{3},\left(\right.$ or $\left.\mathbb{R}^{7} \times \mathbb{R}^{7} \mapsto \mathbb{R}^{7}\right)$

1

Orthogonal Transformations and Orthogonal Matrices Suggested Problems

The Matrix of an Orthogonal Projection
We can use our expanded matrix－notation－language to express orthogonal projections．．．．First consider

$$
\operatorname{proj}_{L}(\vec{x})=\left(\vec{u}_{1} \cdot \vec{x}\right) \vec{u}_{1}
$$

onto a line L in \mathbb{R}^{n} ；where \vec{u}_{1} is a unit vector in L ．Think of this vector as an（ $n \times 1$ ）matrix，and the scalar $\left(\vec{u}_{1} \cdot \vec{x}\right)$ as an (1×1) matrix；we can rearrange

$$
\left.\operatorname{proj}_{L}(\vec{x})=\vec{u}_{1}\left(\vec{u}_{1} \cdot \vec{x}\right) \stackrel{(1)}{u_{1}} \vec{u}_{1}^{T} \vec{x}\right) \stackrel{(2)}{=} \vec{u}_{1} \vec{u}_{1}^{T} \vec{x} \stackrel{(3)}{=}\left(\vec{u}_{1} \vec{u}_{1}^{T}\right) \vec{x} \stackrel{(4)}{=} A \vec{x}
$$

where $A=\vec{u}_{1} \vec{u}_{1}^{T}$ ．
（1）We derived an expression for A（for action in \mathbb{R}^{2} ）back in［Notes\＃2．2］．

> (1)Notation; (2)Associative property for matrix multiplication; (3)Associative property for matrix multiplication；（4）＂Book－keeping＂／interpretation

Peter Blomgren 〈blongrenosdsus edu〉	5．3．Orthogonal Transforms and Matrices $\quad-(22 / 51)$
Orthogonal Transformations and Orthogonal Matrices	mples，and Fundamental Theo
Suggested Problems	The Matrix of an Ortho．Projection，using an Ortho．Basis
Matrix of an Orthogonal Projection	

We can apply the same idea to the general projection formula

$$
\begin{aligned}
\operatorname{proj}_{V}(\vec{x}) & =\left(\vec{u}_{1} \cdot \vec{x}\right) \vec{u}_{1}+\cdots+\left(\vec{u}_{n} \cdot \vec{x}\right) \vec{u}_{n} \\
& =\vec{u}_{1} \vec{u}_{1}^{T} \vec{x}+\cdots+\vec{u}_{n} \vec{u}_{n}^{T} \vec{x} \\
& =\underbrace{\left(\vec{u}_{1} \vec{u}_{1}^{T}+\cdots+\vec{u}_{n} \vec{u}_{n}^{T}\right)}_{A} \vec{x}
\end{aligned}
$$

and we can also write

$$
A=\left[\begin{array}{lll}
\vec{u}_{1} & \cdots & \vec{u}_{n}
\end{array}\right]\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vdots \\
\vec{u}_{n}^{T}
\end{array}\right]
$$

We summarize on the next slide．．．

Orthogonal Transformations and Orthogonal Matrices Suggested Problems
xamples，and Fundamental Theorems The Matrix of an Ortho．Projection，using an Ortho．Basis

Theorem（The Matrix of an Orthogonal Projection：Summary）

Consider a subspace V of \mathbb{R}^{n} with orthonormal basis $\vec{q}_{1}, \ldots, \vec{q}_{m}$ ． The matrix P of the orthogonal projection onto V is

$$
P=Q Q^{T}, \quad \text { where } Q=\left[\begin{array}{lll}
\vec{q}_{1} & \cdots & \vec{q}_{m}
\end{array}\right] .
$$

－Note that it is $Q Q^{T}$ not $Q^{T} Q$
－P is symmetric－$P^{T}=\left(Q Q^{T}\right)^{T}=\left(Q^{T}\right)^{T} Q^{T}=Q Q^{T}=P$ ．

| Peter Blomgren 〈blomgren＠sdsu．edu〉 | 5．3．Orthogonal Transforms and Matrices \quad（25／51） |
| :--- | :--- | :--- |

Orthogonal Transformations and Orthogonal Matrices Examples，and Fundamental Theorems Products，Inverses and Transposes of Orthogonal Matrices The Matrix of an Ortho．Projection，using an Ortho．Basis

Example

In（5．2．7）［SEE LEARNiNG GLASS］we orthogonaliz（ed）the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
2
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{r}
18 \\
0 \\
0
\end{array}\right],
$$

using the Gram－Schmidt method，and get（got）

$$
\vec{q}_{1}=\left[\begin{array}{l}
2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right], \quad \vec{q}_{2}=\left[\begin{array}{r}
-2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right], \quad \vec{q}_{3}=\left[\begin{array}{r}
1 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right],
$$

Let＇s define $\left\{Q_{1} \in \mathbb{R}^{3 \times 1}, Q_{2} \in \mathbb{R}^{3 \times 2}, Q_{3} \in \mathbb{R}^{3 \times 3}\right\}$

$$
Q_{1}=\left[\vec{q}_{1}\right], \quad Q_{2}=\left[\begin{array}{ll}
\vec{q}_{1} & \vec{q}_{2}
\end{array}\right], \quad Q_{3}=\left[\begin{array}{lll}
\vec{q}_{1} & \vec{q}_{2} & \vec{q}_{3}
\end{array}\right] .
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉	5．3．Orthogonal Transforms and Matrices	－（26／51）
Orthogonal Transformations and Orthogonal Matrices Suggested Problems	Suggested Problems 5.3 Lecture－Book Roadmap	

Suggested Problems 5.3

Projection Matrices

$$
\begin{array}{ll}
P_{1}=Q_{1} Q_{1}^{T}=\frac{1}{9}\left[\begin{array}{lll}
4 & 4 & 2 \\
4 & 4 & 2 \\
2 & 2 & 1
\end{array}\right] \\
P_{2}=Q_{2} Q_{2}^{T}=\frac{1}{9}\left[\begin{array}{rrr}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right] \\
P_{3}=Q_{3} Q_{3}^{T}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array} Q_{2}^{T} Q_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Note，$Q_{1} Q_{1}^{T}, Q_{2} Q_{2}^{T}$ ，and $Q_{3} Q_{3}^{T}$ are the matrices of orthogonal projections onto a line $L=\operatorname{span}\left(\vec{q}_{1}\right)$ ，a plane $V=\operatorname{span}\left(\vec{q}_{1}, \vec{q}_{2}\right)$ ，and $\mathbb{R}^{3}=\operatorname{span}\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right)$ ．

Lecture	Book，$[$ GS5－］
5.1	$\S 4.1, \S 4.2, \S 4.4$
5.2	$\S 4.1, \S 4.2, \S 4.4$
5.3	$\S 4.1, \S 4.2, \S 4.4$

Metacognitive Exercise－Thinking About Thinking \＆Learning

（5．3．1）Is the given matrix Orthogonal？

$$
A=\left[\begin{array}{ll}
0.6 & 0.8 \\
0.8 & 0.6
\end{array}\right]
$$

（5．3．2）Is the given matrix Orthogonal？

$$
A=\left[\begin{array}{rr}
-0.8 & 0.6 \\
0.6 & 0.8
\end{array}\right]
$$

Supplemental Material
Supplemental Examples，Revisited

If the $(n \times n)$ matrices A and B are orthogonal，are the following matrices orthogonal as well？
（5．3．5）$C=3 A$
（5．3．6）$D=-B$

If the（ $n \times n$ ）matrices A and B are symmetric，and B is invertible； are the following matrices symmetric as well？
（5．3．13）$C=3 A$
（5．3．15）$D=A B$
（5．3．17）$F=B^{-1}$
（5．3．19）$G=2 I_{n}+3 A-4 A^{2}$

（5．3．32），（5．3．33）

（5．3．32－a）Consider an $(n \times m)$ matrix A such that $A^{T} A=I_{m}$ ．Is is necessarily true that $A A^{T}=I_{n}$ ？（Explain！）
（5．3．32－b）Consider an $(n \times n)$ matrix A such that $A^{T} A=I_{n}$ ．Is is necessarily true that $A A^{T}=I_{n}$ ？（Explain！）
（5．3．28）Consider an $(n \times n)$ matrix A ．Show that A is orthogonal if－and－only－if：A preserves the dot product；i．e．

$$
(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}
$$

for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ ．

Hint，show：
（1）$A^{T} A=I_{n} \Rightarrow(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y}$
（2）$(A \vec{x}) \cdot(A \vec{y})=\vec{x} \cdot \vec{y} \Rightarrow L(\vec{x})=A \vec{x}$ is norm（length）－preserving．

Supplemental Examples，Revisited

（5．3．36）

（5．3．36）Find an orthogonal matrix of the form

$$
A=\left[\begin{array}{rrr}
2 / 3 & 1 \sqrt{2} & a \\
2 / 3 & -1 / \sqrt{2} & b \\
1 / 3 & 0 & c
\end{array}\right]
$$

（5．3．41）Find the matrix A of the orthogonal projection onto the line in \mathbb{R}^{n} spanned by the vector

$$
\overrightarrow{1}_{n}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \in \mathbb{R}^{n}
$$

This section provides one important answer to＂why？！＂we should care about orthogonality，orthogonal complements，and orthogonal projections．

We will talk about Least Squares Solutions to non－consistent linear systems．（From a slightly different point of view than［Notes\＃5．2： Supplement］．）

The least squares formulation is useful for fitting model parameters to data and has applications in a wide range of fields：chemistry， physics，engineering，finance，economics，etc．

It is sometimes（often？）referred to as＂Linear Regression．＂

Orthogonal Complements：Redux

Supplemental Examples，Revisited
Least Squares Data Fitting

The Orthogonal Complement of the Image

Example（The Orthogonal Complement of $\operatorname{im}(A)$ ）

Consider a subspace $V=\operatorname{im}(A)$ of \mathbb{R}^{n} ，where

$$
A=\left[\begin{array}{lll}
\overrightarrow{v_{1}} & \cdots & \overrightarrow{v_{m}}
\end{array}\right] .
$$

Theorem（The Orthogonal Complement of the Image）

For any matrix A ，

$$
(\operatorname{im}(A))^{\perp}=\operatorname{ker}\left(A^{T}\right)
$$

In other words，V^{\perp} is the kernel of the matrix

$$
A^{T}=\left[\begin{array}{c}
\vec{v}_{1}^{T} \\
\vdots \\
\vec{v}_{m}^{T}
\end{array}\right] .
$$

Example（A Line in \mathbb{R}^{3} ）

Consider the line

$$
V=\operatorname{im}\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)
$$

Then

$$
V^{\perp}=\operatorname{ker}\left(\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\right)
$$

is the plane with equation $x_{1}+2 x_{2}+3 x_{3}=0$ ；as usual we can parameterize（to get a basis），and Gram－Schmidt Orthogonalize（to make it orthonormal）

Orthogonal Projplements：Redux

Least Squares Data Fitting

Orthogonal Projections

Theorem

Consider a vector $\vec{x} \in \mathbb{R}^{n}$ and a subspace V of \mathbb{R}^{n} ．Then，the orthogonal projection $\operatorname{proj}_{V}(\vec{x})$ is the vector in V closest to \vec{x} ，in that

$$
\left\|\vec{x}-\operatorname{proj}_{V}(\vec{x})\right\|<\|\vec{x}-\vec{v}\|, \forall \vec{v} \in V \backslash \operatorname{proj}_{V}(\vec{x})
$$

As usual $\vec{x}^{\|} \equiv \operatorname{proj}_{V}(\vec{x})$ ，and $\vec{x}^{\perp}=\vec{x}-\vec{x} \|$ is the orthogonal ＂left－over＂of \vec{x} after the projection．The distance $\left\|\vec{x}^{\perp}\right\|$ is the shortest distance from V to \vec{x} ．

If we move，in V ，a distance ϵ away from $\vec{x}^{\|}$，the distance from that point to \vec{x} is $\sqrt{\epsilon^{2}+\left\|\vec{x}^{\perp}\right\|^{2}}$ ．［PYthagorean Theorem］．

Theorem

a．If A is an $(m \times n)$ matrix，then $\operatorname{ker}(A)=\operatorname{ker}\left(A^{T} A\right)$ ．
b．If A is an $(m \times n)$ matrix with $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ ，then $A^{T} A$ is invertible．

Proof（Proof）

a．Clearly，the kernel of A is contained in the kernel of $A^{T} A$ ． Conversely，consider a vector $\vec{x} \in \operatorname{ker}\left(A^{T} A\right)$ ，so that $A^{T} A \vec{x}=\overrightarrow{0}$ ． Then，$A \vec{x}$ is in the image of A and in the kernel of A^{T} ．Since $\operatorname{ker}\left(A^{T}\right)$ is the orthogonal complement of $\operatorname{im}(A)$ by the previous theorem，the vector $A \vec{x}$ is $\overrightarrow{0}$ ，［Notes\＃5．1］，that is，$\vec{x} \in \operatorname{ker}(A)$ ．
b．Note that $A^{T} A$ is an $(n \times n)$ matrix．By part（a）， $\operatorname{ker}\left(A^{T} A\right)=\{\overrightarrow{0}\}$ ， and $A^{T} A$ is therefore invertible．［Notes\＃3．3］

Peter Blomgren 〈blomgren＠sdsu．edu〉
5．3．Orthogonal Transforms and Matrices
Orthogonal Complements：Redux
Orthogonal Projections：Red
Least Squares Data Fitting
Supplemental Examples，Revisited
The Error，or Residual

Consider a linear system $A \vec{x}=\vec{b}$ ，which is inconsistent；meaning that $\vec{b} \notin \operatorname{im}(A)$ ．

An inconsistent linear system does not have a solution（in the traditional sense）．

However，we can find the \vec{x}^{*} which is the best candidate in that it minimizes the distance between $A \vec{x}^{*}$ and \vec{b}（even though that distance is not zero）．

We measure that distance

$$
\|A \vec{x}-\vec{b}\| \equiv\|\vec{b}-A \vec{x}\|
$$

and call it the error，or residual．

Definition（Least－Squares Solution）

Consider a linear system

$$
A \vec{x}=\vec{b},
$$

where A is an $(m \times n)$ matrix．A vector $\vec{x}^{*} \in \mathbb{R}^{n}$ is called a least－squares solution of this system if

$$
\left\|\vec{b}-A \vec{x}^{*}\right\| \leq\|\vec{b}-A \vec{x}\|, \forall \vec{x} \in \mathbb{R}^{n} .
$$

The name least－squares solution comes from the fact that we a minimizing the sum－of－squares norm（length）of the error vector $\vec{e}=\vec{b}-A \vec{x}$ ．
If／When the system $A \vec{x}=\vec{b}$ is consistent the least－squares solution is the exact solution，and $\left\|\vec{b}-A \vec{x}^{*}\right\|=0$ ．

5．3．Orthogonal Transforms and Matrices

Orthogonal Complements：Redux
Least Squares Data Fitting

Finding Least－Squares Solutions
The Normal Equations

Theorem（The Normal Equations）

The least－squares solutions of the system $A \vec{x}=\vec{b}$ ，are the exact solutions of the（consistent）system $A^{T} A \vec{x}=A^{T} \vec{b}$ ．The system $A^{T} A \vec{x}=A^{T} \vec{b}$ is called the normal equations of $A \vec{x}=\vec{b}$ ．

The case where $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ is of particular importance，since in that case the matrix $A^{T} A$ is invertible，and we can give a closed form expression for the solution：

How do we hunt down this wild beast？！
－We want the least－squares solutions \vec{x}^{*} to $A \vec{x}=\vec{b}$
－By definition we are looking for
－$\left\|\vec{b}-A \vec{x}^{*}\right\| \leq\|\vec{b}-A \vec{x}\|, \forall \vec{x} \in \mathbb{R}^{n}$ ．
－Our projection theorem says：

$$
\text { - } A \vec{x}^{*}=\operatorname{proj}_{V}(\vec{b}) \text {, where } V=\operatorname{im}(A) \text {. }
$$

－So，the error is in the orthogonal complement of $\operatorname{im}(A)$ ：

$$
\text { - } \vec{b}-A \vec{x}^{*} \in V^{\perp}=(\operatorname{im}(A))^{\perp}=\operatorname{ker}\left(A^{T}\right) \text {. }
$$

－Which means：

$$
\text { - } A^{T}\left(\vec{b}-A \vec{x}^{*}\right)=0 \Leftrightarrow A^{T} A \vec{x}=A^{T} \vec{b} \text {. }
$$

Peter Blomgren 〈blomgren＠sdsu．edu〉 5．3．Orthogonal Transforms and Matrices

Supplemental Material	Orthogonal Complements：Redux Orthogonal Projections：Redux
Supplemental Examples，Revisited	

Supplemental Examples，Revisited
reast Squares Data Fiting
Closed Form Least Square Solutions

Theorem（Closed Form Expression for the Least Squares Solution）
If $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ ，the linear system $A \vec{x}=\vec{b}$ has the unique least－squares solution

$$
\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b},
$$

and

$$
A \vec{x}^{*}=\operatorname{proj}_{\operatorname{im}(A)}(\vec{b})=\underbrace{A\left(A^{T} A\right)^{-1} A^{T}}_{P} \vec{b},
$$

where the matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ is the matrix of the orthogonal projection onto $\mathrm{im}(A)$ ．

Note：Just because you can write down a mathematical expression，it does not mean using it for anything practical is a good idea．

Well，recall the Gram－Schmidt Process，and the QR－factorization．．． If we have computed $Q R=A$ ，then the following is true：

The Solution multiply by Q^{T} $Q^{T} Q=I_{n}$ solve	$\begin{array}{r} A \vec{x} \\ Q R \vec{x} \\ Q^{T} Q R \vec{x} \\ R \vec{x} \\ \vec{x}^{*} \end{array}$	$\begin{aligned} & =\vec{b} \\ & =\vec{b} \\ & =Q^{\top} \vec{b} \\ & =Q^{\top} \vec{b} \\ & =\mathbf{R}^{-1} \mathbf{Q}^{\top} \tilde{\mathbf{b}} \end{aligned}$
The Projection	$\begin{aligned} & Q R \vec{x}^{*} \\ & Q R \vec{x}^{*} \end{aligned}$	$\begin{aligned} & =Q R R^{-1} Q^{\top} \vec{b} \\ & =\mathbf{Q Q} Q^{\top} \tilde{\mathbf{b}} \end{aligned}$
	use	not
$\begin{aligned} \vec{x}^{*} & = \\ \operatorname{proj}_{\operatorname{im}(A)}(\vec{b}) & = \end{aligned}$	$\begin{aligned} & R^{-1} Q^{\top} \vec{b} \\ & Q Q^{\top} \vec{b} \end{aligned}$	$\begin{aligned} & \left(A^{T} A\right)^{-1} A^{T} \vec{b} \\ & A\left(A^{T} A\right)^{-1} A^{T} \vec{b} \end{aligned}$

More Examples and Discussion？？？

It makes sense to return to the Least－Squares solutions with more tools （eigenvalues）in hand；but，alas，we will run out of time this semester．

Some additional examples and discussion can be found in［Available online］

Class	Notes\＃
Math 541	
Math 524	10,11
Math 543	6
Math 693a	8,14

Clearly，there＇s a lot more to say．．．

