Math 254: Introduction to Linear Algebra Notes #5.3 — Orthogonal Transformations and Orthogonal Matrices

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2022

(Revised: April 4, 2022)

— (1/51)

イロト イヨト イヨト イヨト

Peter Blomgren (blomgren@sdsu.edu) 5.3. Orthogonal Transforms and Matrices

Outline

Student Learning Objectives

- SLOs: Orthogonal Transformations and Orthogonal Matrices
- Orthogonal Transformations and Orthogonal Matrices
 - Examples, and Fundamental Theorems
 - Products, Inverses, and Transposes of Orthogonal Matrices
 - Matrix of Orthogonal Projection, using Orthonormal Basis
- 3 Suggested Problems
 - Suggested Problems 5.3
 - Lecture Book Roadmap

4 Supplemental Material

- Metacognitive Reflection
- Problem Statements 5.3
- Orthogonal Complements: Redux
- Orthogonal Projections: Redux
- Least Squares Data Fitting

AN DIRGO STAT

— (2/51)

伺 ト イヨト イヨト

(4月) トイヨト イヨト

a Direco Stre

SLOs 5.3

Orthogonal Transformations and Orthogonal Matrices

After this lecture you should:

- Know what Orthogonal Transformations are; and their relation to Orthonormal Bases.
- Know the Properties of Orthogonal Matrices.
- Be able to perform an Orthogonal Projection using Orthonormal Basis you have constructed.

Orthogonal Transformations

For many reasons, we tend to "like" linear transformations that preserve the norm (length) of vectors; and angles between vectors:

Definition (Orthogonal Transformations)

A linear transformation $T : \mathbb{R}^n \mapsto \mathbb{R}^n$ is called orthogonal if it preserves the norm (length) of vectors:

 $\|T(\vec{x})\| = \|\vec{x}\|, \ \forall \vec{x} \in \mathbb{R}^n.$

If $T(\vec{x}) = A\vec{x}$ is an orthogonal transformation, we say that A is an orthogonal (or *unitary*, when it has complex entries) matrix.

Related topic: "Isometries" in [MATH 524 (NOTES#7.2)].

イロト 不同 トイヨト イヨト

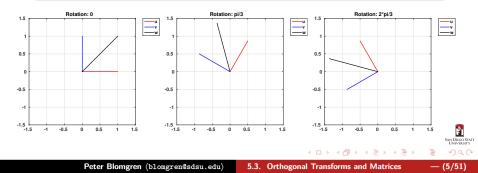
Example: Rotations

Example (Rotations)

The rotation

$$T(\vec{x}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{x}$$

is an orthogonal transformation from \mathbb{R}^2 to $\mathbb{R}^2,$ and $\forall \theta.$



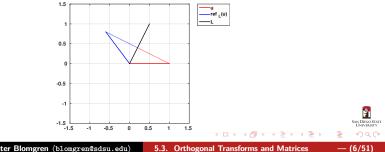
Example: Reflections

Example (Reflections)

Consider a subspace V of \mathbb{R}^n . For a vector $\vec{x} \in \mathbb{R}^n$, the vector $\operatorname{ref}_V(\vec{x}) = \vec{x}^{\parallel} - \vec{x}^{\perp} \equiv 2 \operatorname{proj}_V(\vec{x}) - \vec{x}$ is the reflection of \vec{x} in V. We show that reflections are orthogonal transformations:

By the [Pythagorean Theorem], we have

$$\|\operatorname{ref}_{V}(\vec{x})\|^{2} = \left\|\vec{x}^{\parallel} - \vec{x}^{\perp}\right\|^{2} = \left\|\vec{x}^{\parallel}\right\|^{2} + \left\|-\vec{x}^{\perp}\right\|^{2} = \left\|\vec{x}^{\parallel}\right\|^{2} + \left\|\vec{x}^{\perp}\right\|^{2} = \left\|\vec{x}\right\|^{2}$$



Peter Blomgren (blomgren@sdsu.edu)

イロト イヨト イヨト イヨト

— (7/51)

Preservation of Orthogonality

Theorem (Preservation of Orthogonality)

Consider an orthogonal transformation $T : \mathbb{R}^n \mapsto \mathbb{R}^n$. If the vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$ are orthogonal, then so are $T(\vec{v})$ and $T(\vec{w})$.

Proof (Preservation of Orthogonality {Short: relies on fundamental properties/definitions})

By the theorem of Pythagoras, we have to show that

$$||T(\vec{v}) + T(\vec{w})||^2 = ||T(\vec{v})||^2 + ||T(\vec{w})||^2$$
:

$$\begin{aligned} \|T(\vec{v}) + T(\vec{w})\|^2 &= \|T(\vec{v} + \vec{w})\|^2 & \text{[Linearity of } T \text{]} \\ &= \|\vec{v} + \vec{w}\|^2 & \text{[Orthogonality of } T \text{]} \\ &= \|\vec{v}\|^2 + \|\vec{w}\|^2 & [\vec{v} \perp \vec{w}] \\ &= \|T(\vec{v})\|^2 + \|T(\vec{w})\|^2 & \text{[Orthogonality of } T \text{]} \end{aligned}$$

Orthogonal Transformations and Orthonormal Bases

Theorem (Orthogonal Transformations and Orthonormal Bases)

a. A linear transformation $T : \mathbb{R}^n \mapsto \mathbb{R}^n$ is orthogonal if and only if the vectors $T(\vec{e_1}), \ldots, T(\vec{e_n})$ form an orthonormal basis of \mathbb{R}^n .

N DIRGO STA

b. An $(n \times n)$ matrix A is orthogonal if and only if its columns form an orthonormal basis of \mathbb{R}^n .

[PROOF IN SUPPLEMENTAL SLIDES]

イロト イヨト イヨト イヨト

[Proof] Orthogonal Transformations and Orthonormal Bases

[Focus :: MATH]

AN DIEGO STAT

Proof (Part (a))

- ⇒ If T is orthogonal, then, by definition, the $T(\vec{e}_k)$ are unit vectors, and orthogonal by the previous theorem; hence a basis for \mathbb{R}^n .
- \leftarrow Conversely, suppose $T(\vec{e_1}), \ldots, T(\vec{e_n})$ form an orthonormal basis. Consider a vector $\vec{x} = x_1 \vec{e_1} + \cdots + x_n \vec{e_n} \in \mathbb{R}^n$. Then

$$\|T(\vec{x})\|^{2} = \|x_{1}T(\vec{e}_{1}) + \dots + x_{n}T(\vec{e}_{n})\|^{2}$$
 [Linearity]
= $\|x_{1}T(\vec{e}_{1})\|^{2} + \dots + \|x_{n}T(\vec{e}_{n})\|^{2}$ [Pythagoras]
= $x_{1}^{2} \|T(\vec{e}_{1})\|^{2} + \dots + x_{n}^{2} \|T(\vec{e}_{n})\|^{2}$
= $x_{1}^{2} + \dots + x_{n}^{2}$
= $\|\vec{x}\|^{2}$.

[Proof] Orthogonal Transformations and Orthonormal Bases

[Focus :: MATH]

Proof (Part (b))

This follows from the result from [NOTES#2.1] restated below...

Theorem (The Columns of the Matrix of a Linear Transformation)

Consider a linear transformation $T : \mathbb{R}^m \mapsto \mathbb{R}^n$. Then, the matrix of T is

$$A = \begin{bmatrix} | & | & | \\ T(\vec{e_1}) & T(\vec{e_2}) & \dots & T(\vec{e_m}) \\ | & | & | \end{bmatrix},$$

where $\vec{e_i} \in \mathbb{R}^m$ is the vector of all zeros, except entry #i which is 1.

A Warning

WARNING!!!

A matrix with orthogonal columns need not be an orthogonal matrix, *e.g.*

$$A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}$$

Example
$$\left(A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}$$
 has Orthogonal Columns, but is Not Orthogonal)
 $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \|\vec{x}\| = \sqrt{2}, \quad A\vec{x} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}, \quad \|A\vec{x}\| = \sqrt{50}$

イロト 不同 トイヨト イヨト

AN DIEGO STATE

-(12/51)

Products and Inverses of Orthogonal Matrices

Theorem (Products and Inverses of Orthogonal Matrices)

- a. The product AB of two orthogonal $(n \times n)$ matrices A and B is orthogonal.
- **b.** The inverse A^{-1} of an orthogonal $(n \times n)$ matrix A is orthogonal.

Proof (

{Short: relies on fundamental properties/definitions})

- a. the linear transformation $T(\vec{x}) = AB\vec{x}$ preserves norm (length), since $||T(\vec{x})|| = ||A(B\vec{x})|| = ||B\vec{x}|| = ||\vec{x}||$.
- **b.** the linear transformation $T(\vec{x}) = A^{-1}\vec{x}$ preserves norm (length), since $||A^{-1}\vec{x}|| = ||AA^{-1}\vec{x}|| = ||\vec{x}||$.

イロト イボト イヨト イヨト

N DIRGO STRI

Example: Properties of the Transpose of an Orthonormal Matrix

Example

Consider the orthogonal matrix A, and the matrix where the ij entry has been shifted to the ji position (B):

$$A = \frac{1}{7} \begin{bmatrix} 2 & 6 & 3 \\ 3 & 2 & 6 \\ 6 & -3 & 2 \end{bmatrix}, \quad B = \frac{1}{7} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix}.$$

We compute

$$BA = \frac{1}{49} \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

The $k\ell$ entry in BA is the dot product of the k^{th} row of B, and the ℓ^{th} column of A; by construction this is the dot product of the k^{th} and ℓ^{th} columns of A; since A is orthogonal this gives 1 when $k = \ell$, and 0 otherwise.

Matrix Transpose, Symmetric and Skew-symmetric Matrices

Definition (Matrix Transpose, Symmetric and Skew-symmetric Matrices)

Consider an $(m \times n)$ matrix A.

- The *transpose* A^T of A is the $(n \times m)$ matrix whose ij^{th} entry is the jj^{th} entry of A: The roles of rows and columns are reversed.
- We say that a square matrix A is symmetric if $A^T = A$, and
- A is called *skew-symmetric* if $A^T = -A$.

Example (Transpose)

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

5

イロト イヨト イヨト

AN DIEGO STATE

-(14/51)

Orthogonal Transformations and Orthogonal Matrices Suggested Problems Examples, and Fundamental Theorems **Products, Inverses, and Transposes of Orthogonal Matrices** The Matrix of an Ortho. Projection, using an Ortho. Basis

[FOCUS :: MATH] Symmetric (2×2) Matrices

[Linear Spaces]

Example (Symmetric (2×2) Matrices)

The symmetric (2×2) matrices are of the form

They form a $\boldsymbol{3}\text{-dimensional}$ subspace of $\mathbb{R}^{2\times 2}$ with basis

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Note: $\mathbb{R}^{2\times 2}$ (the collection of all 2-by-2 matrices) is a linear space (formal definition on the next slide)...

[FOCUS :: MATH] Linear Space

Definition

[Linear Spaces]

Definition (Linear Space)

A Linear Space V is a set with a definition (rule) for addition "+", and a definition (rule) for scalar multiplication; and the following must hold $(\forall u, v, w \in V, \forall c, k \in \mathbb{R})$

- a. $v + w \in V$.
- **b.** $kv \in V$.

c.
$$(u + v) + w = u + (v + w)$$
.

d.
$$u + v = v + u$$

- e. $\exists n \in V$: u + n = u, [Neutral Element, denoted by 0]
- f. $\exists \hat{u}: u + \hat{u} = 0$; \hat{u} unique, and denoted by -u.

$$g. \quad k(u+v) = ku + kv.$$

$$h. (c+k)u = cu + ku.$$

$$i. c(ku) = (ck)u.$$

$$1u = u$$
.

in $\mathbb{R}^{2\times 2}$, the neutral element is $n = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Orthogonal Transformations and Orthogonal Matrices Suggested Problems Examples, and Fundamental Theorems **Products, Inverses, and Transposes of Orthogonal Matrices** The Matrix of an Ortho. Projection, using an Ortho. Basis

[FOCUS :: MATH] Skew-Symmetric (2×2) Matrices

[Linear Spaces]

Example (Skew-Symmetric (2×2) Matrices)

The symmetric (2×2) matrices are of the form

$$\begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$$

They form a **1**-dimensional subspace of $\mathbb{R}^{2 \times 2}$ with basis

$$\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

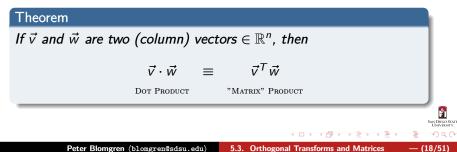
Note: dim
$$(\mathbb{R}^{2\times 2}) = 4$$
; $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis.

Transpose of a Vector

Example (Transpose of a Vector)

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \Rightarrow \vec{v}^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

We use this all the time:



Orthogonal Transformations and Orthogonal Matrices Suggested Problems Examples, and Fundamental Theorems **Products, Inverses, and Transposes of Orthogonal Matrices** The Matrix of an Ortho. Projection, using an Ortho. Basis

イロト イヨト イヨト イヨト

æ

- (19/51)

Orthogonal Matrices: A^T and A^{-1}

Theorem

Consider an $(n \times n)$ matrix A. The matrix A is orthogonal if and only if $A^T A = I_n$ or, equivalently, if $A^{-1} = A^T$.

Proof (

{Short: relies on fundamental properties/definitions})

Write A in terms of its columns:

$$\mathsf{A} = \begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_n \end{bmatrix}$$

then

$$A^{T}A = \begin{bmatrix} \vec{v}_{1}^{T} \\ \vdots \\ \vec{v}_{n}^{T} \end{bmatrix} \begin{bmatrix} \vec{v}_{1} & \dots & \vec{v}_{n} \end{bmatrix} = \begin{bmatrix} \vec{v}_{1}^{T}\vec{v}_{1} & \dots & \vec{v}_{1}^{T}\vec{v}_{n} \\ \vdots & \ddots & \vdots \\ \vec{v}_{n}^{T}\vec{v}_{1} & \dots & \vec{v}_{n}^{T}\vec{v}_{n} \end{bmatrix}$$

this is I_n if and only if A is orthogonal.

イロト 不同 とうほう イヨト

Orthogonal Matrices: Summary

Summary :: Orthogonal Matrices

Consider an $(n \times n)$ matrix A. The following statements are equivalent:

- i. A is an orthogonal matrix.
- ii. The transformation $T(\vec{x}) = A\vec{x}$ preserves norm (length), that is, $||A\vec{x}|| = ||\vec{x}|| \quad \forall \vec{x} \in \mathbb{R}^n$.
- iii. The columns of A form an orthonormal basis of \mathbb{R}^n .
- iv. $A^T A = I_n$.
- **v.** $A^{-1} = A^T$.
- vi. A preserves the dot product, meaning that $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$ $\forall \vec{x}, \vec{y} \in \mathbb{R}^n$.

AN DIEGO STAT

Properties of the Matrix Transpose

Theorem (Properties of the Transpose)

a.
$$(A+B)^T = A^T + B^T \quad \forall A, B \in \mathbb{R}^{m \times r}$$

b.
$$(kA)^T = kA^T$$

c.
$$(AB)^T = (B^T A^T)$$

d.
$$\operatorname{rank}(A) = \operatorname{rank}(A^T)$$

e.
$$(A^T)^{-1} = (A^{-1})^T$$

$$\forall A \in \mathbb{R}^{m \times p}, \forall B \in \mathbb{R}^{p \times n}$$

 $\forall A \in \mathbb{R}^{m \times n}, \forall k \in \mathbb{R}$

イロト イヨト イヨト イヨト

AN DIEGO STAT

The Matrix of an Orthogonal Projection

We can use our expanded matrix-notation-language to express orthogonal projections.... First consider

$$\operatorname{proj}_{L}(\vec{x}) = (\vec{u}_{1} \cdot \vec{x})\vec{u}_{1}$$

onto a line L in \mathbb{R}^n ; where $\vec{u_1}$ is a unit vector in L. Think of this vector as an $(n \times 1)$ matrix, and the scalar $(\vec{u_1} \cdot \vec{x})$ as an (1×1) matrix; we can rearrange

$$\operatorname{proj}_{L}(\vec{x}) = \vec{u}_{1}(\vec{u}_{1} \cdot \vec{x}) \stackrel{\textcircled{1}}{=} \vec{u}_{1}(\vec{u}_{1}^{T} \vec{x}) \stackrel{\textcircled{2}}{=} \vec{u}_{1}\vec{u}_{1}^{T} \vec{x} \stackrel{\textcircled{3}}{=} (\vec{u}_{1}\vec{u}_{1}^{T}) \vec{x} \stackrel{\textcircled{4}}{=} A\vec{x}$$

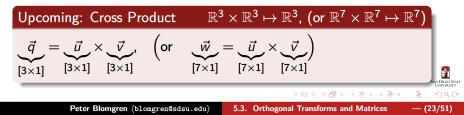
where $A = \vec{u}_1 \vec{u}_1^T$.

U We derived an expression for A (for action in \mathbb{R}^2) back in [NOTES#2.2].

(1)Notation; **(2)**Associative property for matrix multiplication; **(3)**Associative property for matrix multiplication; **(4)** "Book-keeping" / interpretation.

-(22/51)

Vector-Vector Products



Orthogonal Transformations and Orthogonal Matrices Suggested Problems The Matrix of an Ortho. Projection, using an Ortho. Basis

The Matrix of an Orthogonal Projection

We can apply the same idea to the general projection formula

$$\operatorname{proj}_{V}(\vec{x}) = (\vec{u}_{1} \cdot \vec{x})\vec{u}_{1} + \dots + (\vec{u}_{n} \cdot \vec{x})\vec{u}_{n}$$
$$= \vec{u}_{1}\vec{u}_{1}^{T}\vec{x} + \dots + \vec{u}_{n}\vec{u}_{n}^{T}\vec{x}$$
$$= \underbrace{(\vec{u}_{1}\vec{u}_{1}^{T} + \dots + \vec{u}_{n}\vec{u}_{n}^{T})}_{A}\vec{x}$$

and we can also write

$$A = \begin{bmatrix} \vec{u_1} & \cdots & \vec{u_n} \end{bmatrix} \begin{bmatrix} \vec{u_1}^T \\ \vdots \\ \vec{u_n}^T \end{bmatrix}$$

We summarize on the next slide...

- (24/51)

イロト イヨト イヨト

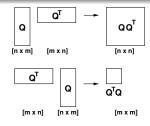
Orthogonal Transformations and Orthogonal Matrices Suggested Problems The Matrix of an Ortho. Projection, using an Ortho. Basis

The Matrix of an Orthogonal Projection: Summary

Theorem (The Matrix of an Orthogonal Projection: Summary)

Consider a subspace V of \mathbb{R}^n with orthonormal basis $\vec{q}_1, \ldots, \vec{q}_m$. The matrix P of the orthogonal projection onto V is

$$P = QQ^T$$
, where $Q = \begin{bmatrix} \vec{q}_1 & \cdots & \vec{q}_m \end{bmatrix}$.



- Note that it is QQ^T not Q^TQ
- P is symmetric $P^T = (QQ^T)^T = (Q^T)^T Q^T = QQ^T = P$.

- (25/51)

Example

1 of 2

N DIEGO STA

-(26/51)

イロト イボト イヨト イヨト

In (5.2.7) [SEE LEARNING GLASS] we orthogonaliz(ed) the vectors

$$ec{v}_1 = \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \quad ec{v}_2 = \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \quad ec{v}_3 = \begin{bmatrix} 18\\0\\0 \end{bmatrix},$$

using the Gram-Schmidt method, and get(got)

$$\vec{q}_1 = \begin{bmatrix} 2/3\\ 2/3\\ 1/3 \end{bmatrix}, \quad \vec{q}_2 = \begin{bmatrix} -2/3\\ 1/3\\ 2/3 \end{bmatrix}, \quad \vec{q}_3 = \begin{bmatrix} 1/3\\ -2/3\\ 2/3 \end{bmatrix},$$

Let's define $\{Q_1 \in \mathbb{R}^{3 \times 1}, Q_2 \in \mathbb{R}^{3 \times 2}, Q_3 \in \mathbb{R}^{3 \times 3}\}$

$$Q_1 = \begin{bmatrix} \vec{q}_1 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 \end{bmatrix}, \quad Q_3 = \begin{bmatrix} \vec{q}_1 & \vec{q}_2 & \vec{q}_3 \end{bmatrix}.$$

Example

2 of 2

Projection Matrices	Orthonormality Confirmation	
$P_1 = Q_1 Q_1^{T} = \frac{1}{9} \begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{bmatrix}$	$Q_1^{ T} Q_1 = \begin{bmatrix} 1 \end{bmatrix}$	
$P_2 = Q_2 Q_2^T = \frac{1}{9} \begin{bmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{bmatrix}$	$Q_2^{T} Q_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
$P_3 = Q_3 Q_3^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$Q_3^{ op} Q_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$	

Note, $Q_1 Q_1^T$, $Q_2 Q_2^T$, and $Q_3 Q_3^T$ are the matrices of orthogonal projections onto a line $L = \operatorname{span}(\vec{q_1})$, a plane $V = \operatorname{span}(\vec{q_1}, \vec{q_2})$, and $\mathbb{R}^3 = \operatorname{span}(\vec{q_1}, \vec{q_2}, \vec{q_3})$.

- (27/51)

Orthogonal Transformations and Orthogonal Matrices Suggested Problems Suggested Problems 5.3 Lecture – Book Roadmap

Suggested Problems 5.3

Available on Learning Glass videos: 5.3 — 1, 2, 5, 6, 13, 15, 17, 19, 28, 32, 33, <u>36</u>, 41

SAN DIEGO STATE

Suggested Problems 5.3 Lecture – Book Roadmap

Lecture – Book Roadmap

Lecture	Book, [GS5–]
5.1	§4.1, §4.2, §4.4
5.2	§4.1, §4.2, §4.4
5.3	§4.1, §4.2, <mark>§4.4</mark>

イロト イヨト イヨト イヨト

SAN DIEGO STATE UNIVERSITY

э

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned	Almost there	Huh?!?
Right After Lecture		
Afte	r Thinking / Office Hours / SI-	session
,		
After Reviewing for Quiz/Midterm/Final		
		San Direco State University ロト イロト イミト ミン クタウ
Peter Blomgren (blomgren@sdsu.edu) 5.3. Orthogonal Transforms and Matrices — (30/51)		

(5.3.1), (5.3.2)

(5.3.1) Is the given matrix Orthogonal?

$$A = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & 0.6 \end{bmatrix}$$

(5.3.2) Is the given matrix Orthogonal?

$$A = \begin{bmatrix} -0.8 & 0.6\\ 0.6 & 0.8 \end{bmatrix}$$

SAN DIEGO STAT

イロト イヨト イヨト

(5.3.5), (5.3.6)

If the $(n \times n)$ matrices A and B are orthogonal, are the following matrices orthogonal as well?

(5.3.5) *C* = 3*A*

(5.3.6) D = -B

AN DIEGO STAT

・ロト ・ 日 ト ・ ヨ ト ・

Metacognitive Reflection Problem Statements 5.3

(5.3.13), (5.3.15), (5.3.17), (5.3.19)

If the $(n \times n)$ matrices A and B are symmetric, and B is invertible; are the following matrices symmetric as well?

(5.3.13) C = 3A

(5.3.15) D = AB

(5.3.17) $F = B^{-1}$

 $(5.3.19) \ G = 2I_n + 3A - 4A^2$

N DIEGO STAT

イロト イポト イヨト イヨト

(5.3.28)

(5.3.28) Consider an $(n \times n)$ matrix A. Show that A is orthogonal if-and-only-if: A preserves the dot product; *i.e.*

 $(A\vec{x})\cdot(A\vec{y})=\vec{x}\cdot\vec{y}$

for all $\vec{x}, \vec{y} \in \mathbb{R}^n$.

Hint, show:

$$A^T A = I_n \Rightarrow (A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$$

 $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y} \Rightarrow L(\vec{x}) = A\vec{x} \text{ is norm (length)-preserving.}$

N DIEGO STA

イロト イボト イヨト

(5.3.32–a) Consider an $(n \times m)$ matrix A such that $A^T A = I_m$. Is is necessarily true that $AA^T = I_n$? (Explain!)

(5.3.32–b) Consider an $(n \times n)$ matrix A such that $A^T A = I_n$. Is is necessarily true that $AA^T = I_n$? (Explain!)

(5.3.33) Find all orthogonal (2×2) matrices.

N DIEGO ST.

イロト イボト イヨト イヨト

(5.3.36)

(5.3.36) Find an orthogonal matrix of the form

$$A = \begin{bmatrix} 2/3 & 1\sqrt{2} & a \\ 2/3 & -1/\sqrt{2} & b \\ 1/3 & 0 & c \end{bmatrix}$$

イロン イロン イヨン イヨン

SAN DIEGO STATE

(5.3.41) Find the matrix A of the orthogonal projection onto the line in \mathbb{R}^n spanned by the vector

$$\vec{1}_n = \begin{bmatrix} 1\\ 1\\ \vdots\\ 1 \end{bmatrix} \in \mathbb{R}^n$$

SAN DIEGO STATE

イロト 不同 とくほ とくほう

Revisiting the "Why?!?"

This section provides one important answer to "why?!" we should care about orthogonality, orthogonal complements, and orthogonal projections.

We will talk about *Least Squares Solutions* to non-consistent linear systems. (From a slightly different point of view than [NOTES#5.2: SUPPLEMENT].)

The least squares formulation is useful for fitting model parameters to data and has applications in a wide range of fields: chemistry, physics, engineering, finance, economics, etc.

It is sometimes (often?) referred to as "Linear Regression."

イロト イヨト イヨト イヨト

The Orthogonal Complement of the Image

Example (The Orthogonal Complement of im(A))

Consider a subspace V = im(A) of \mathbb{R}^n , where

$$A = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_m \end{bmatrix}.$$

Then the orthogonal complement is,

$$V^{\perp} = \{ \vec{x} \in \mathbb{R}^n : \vec{v} \cdot \vec{x} = 0, \forall \vec{v} \in V \}$$

= $\{ \vec{x} \in \mathbb{R}^n : \vec{v}_i \cdot \vec{x} = 0, i = 1, \dots, m \}$
= $\{ \vec{x} \in \mathbb{R}^n : \vec{v}_i^T \vec{x} = 0, i = 1, \dots, m \}$

In other words, V^{\perp} is the kernel of the matrix

$$A^{T} = \begin{bmatrix} \vec{v}_{1}^{T} \\ \vdots \\ \vec{v}_{m}^{T} \end{bmatrix}$$

- (39/51)

イロン イヨン イヨン イヨン

DIEGO STAT

Supplemental Material Supplemental Examples, Revisited Orthogonal Complements: Redux Orthogonal Projections: Redux Least Squares Data Fitting

The Orthogonal Complement of the Image

Theorem (The Orthogonal Complement of the Image)

For any matrix A,

$$(\operatorname{im}(A))^{\perp} = \ker \left(A^{\mathcal{T}} \right)$$

イロト イヨト イヨト イヨト

AN DIEGO STATE

AN DIEGO STAT

- (41/51)

A Line in \mathbb{R}^3

Example (A Line in \mathbb{R}^3)

Consider the line

$$V = \operatorname{im}\left(\begin{bmatrix}1\\2\\3\end{bmatrix}\right)$$

Then

$$V^{\perp} = \ker \begin{pmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \end{pmatrix}$$

is the plane with equation $x_1 + 2x_2 + 3x_3 = 0$; as usual we can parameterize (to get a basis), and Gram-Schmidt Orthogonalize (to make it orthonormal)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} = \tilde{s} \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + \tilde{t} \frac{1}{\sqrt{70}} \begin{bmatrix} -3 \\ -6 \\ 5 \end{bmatrix}.$$

Supplemental Material Supplemental Examples, Revisited Orthogonal Complements: Redux Orthogonal Projections: Redux Least Squares Data Fitting

AN DIEGO STATE

[FOCUS :: MATH] ker(A), ker($A^T A$), and Invertibility of $A^T A$

Theorem

a. If A is an $(m \times n)$ matrix, then $\ker(A) = \ker(A^T A)$.

b. If A is an $(m \times n)$ matrix with ker $(A) = \{\vec{0}\}$, then $A^T A$ is invertible.

Proof (Proof)

- a. Clearly, the kernel of A is contained in the kernel of A^TA. Conversely, consider a vector x ∈ ker(A^TA), so that A^TAx = 0. Then, Ax is in the image of A and in the kernel of A^T. Since ker(A^T) is the orthogonal complement of im(A) by the previous theorem, the vector Ax is 0, [NOTES#5.1], that is, x ∈ ker(A).
- **b.** Note that $A^T A$ is an $(n \times n)$ matrix. By part (a), $ker(A^T A) = {\vec{0}}$, and $A^T A$ is therefore invertible. [NOTES#3.3]

Orthogonal Projections

Theorem

Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n . Then, the orthogonal projection $\operatorname{proj}_V(\vec{x})$ is the vector in V closest to \vec{x} , in that

$$\|\vec{x} - \operatorname{proj}_V(\vec{x})\| < \|\vec{x} - \vec{v}\|, \ \forall \vec{v} \in V \setminus \operatorname{proj}_V(\vec{x}).$$

As usual $\vec{x}^{\parallel} \equiv \operatorname{proj}_{V}(\vec{x})$, and $\vec{x}^{\perp} = \vec{x} - \vec{x}^{\parallel}$ is the orthogonal "left-over" of \vec{x} after the projection. The distance $\|\vec{x}^{\perp}\|$ is the shortest distance from V to \vec{x} .

If we move, in V, a distance ϵ away from \vec{x}^{\parallel} , the distance from that point to \vec{x} is $\sqrt{\epsilon^2 + \|\vec{x}^{\perp}\|^2}$. [Pythagorean Theorem].

- (43/51)

イロト イボト イヨト イヨト

The Error, or Residual

Consider a linear system $A\vec{x} = \vec{b}$, which is inconsistent; meaning that $\vec{b} \notin im(A)$.

An inconsistent linear system *does not have a solution* (in the traditional sense).

However, we can find the \vec{x}^* which is the best candidate in that it minimizes the distance between $A\vec{x}^*$ and \vec{b} (even though that distance is not zero).

We measure that distance

$$\|A\vec{x} - \vec{b}\| \equiv \|\vec{b} - A\vec{x}\|$$

and call it the error, or residual.

- (44/51)

Least-Squares Solution

Definition (Least-Squares Solution)

```
Consider a linear system
```

$$A\vec{x} = \vec{b},$$

where A is an $(m \times n)$ matrix. A vector $\vec{x}^* \in \mathbb{R}^n$ is called a *least-squares solution* of this system if

$$\|\vec{b} - A\vec{x}^*\| \le \|\vec{b} - A\vec{x}\|, \ \forall \vec{x} \in \mathbb{R}^n.$$

The name *least-squares solution* comes from the fact that we a minimizing the sum-of-squares norm (length) of the error vector $\vec{e} = \vec{b} - A\vec{x}$.

If/When the system $A\vec{x} = \vec{b}$ is consistent the least-squares solution is the exact solution, and $\|\vec{b} - A\vec{x}^*\| = 0$.

イロト イヨト イヨト イヨト

N DIEGO STA

N DIEGO STAT

- (46/51)

Finding Least-Squares Solutions

How do we hunt down this wild beast?!

- We want the least-squares solutions \vec{x}^* to $A\vec{x} = \vec{b}$
- By definition we are looking for

•
$$\|\vec{b} - A\vec{x}^*\| \le \|\vec{b} - A\vec{x}\|, \ \forall \vec{x} \in \mathbb{R}^n.$$

• Our projection theorem says:

•
$$A\vec{x}^* = \operatorname{proj}_V(\vec{b})$$
, where $V = \operatorname{im}(A)$.

• So, the error is in the orthogonal complement of im(A):

•
$$\vec{b} - A\vec{x}^* \in V^\perp = (\operatorname{im}(A))^\perp = \operatorname{ker}(A^T).$$

Which means:

•
$$A^T(\vec{b} - A\vec{x}^*) = 0 \Leftrightarrow A^T A\vec{x} = A^T \vec{b}.$$

Finding Least-Squares Solutions

The Normal Equations

イロン スピン メヨン

Theorem (The Normal Equations)

The least-squares solutions of the system $A\vec{x} = \vec{b}$, are the exact solutions of the (consistent) system $A^T A \vec{x} = A^T \vec{b}$. The system $A^T A \vec{x} = A^T \vec{b}$ is called the **normal equations** of $A \vec{x} = \vec{b}$.

The case where $ker(A) = {\vec{0}}$ is of particular importance, since in that case the matrix $A^T A$ is invertible, and we can give a closed form expression for the solution:

Closed Form Least Square Solutions

Theorem (Closed Form Expression for the Least Squares Solution)

If ker(A) = $\{\vec{0}\}$, the linear system $A\vec{x} = \vec{b}$ has the unique least-squares solution

$$\vec{x}^* = (A^T A)^{-1} A^T \vec{b},$$

and

$$A\vec{x}^* = \operatorname{proj}_{\operatorname{im}(A)}(\vec{b}) = \underbrace{A(A^TA)^{-1}A^T}_{P}\vec{b},$$

where the matrix $P = A(A^T A)^{-1}A^T$ is the matrix of the orthogonal projection onto im(A).

Note: Just because you can write down a mathematical expression, it does not mean using it for anything practical is a good idea.

・ロト ・回ト ・ヨト ・ヨト

A BIG Warning!

WARNING

Whereas the least-squares solution, and orthogonal projection CAN be expressed as

$$(A^{T}A)^{-1}A^{T}\vec{b}$$
, and $A(A^{T}A)^{-1}A^{T}\vec{b}$, respectively.

Anyone using these expressions outside of small homework problems are likely to run into **Big Trouble**!!!

We do not have the tools (eigenvalues) to explain why yet, but the warning stands!

N DIRGO ST

So... What Should One Do?

Well, recall the Gram-Schmidt Process, and the QR-factorization... If we have computed QR = A, then the following is true:

THE SOLUTION		=	
	QRx		
multiply by Q^T	$Q^T Q R \vec{x}$	=	$Q^T \vec{b}$
$Q^T Q = I_n$			$Q^T \vec{b}$
solve	\vec{x}^*	=	$R^{-1}Q^{T}\tilde{b}$
			<u>_</u>
THE PROJECTION	QR <i>x</i> *	=	$QRR^{-1}Q^{T}\vec{b}$ $QQ^{T}\vec{b}$
	QR <i>x</i> [*]	=	QQ [⊤] b̃
	use	not	
$\vec{x}^* =$	$R^{-1}Q^T \vec{b}$	$(A^7$	$(A)^{-1}A^T\vec{b}$
$\vec{x}^* = \operatorname{proj}_{\operatorname{im}(A)}(\vec{b}) =$	$QQ^T \vec{b}$	A(A	$(TA)^{-1}A^{T}\vec{b}$
<u>FJim(A)(~)</u>	~~ ~	(/	
			・ロト ・四ト ・ヨト ・ヨト

- (50/51)

More Examples and Discussion???

It makes sense to return to the Least-Squares solutions with more tools (eigenvalues) in hand; but, alas, we will run out of time this semester.

Some additional examples and discussion can be found in [AVAILABLE ONLINE]:

Class	Notes#	
Math 541 ^{R.I.P.}	10, 11	
Math 524	6	
Math 543	8, 14	
Math 693a	22, 23, 24	

Clearly, there's a lot more to say...

N DIRGO STAT

イロト イボト イヨト イヨト