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Student Learning Objectives SLOs: Eigen-values and vectors: Diagonalization

SLOs 7.1 Eigen-values and vectors: Diagonalization

After this lecture you should know how

Matrix Diagonalization

Similarity Transformation

Eigenvalues, Eigenvectors, and Eigenbases

are inter-related.
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Introduction
Baby Steps...

Introduction “Intellectual Set-up of Eigenvalues and Eigenvectors Computations”
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Figure: Consider linear transformations T : R2 7→ R2. What do we
know? — They rotate, reflect, and stretch our input space (Left panel)
in various ways; two examples shown in the Center and Right panels.

An eigenvector, ~v , of a linear transformation is a vector whose orientation
is preserved by the transformation, i.e. ~v ‖ A~v , i.e.

A~v = λ~v ,

and the scalar λ is the eigenvalue associated with ~v .
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Introduction
Baby Steps...

Why Should We Care About Eigenvalues? Applications

From a “pure” linear algebra perspective, operations on eigenvectors are
easy, since they are just (multiplicative) scalings.

In applications the eigenvector-eigenvalue pair describe some
fundamental property of a “system” (something we are using a
mathematical model to describe):

Vibrations, either in strings (guitars, pianos, etc) or other
structures (bridges, tall buildings): the eigenvalue is the frequency,
and the eigenvector is the deformation. [Tacoma Bridge]
((Link sponsored by “C+ Engineering LLC.”))

In statistics, Principal Component Analysis, is an
eigenvector-eigenvalue analysis of the correlation matrix, and is used
to study large data sets, such as those encountered in data mining,
chemical research, psychology, and in marketing.
Buzzwords: “Data Science,” “Big Data,” and “Page Rank.”
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Introduction
Baby Steps...

Why Should We Care About Eigenvalues? Cooking

Figure: “Eigenvalue Analysis of Microwave Oven.” Haider, Siddique, Abbas, and Ahmed —
International Journal of Scientific & Engineering Research, Volume 4, Issue
9, September-2013, pp. 2473.
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Introduction
Baby Steps...

Why Should We Care About Eigenvalues? Combustion

Figure: Space and time evolution of a three-cells hopping state found in simulations of
the Kuramoto-Sivashinsky equation. The cells move non-uniformly and their shapes change
periodically. Parameter values are: ε = 0.32, η1 = 1.0, η2 = 0.013, and R = 7.7475. —
Blomgren, Gasner, and Palacios, “Hopping Behavior in the Kuramoto-Sivashinsky Equa-
tion.” Chaos: An Interdisciplinary Journal of Nonlinear Science, volume 15;
March 28, 2005.
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Introduction
Baby Steps...

Example: Energy Modes in the Hydrogen Wave Function

OK, we may not be quite ready to identify the energy states in the hydrogen
atom... yet. Let us, momentarily, retreat to our safe Linear Algebra “universe.”
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Motivating Example

Given the matrices

A =




−1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2


 , B =




1 2 3 4
5 6 7 8
9 8 7 6
5 4 3 2




ponder the “fun” of
1 computing:

A5, rank(A), det(A), the basis of ker(A), and the basis of
im(A)

2 computing:

B5, rank(B), det(B), the basis of ker(B), and the basis of
im(B)

Peter Blomgren 〈blomgren@sdsu.edu〉 7.1. Eigen-values and vectors: Diagonalization — (9/41)

Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Motivating Example (A)

For Matrix A we can write down the answers quickly:

rank(A) = 3, det(A) = 0

A5 =




(−1)5 0 0 0
0 0 0 0
0 0 15 0
0 0 0 25


 =




(−1) 0 0 0
0 0 0 0
0 0 1 0
0 0 0 32




ker(A) ∈ span








0
1
0
0








, im(A) ∈ span








1
0
0
0


 ,




0
0
1
0


 ,




0
0
0
1
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Motivating Example (B)

Now, for matrix B it’s a “bit” more work... and maybe not immediately
obvious that:

rank(B) = 2, det(B) = 0

B5 =




412, 928 413, 184 413, 440 413, 696
1, 052, 928 1, 053, 184 1, 053, 440 1, 053, 696
1, 187, 072 1, 186, 816 1, 186, 560 1, 186, 304
547, 072 546, 816 546, 560 546, 304




ker(B) ∈ span








1
−2
1
0


 ,




2
−3
0
1








, im(B) ∈ span








1
5
9
5


 ,




2
6
8
4








We come to the realization that diagonal matrices are our friends!
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Diagonalizable Matrices Remember “Coordinates”?

Definition (Diagonalizable Matrices)

Consider a linear transformation T (~x) = A~x ; (T : Rn 7→ Rn). Then A
(and/or T ) is said to be diagonalizable if the matrix B of T with respect
to some basis, B(Rn) is diagonal. [Math 524 Notation]: B = M(T ,B(Rn))

By previous discussion [Notes#3.4], the matrix A is diagonalizable if and
only if it is similar to some diagonal matrix B ; meaning that there exists
some invertible matrix S , so that

S−1AS = B is a diagonal matrix.

Definition (Diagonalization of a Matrix)

To diagonalize a square matrix A means to find an invertible matrix S
and a diagonal matrix B such that S−1AS = B .
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Rewind — [Notes#3.4] Standard Matrix vs. B-matrix ((Change of Basis))

Visualizing the Theorem:

T (~x)T (~x)T (~x)T (~x)
standard coordinates ~x T (~x)

B-coordinates [~x ]B [T (~x)]B

A~x

[~x]B = S−1~x~x = S[~x]B [T (~x)]B = S−1T (~x)T (~x) = S[T (~x)]B

B[~x]B

S =
[
~v1 . . . ~vn

]
, B = (~v1, . . . , ~vn)

~x = S [~x ]B, S−1~x = [~x ]B; T (~x)= S [T (~x)]B, S−1T (~x) = [T (~x)]B

Therefore

A~x = T (~x)= S [T (~x)]B = SB[~x ]B= SBS−1~x
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Eigenvectors, Eigenvalues, and Eigenbases

Definition (Eigenvectors, Eigenvalues, and Eigenbases)

Consider a linear transformation T (~x) = A~x ; (T : Cn 7→ Cn). A
non-zero vector ~v ∈ Cn is called an eigenvector of A (and/or T )
if

A~v = λ~v ,

for some λ ∈ C. This λ is called the eigenvalue associated with
the eigenvector ~v .

A basis ~v1, . . . , ~vn of Cn is called an eigenbasis for A (and/or T )
if the vectors ~v1, . . . , ~vn are eigenvectors of A, i.e.

A~vk = λk~vk , k = 1, . . . , n

for some scalars λ1, . . . , λn.
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Repeated Multiplication by A

Example (Repeated Multiplication by A)

If ~v is an eigenvector of A, then A~v = λ~v ; and

A2~v = A(A~v) = A(λ~v) = λA~v = λ2~v .

It does not take a lot of imagination to realize

Ak~v = λk~v
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Example Ak~v in R2

Example (Life in R2)

Assume we have an eigenbasis {~v1, ~v2}, then any ~w ∈ R2 can be
written as ~w = a1~v1 + a2~v2 for unique scalars a1 and a2; now

A~w = A(a1~v1 + a2~v2) = a1A~v1 + a2A~v2 = a1λ1~v1 + a2λ2~v2

and

Ak ~w = Ak−1(A(a1~v1+a2~v2)) = Ak−1(a1λ1~v1+a2λ2~v2) = a1λ
k
1~v1+a2λ

k
2~v2

“Future-Proofing:”
Rn: if ~v1, ~v2 are eigenvectors of A, and ~w = a1~v1 + a2~v2 we have Ak ~w =

a1λ
k
1~v1 + a2λ

k
2~v2. That is the “action” is the “same” as above when

restricted to V = span (~v1, ~v2).

Peter Blomgren 〈blomgren@sdsu.edu〉 7.1. Eigen-values and vectors: Diagonalization — (16/41)



Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Example Ak~v in R2
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Example Ak~v in R2
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Eigenbases and Diagonalization

Theorem (Eigenbases and Diagonalization)

The matrix A is diagonalizable if and only if there exists an eigenbasis for
A. If ~v1, . . . , ~vn is an eigenbasis for A, with A~v1 = λ1~v1, . . . ,A~vn = λn~vn,
then the matrices

S =
[
~v1 · · · ~vn

]
, and B =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




will diagonalize A, meaning S−1AS = B.

Conversely, if the matrices S and B diagonalize A, then the columns of S
will form an eigenbasis for A, and the diagonal entries of B will be the
associated eigenvalues.
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Eigenvalues of the Identity Transformation

Example (T (~x) = In~x = ~x)

Find all the eigenvalues and eigenvectors of the identity matrix In.

Solution: Since
In~x = 1~x ∀~x ∈ Rn,

it follows that all ~x ∈ Rn are eigenvectors of In with associated
eigenvalues 1.

Therefore, all bases of Rn are eigenbases for In, and clearly the
already diagonal matrix In is diagonalizable. Any invertible S will
do the trick: S−1InS = S−1S = In.
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Eigenvalues of a Projection

Example (Projection: Setup)

Let ~w =

[
4
3

]
, and consider the projection onto the line

L = span {~w}:

T (~x) = projL(~x) =

(
~x ◦ ~w

‖~w‖2
)

~w = P~x

where [Notes#2.2] the projection matrix P is

P =
1

25

[
16 12
12 9

]
=

[
0.64 0.48
0.48 0.36

]
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Eigenvalues of a Projection

Example (Projection: Getting Started...)

Restating Old Results in this New Context —

Any vector ‖ to L = {k ~w , k ∈ R} will be projected onto itself
(hence it is an eigenvector with eigenvalue 1); and any vector ⊥ to
L = {k ~w , k ∈ R} will be projected onto ~0, so it is an eigenvector
with eigenvalue 0;

P~x‖ = 1~x‖, P~x⊥ = 0~x⊥

one eigenbasis is

B = (~x‖, ~x⊥), where ~x‖ =
[
4
3

]
, ~x⊥ =

[
−3
4

]
,
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Eigenvalues of a Projection

Example (Projection: ...Moving Along)

The B-matrix (which expresses T in the B-basis) is

B = M(T ;B(R2)) =

[
1 0
0 0

]
,

Recall that the first column is the coefficients, (1, 0) of T (~x‖) in the
basis B(R2) = (~x‖, ~x⊥); and the second column is the coefficients (0, 0)
of T (~x⊥).

The matrices B and

S =
[
~x‖ ~x⊥

]
=

[
4 −3
3 4

]

diagonalize P .

Notation: M(T ;B(R2)) — “The matrix of T with respect to the basis B of R2.”
. (Future-proofed for [Math 524])
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

What About Rotations?

Example (Rotation by π/2 (90◦))

Let R =

[
0 −1
1 0

]
, and T (~x) = R~x be the rotation transformation.

Now, given any ~x ∈ R2, ~x is not parallel to R~x .

As long as we insist on REAL eigenvectors and REAL eigenvalues,
we find none...

Matrices with real entries may have Complex eigenvalues.

Complex: The (complex) eigenvalues of the matrix above are 0+1i , and 0−1i ; where
i =

√
−1.
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Eigenvalues of Orthogonal Matrices

Example (Orthogonal A ∈ Rn×n)

Let A be an orthogonal matrix; then T (~x) = A~x preserves length, so
if/when ~v is an eigenvector

‖~v‖ = ‖A~v‖ = ‖λ~v‖ = |λ| ‖~v‖
therefore, we must have |λ| = 1.

Theorem

The only possible real eigenvalues of an orthogonal matrix are 1 and −1.

Complex: When a matrix as above has |λ| = 1, and λ is allowed to be complex; there
are infinitely many possibilities λ = e iθ = cos θ+i sin θ. A length-preserving
matrix with complex eigenvalues is usually called a Unitary Matrix; the Or-
thogonal Matrices are special cases of Unitary Matrices (with real eigenval-
ues).
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Matrices with Eigenvalue 0

Core Property — Zero Eigenvalue

By definition 0 is an eigenvalue if and only if we can find a
non-zero ~x ∈ Rn so that A~x = 0~x = ~0.

That means 0 is an eigenvalue of A if and only if ker(A) 6= {~0},
i.e. A is non-invertible.

We add this to our list from [Notes#2.4], [Notes#3.1], and
[Notes#3.3].
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Motivating Example
Definitions, etc...

Characteristics of Invertible Matrices Important!

Equivalent Statements: Invertible Matrices

For an (n × n) matrix A, the following statements are equivalent:

i. A is invertible

ii. The linear system A~x = ~b has a unique solution ~x , ∀~b ∈ Rn

iii. rref(A) = In

iv. rank(A) = n

v. im(A) = Rn

vi. ker(A) = {~0}
vii. The column vectors of A form a basis of Rn

viii. The column vectors of A span Rn

ix. The column vectors of A are linearly independent

x. det(A) 6= 0.

xi. 0 is not an eigenvalue of A.
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Suggested Problems 7.1
Lecture –Book Roadmap

Suggested Problems 7.1

Available on Learning Glass videos:
7.1 — 1, 3, 5, 7, 15, 17, 21
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Eigenvalues and Eigenvectors
Diagonalization

Suggested Problems

Suggested Problems 7.1
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

7.1 §6.1
7.2 §6.1, §6.2
7.3 §6.1, §6.2
7.5 §6.1, §6.2
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Supplemental Material
Metacognitive Reflection
Problem Statements 7.1
Complex Analysis: Essentials for Linear Algebra

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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Supplemental Material
Metacognitive Reflection
Problem Statements 7.1
Complex Analysis: Essentials for Linear Algebra

(7.1.1), (7.1.3), (7.1.5), (7.1.7)

(7.1.1) Let A ∈ Rn×n be an invertible matrix, and ~v an eigenvector of A,
with associated eigenvalue λ. Is ~v an eigenvector of A3? If so, what
is the eigenvalue?

(7.1.3) Let A ∈ Rn×n be an invertible matrix, and ~v an eigenvector of A,
with associated eigenvalue λ. Is ~v an eigenvector of A+ 2In? If so,
what is the eigenvalue?

(7.1.5) If a vector ~v is an eigenvector of both A ∈ Rn×n and B ∈ Rn×n, is ~v
necessarily an eigenvector of A+ B?

(7.1.7) If ~v is an eigenvector of A ∈ Rn×n, with eigenvalue λ, what can you
say about ker(A− λIN)?
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Supplemental Material
Metacognitive Reflection
Problem Statements 7.1
Complex Analysis: Essentials for Linear Algebra

(7.1.15), (7.1.17), (7.1.21)

(7.1.15) Arguing geometrically, find all eigenvectors and eigenvalues of the
linear transformation — Reflection about a line L in R2 — find the
eigenbasis (if possible) and determine whether the transformation is
diagonalizable?

(7.1.17) Arguing geometrically, find all eigenvectors and eigenvalues of the
linear transformation — Counterclockwise rotation through an angle
of 45◦ (π/4) followed by a scaling by 2 in R2 — find the eigenbasis
(if possible) and determine whether the transformation is
diagonalizable?

(7.1.21) Arguing geometrically, find all eigenvectors and eigenvalues of the
linear transformation — Scaling by 5 in R3 — find the eigenbasis (if
possible) and determine whether the transformation is
diagonalizable?
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Supplemental Material
Metacognitive Reflection
Problem Statements 7.1
Complex Analysis: Essentials for Linear Algebra

Definition, Complex Addition

Definition (Complex Numbers)

With a, b ∈ R, we define the complex value z ∈ C:

z = a+ ib

where i is the imaginary unit
√
−1. a is the Real Part (a = Re(z)), and b

the Imaginary Part (b = Im(z)) of z .

Definition (Complex Addition)

Let z1, z2 ∈ C, then

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)
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Supplemental Material
Metacognitive Reflection
Problem Statements 7.1
Complex Analysis: Essentials for Linear Algebra

Complex Multiplication

Definition (Complex Multiplication)

Let z1, z2 ∈ C, then

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1)

this follows from the fact that i2 = −1.

Note: C is isomorphic to R2

Let T : R2 7→ C be the linear transformation:

T

([
a
b

])
= a+ ib, T−1(a + ib) =

[
a
b

]
,

that is we can interpret vectors in R2 as complex numbers (and the other
way around).
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Multiplication by i  Rotation

Example (Multiplication by i)

Consider z = a+ ib, and let a, b > 0 so that the corresponding vector
lives in the first quadrant.

z a+ ib
iz i(a+ ib) = ia+ i2b −b + ia

i2z i(−b + ia) = −ib + i2a −a− ib
i3z i(−a− ib) = −ia+ i2b b − ia
i4z i(b − ia) = ib − i2a a+ ib

We see that z = −i2z = i4z , and since

[
a
b

]
·
[
−b
a

]
= a(−b) + ba = 0,

[
a
b

]
·
[

b
−a

]
= ab + b(−a) = 0

we can interpret multiplication by i as a ccw-rotation by π/2 (90◦).

Complex numbers can solve our issue of “no real eigenvalues” for
rotations!
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Complex Conjugate

Definition (Complex Conjugate)

Given z = (a+ ib) ∈ C, the complex conjugate is defined by

z = (a− ib), sometimes z∗ = (a− ib)

(reversing the sign on the imaginary part). Note that this is a
reflection across the real axis in the complex plane.

Hey! It’s a reflection across the real axis!

z and z∗ form a conjugate pair of complex numbers, and

z z∗ = (a+ ib)(a − ib) = a2 + b2.
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Polar Coordinate Representation

Polar Coordinate Representation (Modulus and Argument)

We can represent z = a+ ib in terms of its length r (modulus) and angle
θ (argument); where

r = mod(z) = |z | =
√

a2 + b2, θ = arg(z) ∈ [0, 2π)

where

θ = arg(z) =





arctan( ba ) if a > 0

arctan( ba ) + π if a < 0 and b ≥ 0

arctan( ba )− π if a < 0 and b < 0
π
2 if a = 0 and b > 0

−π
2 if a = 0 and b < 0

indeterminate if a = 0 and b = 0.
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Polar Coordinate Representation

Polar form of z

Given r and θ we let

z = r(cos θ + i sin θ) ≡ re iθ,

where the identity
e iθ = (cos θ + i sin θ)

is known as Euler’s Formula.

Once we restrict the range of θ to an interval of length 2π, the
representation is unique. Common choices are θ ∈ [0, 2π) [we will
use this here], or θ ∈ [−π, π); but θ ∈ [ξ, ξ + 2π) for any ξ ∈ R
works (but why make life harder than necessary?!)
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Multiplying in Polar Form

Example

Given z1, z2 ∈ C, then

z1z2 =





(a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1)

r1e iθ1 r2e iθ2 = (r1r2)e i(θ1+θ2)

r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2) =
(r1r2)((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2))

these three expressions are equivalent.

Since Euler’s formula says e i(θ1+θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2), we can restate
some old painful memories:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2
sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2

Bottom line, for z = z1z2, we have

|z| = |z1| |z2|, arg(z) = arg(z1) + arg(z2) (mod 2π).
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From Euler to DeMoivre

From Euler’s Identity e iθ = (cos θ + i sin θ) we see that

(cos θ + i sin θ)n = (e iθ)n = e inθ = cos(nθ) + i sin(nθ),

which is known as De Moivre’s Formula.

OK, we have enough fragments of Complex Analysis to state the
key result we need prior to revisiting our Eigenvalue/Eigenvector
problem space.
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Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)

Any nth degree polynomial pn(λ) with complex coefficients∗ can
be written as a product of linear factors

pn(λ) = k(λ− λ1)(λ− λ2) · · · (λ− λn)

for some complex numbers λ1, λ2, . . . , λn and k. (The λk ’s need
not be distinct).

Therefore a polynomial pn(λ) of degree n has precisely n complex
roots if they are counted with their multiplicity.

∗ Note that real coefficients are complex coefficients with zero
imaginary part.
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