Math 254: Introduction to Linear Algebra

Notes #7.2 — Finding the Eigenvalues of a Matrix

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics

Dynamical Systems Group
Computational Sciences Research Center
San Diego State University

San Diego, CA 92182-7720 http://terminus.sdsu.edu/

Spring 2022

(Revised: April 25, 2022)

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (1/35)

Student Learning Objectives

SLOs: Eigen-values and vectors: Diagonalization

SLOs 7.2

Finding the Eigenvalues of a Matrix

After this lecture you should

- Know how to find the Eigenvalues of a Triangular Matrix
- Be able to derive the Characteristic Polynomial (of a Matrix), and understand its relation to the Eigenvalues
 - Be able to use the Characteristic Polynomial to find the Eigenvalues of a matrix.
- Be familiar with the Algebraic Multiplicity of an Eigenvalue
- Be able to express the Determinant, and Trace of a matrix in terms of the eigenvalues

Outline

- Student Learning Objectives
 - SLOs: Eigen-values and vectors: Diagonalization
- 2 Finding the Eigenvalue of a Matrix
 - Determinants → Characteristic Equation/Polynomial
- 3 Suggested Problems
 - Suggested Problems 7.2
 - Lecture Book Roadmap
- Supplemental Material
 - Metacognitive Reflection
 - Problem Statements 7.2
 - Complex Eigenvalues

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

__ (2/35)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants → Characteristic Equation/Polynomial

Characterization of Eigenvalues :: Equivalences

 $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$

There exists a non-zero vector $\vec{v} \in \mathbb{C}^n$ such that

$$A\vec{v} = \lambda \vec{v} \quad \Leftrightarrow \quad (A - \lambda I_n)\vec{v} = \vec{0}$$

 $\underbrace{\ker(A-\lambda I_n)\neq\{\vec{0}\}}$

The matrix $(A - \lambda I_n)$ is not invertible

 $\det(A-\lambda I_n)=0$

The Characteristic Equation

Theorem (Eigenvalues and Determinants: The Characteristic Equation)

Consider an $(n \times n)$ matrix A and a scalar λ ; then λ is an eigenvalue of A if and only if

$$\det(A-\lambda I_n)=0.$$

This is called the **Characteristic Equation** of the matrix A.

Note that the Characteristic Equation is a polynomial in λ ... the **Characteristic Polynomial** — $p_A(\lambda)$. We are looking for roots (zeros) of this polynomial.

BOTTOM LINE: The Eigenvalue problem can be solved as ("is equivalent to") a polynomial root-finding problem.

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

-(5/35)

Finding the Eigenvalue of a Matrix Suggested Problems

Example: Alternative (Determinant Free) Approach

[Focus :: Math]

Example (Revisited: "Minimal Polynomial Approach" [MATH 524 (NOTES#8)])

Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}.$$

Solution: We select a vector $\vec{v} \in \mathbb{R}^2$; here $\vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$; we form the set

 $\mathbb{K} = \{\vec{v}, A\vec{v}, A^2\vec{v}\}$. The vectors in \mathbb{K} must be linearly dependent; we look for the first non-leading column in the matrix $M = [\vec{v} \quad A\vec{v} \quad A^2\vec{v}]$:

$$\mathbb{K} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 9 \\ 16 \end{bmatrix} \right\}, M = \begin{bmatrix} 1 & 1 & 9 \\ 0 & 4 & 16 \end{bmatrix}, \operatorname{rref}(M) = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 4 \end{bmatrix}$$

This means $5l_2\vec{v} + 4A\vec{v} - A^2\vec{v} = \vec{0}$. We rearrange: $(5l_2 + 4A - A^2)\vec{v} = \vec{0}$. With the convention $A^0 = I_n$, we can let $p^{(m)}(\lambda) = 5 + 4\lambda - \lambda^2$; this is the minimal polynomial (which in this case is also the characteristic polynomial). We have $p^{(m)}(A)\vec{v} = \vec{0}$, and the roots of $p^{(m)}(\lambda)$ are the eigenvalues $\{-1,5\}$.

Example: Eigenvalues of a (2×2) -matrix

Example

Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}.$$

Solution: We solve the characteristic equation $det(A - \lambda I_2) = 0$:

$$\det(A - \lambda I_2) = \det\left(\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \det\left(\begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}\right)$$

$$= (1 - \lambda)(3 - \lambda) - 2 \cdot 4 = \lambda^2 - 4\lambda - 5 = (\lambda - 5)(\lambda + 1) = 0.$$

We get two solutions: $\lambda_1 = 5$, and $\lambda_2 = -1$.

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (6/3**5**)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants --> Characteristic Equation/Polynomial

Example: Eigenvalues of a (3×3) Triangular Matrix

Example

Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{bmatrix}.$$

Solution: We solve the characteristic equation $det(A - \lambda I_3) = 0$:

$$\det(A - \lambda I_3) = \det \left(\begin{bmatrix} 2 - \lambda & 3 & 4 \\ 0 & 3 - \lambda & 4 \\ 0 & 0 & 4 - \lambda \end{bmatrix} \right)$$

$$= (2 - \lambda)(3 - \lambda)(4 - \lambda).$$

We get three solutions: $\lambda_1 = 2$, $\lambda_2 = 3$, and $\lambda_3 = 4$.

Example: Alternative (Determinant Free) Approach

[Focus :: Math]

Example (Revisited: "Minimal Polynomial Approach" [MATH 524 (NOTES # 8)])

Find the eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{bmatrix}.$$

Solution: We select a vector $\vec{v} \in \mathbb{R}^3$; here $\vec{v} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$; we form the set $\mathbb{K} = \{\vec{v}, \, A\vec{v}, \, A^2\vec{v}, \, A^3\vec{v}\}$. The vectors in \mathbb{K} must be linearly dependent; we look for the first non-leading column in the matrix $M = \begin{bmatrix} \vec{v} & A\vec{v} & A^2\vec{v} & A^3\vec{v} \end{bmatrix}$:

$$\mathbb{K} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}, \begin{bmatrix} 36 \\ 28 \\ 16 \end{bmatrix}, \begin{bmatrix} 220 \\ 148 \\ 64 \end{bmatrix} \right\}, \ \operatorname{rref}(M) = \begin{bmatrix} 1 & 0 & 0 & 24 \\ 0 & 1 & 0 & -26 \\ 0 & 0 & 1 & 9 \end{bmatrix}$$

This means $24l_2\vec{v}-26A\vec{v}+9A^2\vec{v}-A^3=\vec{0}$. We identify the *minimal polynomial* $p^{(m)}(\lambda)=24-26\lambda+9\lambda^2-\lambda^3$. We have $p^{(m)}(A)\vec{v}=\vec{0}$, and the roots of $p^{(m)}(\lambda)$ are the eigenvalues $\{2,3,4\}$.

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

-(9/35)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants → Characteristic Equation/Polynomial

A Note on the Minimal Polynomial Approach

#ThingsThatCanGoWrong

Yet again, ponder the previous problem with $\vec{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$:

$$\mathbb{K} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 15 \\ 9 \\ 0 \end{bmatrix}, \begin{bmatrix} 57 \\ 27 \\ 0 \end{bmatrix} \right\}, \ \operatorname{rref}(M) = \begin{bmatrix} 1 & 0 & -6 & -30 \\ 0 & 1 & 5 & 19 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The third column is linearly dependent on the first two, so $-6\vec{v} + 5A\vec{v} - A^2\vec{v} = \vec{0} \rightsquigarrow p(\lambda) = -6 + 5\lambda = \lambda^2$, which reveals the eigenvalues $\{2,3\}$.

"Unlucky" choices of \vec{v} may not capture all the eigenvalues.

Obvious Question: How do we know that we have all of them??? #WeHaveWorkToDo #Math524

A Note on the Minimal Polynomial Approach

#ThingsThatCanGoWrong

The selection of \vec{v} must be such that (at a minimum) the set \mathbb{K} has non-zero entries in all rows (where A has non-zeros).

Ponder the previous problem with $\vec{v} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$:

$$\mathbb{K} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 8 \\ 0 \\ 0 \end{bmatrix} \right\}, \ \operatorname{rref}(M) = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The second column is linearly dependent on the first, so $2\vec{v} - A\vec{v} = \vec{0} \rightsquigarrow p(\lambda) = 2 - \lambda$, which only reveals one eigenvalue (2); we see that $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ is an *eigenvector*.

We try again...

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

(10 /2E)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants → Characteristic Equation/Polynomial

Key Observation: Eigenvalues of Triangular Matrices

Theorem (Eigenvalues of a Triangular Matrix)

The eigenvalues of a triangular matrix are its diagonal elements.

Again, this "special" structure of the matrix makes eigenvalue computation easy [FOR THIS "TYPE" OF MATRICES].

WARNING WARNING!!!

Don't get any ideas... We CANNOT use row-reductions to transform a general matrix to upper triangular form, and then extract the eigenvalues from the diagonal. Bummer.

Example: Eigenvalues of a General (2×2) -matrix

Example

Find the characteristic equation of the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Solution: We solve the characteristic equation $\det(A - \lambda I_2) = 0$:

$$\det(A - \lambda I_2) = \det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \det\left(\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix}\right)$$
$$= (a - \lambda)(d - \lambda) - bc = \lambda^2 - (\mathbf{a} + \mathbf{d})\lambda + \underbrace{(ad - bc)}_{\det(A)}$$

Note that (a + d) is the sum of the diagonal elements of A; this quantity shows up frequently in linear algebra... and it has its own name ...

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (13/35)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants --> Characteristic Equation/Polynomial

The Characteristic Polynomial

Theorem (Characteristic Polynomial)

For an $(n \times n)$ matrix A, $\det(A - \lambda I_n) = p_A(\lambda)$ is a polynomial of degree n, of the form

$$p_A(\lambda) = (-\lambda)^n + \operatorname{trace}(A)(-\lambda)^{n-1} + \cdots + \operatorname{det}(A).$$

Note: trace(A) is always the coefficient for the $(-\lambda)^{n-1}$ term, and det(A) is always the constant term.

> It is possible (but not necessarily useful), and "somewhat" tedious to develop expressions for the remaining coefficients... we'll leave that as an "Exercise for the motivated student."

The Trace of a Matrix

Definition (Trace)

The sum of the diagonal entries of a square matrix A is called the **trace** of A, denoted by trace(A). For $A \in \mathbb{R}^{n \times n}$

$$\operatorname{trace}(A) = \sum_{i=1}^{n} a_{ii}$$

From the previous example we have:

Theorem (Characteristic Equation of a (2×2) matrix A)

$$\det(A - \lambda I_2) = \lambda^2 - \operatorname{trace}(A) \lambda + \det(A) = 0.$$

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants --> Characteristic Equation/Polynomial

Finding Eigenvalues \Leftrightarrow Solving $p_A(\lambda) = 0$

What do we know about polynomials?

Well, a polynomial of degree n has at most n real roots/zeros. Therefore an $(n \times n)$ matrix has at most n real eigenvalues.

Heads-Up: Allowing for complex roots: every nth degree polynomial has exactly n roots/zeros (counting repeats, a.k.a "multiplicity"); therefore an $(n \times n)$ matrix has exactly n eigenvalues.

Special case: When n is odd

[Recall:
$$p_A(\lambda) = (-\lambda)^n + \operatorname{trace}(A)(-\lambda)^{n-1} + \cdots + \det(A)$$
]

$$\lim_{\lambda \to \infty} p_A(\lambda) = -\infty, \quad \lim_{\lambda \to -\infty} p_A(\lambda) = \infty,$$

by the *intermediate value theorem*, there's at least one $\lambda_{\#} \in \mathbb{R}$ so that $p_A(\lambda_\#) = 0$.

Algebraic Multiplicity of an Eigenvalue

Example (Algebraic Multiplicity)

Find all eigenvalues of

$$A = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ 0 & 4 & 3 & 2 & 1 \\ 0 & 0 & 5 & 2 & 1 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Solution: The characteristic polynomial is given by $\det(A - \lambda I_5)$ $\rightsquigarrow p_A(\lambda) = (5 - \lambda)^3 (4 - \lambda)^2$, so the eigenvalues are 5 and 4. $\lambda = 5$ is a root of multiplicity 3, and $\lambda = 4$ is a root of multiplicity 2; we say that the eigenvalue $\lambda_1 = 5$ has algebraic multiplicity 3, and $\lambda_2 = 4$ has algebraic multiplicity 2.

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (17/35)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants \leadsto Characteristic Equation/Polynomial

Number of Eigenvalues

Theorem (Number of Eigenvalues)

- An $(n \times n)$ matrix A has at most n real eigenvalues, counted with algebraic multiplicities.
- An $(n \times n)$ matrix A has exactly n (possibly complex) eigenvalues, counted with algebraic multiplicities.
- If n is odd, then an $(n \times n)$ matrix has at least one real eigenvalue.

Example (No Real Eigenvalues / Purely Imaginary Eigenvalues)

Consider the rotation matrix

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \text{ with } p_A(\lambda) = \lambda^2 + 1.$$

The roots are $\pm \sqrt{-1} = \pm i$, which are not real...

Here, we have two complex eigenvalues $\lambda_1 = i$, and $\lambda_2 = -i$.

Algebraic Multiplicity of an Eigenvalue

Theorem (Algebraic Multiplicity of an Eigenvalue)

We say than an eigenvalue λ_{ℓ} of a square matrix A has algebraic multiplicity k if λ_{ℓ} is a root of multiplicity k of the characteristic polynomial $p_A(\lambda)$, meaning that we can write

$$p_A(\lambda) = (\lambda_\ell - \lambda)^k g(\lambda),$$

where $g(\lambda)$ is some polynomial (of order (n-k)) such that $g(\lambda_{\ell}) \neq 0$.

Flash-Forward: In [NOTES#7.3] we will discuss the *Geometric Multiplicity* of eigenvalues. (The Geometric Multiplicity is the count of the number of linearly indenpendent eigenvectors associated with the eigenvalue)

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (18/35)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants → Characteristic Equation/Polynomial

The 4 Cases for (3×3) Matrices

Example (4 Cases for Eigenvalues for (3×3) Matrices)

For (3×3) matrices with real entries, the characteristic polynomial $p_A(\lambda)$ is 3rd order, and takes either the form

$$p_A(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda)(\lambda_3 - \lambda),$$

or

$$p_A(\lambda) = (\lambda_1 - \lambda)g_2(\lambda)$$
, where $g_2(\lambda) \neq 0 \ \forall \lambda \in \mathbb{R}$.

We end up with 4 possibilities: ...

Å

The 4 Cases for (3×3) Matrices

Example (4 Cases for (3×3) Matrices with Real Entries)

#1 λ_1 , λ_2 , and λ_3 are distinct real eigenvalues, each with algebraic multiplicity 1.

#2 $\lambda_1 = \lambda_2$, and $\lambda_1 \neq \lambda_3$; *i.e.* one eigenvalue with algebraic multiplicity 2, and one *e.v.* with algebraic multiplicity 1.

#3 $\lambda_1 = \lambda_2 = \lambda_3$; i.e. one eigenvalue with algebraic multiplicity 3.

#4 $\lambda_1 \in \mathbb{R}$, $\lambda_2 = \lambda_3^* \in \mathbb{C}$; each with algebraic multiplicity 1.

$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	[1 0 0]	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
0 2 0	0 1 0	0 1 0	$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$
[0 0 3]	[0 0 3]	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
$p_A(\lambda) = (1-\lambda)(2-\lambda)(3-\lambda)$	$p_A(\lambda) = (1-\lambda)^2(3-\lambda)$	$p_A(\lambda) = (1-\lambda)^3$	$p_A(\lambda)=(1-\lambda)(\lambda^2+1)$

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (21/35)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants → Characteristic Equation/Polynomial

Eigenvalues, Determinant, and Trace

Theorem (Eigenvalues, Determinant, and Trace)

If an $(n \times n)$ matrix A has the eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, listed with their algebraic multiplicities, then

 $det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$, the product of the eigenvalues,

and

 $trace(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$, the sum of the eigenvalues,

Implication: We can know the product and the sum of the eigenvalues, without computing them. In particular, the trace is quick-and-easy to compute. (The determinant requires more work)

What's the Trace Got to Do With It?

Example

Let A be a (2×2) matrix with eigenvalues λ_1 and λ_2 (allowing for algebraic multiplicity 2: $\lambda_1 = \lambda_2$). We have two expressions for the characteristic polynomial:

$$p_A(\lambda) = \lambda^2 - \operatorname{trace}(A)\lambda + \det(A),$$

and

$$p_A(\lambda) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2,$$

which means

$$\det(A) = \lambda_1 \lambda_2$$
, $\operatorname{trace}(A) = (\lambda_1 + \lambda_2)$.

It turns out this generalizes to $(n \times n)$ matrices...

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (22/35)

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants → Characteristic Equation/Polynomial

Is Finding Eigenvalues Easy?

We know that identifying the eigenvalues of an $(n \times n)$ matrix A reduces to finding the roots of the characteristic polynomial

$$p_A(\lambda) = \det(A - \lambda I_n).$$

How hard is this?

When n = 2, we have the quadratic formula:

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

giving the roots to $p_A(\lambda) = a\lambda^2 + b\lambda + c$.

Is Finding Eigenvalues Easy?

Similar expressions exist for n = 3 (e.g. Cardano's Formula) and n = 4[Next Two Slides: n = 3, n = 4]), but are not very useful in general.

However, it possible to manufacture (2×2) , (3×3) , and (4×4) examples, where identifying the eigenvalues "by hand" is achievable with reasonable effort. $[\Rightarrow \exists \text{ test questions!}]$

For $n \ge 5$, the **Abel-Ruffini theorem*** says there are no general algebraic solutions (expressed and *n*th roots).

Often it is impossible to find the exact eigenvalues of a (large) matrix. There are numerical methods which can be used to identify good approximations of the eigenvalues (see e.g. [MATH 543]).

^{*} The theorem is named after Paolo Ruffini, who provided an incomplete proof in 1799, and Niels Henrik Abel, who provided a proof in 1824. (Galois later proved more general statements, and provided a construction of a polynomial of degree 5 whose roots cannot be expressed in radicals from its coefficients.)

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix **— (25/35)**

Finding the Eigenvalue of a Matrix Suggested Problems

Determinants → Characteristic Equation/Polynomial

Roots for
$$p(x) = ax^4 + bx^3 + cx^2 + dx + e = 0$$

Note: Does NOT Cover All Cases

$$x_{1,2} = -\frac{b}{4a} - S \pm \frac{1}{2} \sqrt{-4S^2 - 2p + \frac{q}{S}}, \quad x_{3,4} = -\frac{b}{4a} + S \pm \frac{1}{2} \sqrt{-4S^2 - 2p - \frac{q}{S}}$$

where

$$p = \frac{8ac - 3b^2}{8a^2}, \quad q = \frac{b^3 - 4abc + 8a^2d}{8a^3}$$

where

$$S = \frac{1}{2}\sqrt{-\frac{2}{3} p + \frac{1}{3a}\left(Q + \frac{\Delta_0}{Q}\right)}, \quad Q = \sqrt[3]{\frac{\Delta_1 + \sqrt{\Delta_1^2 - 4\Delta_0^3}}{2}}$$

with

$$\Delta_0 = c^2 - 3bd + 12ae$$

$$\Delta_1 = 2c^3 - 9bcd + 27b^2e + 27ad^2 - 72ace$$

One Root for $p(x) = ax^3 + bx^2 + cx + d = 0$ (one case)

Let

$$u = \frac{9abc - 2b^3 - 27a^2d}{54a^3},$$

$$v = u^2 + \left\lceil \frac{3ac - b^2}{9a^2} \right\rceil^3$$

If v > 0, then

$$x_1 = -\frac{b}{3a} + \sqrt[3]{u + \sqrt{v}} + \sqrt[3]{u - \sqrt{v}}$$

is one of the roots of p(x); and a "simple" factoring gives a quadratic polynomial, to which we can apply the quadratic formula...

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (26/35)

Finding the Eigenvalue of a Matrix Suggested Problems Suggested Problems 7.2 Lecture - Book Roadmap

Suggested Problems 7.2

Available on Learning Glass videos:

7.2 - 1, 3, 5, 11, 15, 17, 19, 23

Lecture - Book Roadmap

Book, [GS5-]
§6.1
§6.1, §6.2
§6.1, §6.2
§6.1, §6.2

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (29/35)

Supplemental Material

Problem Statements 7.2

(7.2.1), (7.2.3), (7.2.5)

(7.2.1) Use the characteristic polynomial $f_A(\lambda) = \det(A - \lambda I_n)$ to find all the real eigenvalues of the matrix, with their algebraic multiplicities; where

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

(7.2.3) Use the characteristic polynomial $f_A(\lambda) = \det(A - \lambda I_n)$ to find all the real eigenvalues of the matrix, with their algebraic multiplicities; where

$$A = \begin{bmatrix} 5 & -4 \\ 2 & -1 \end{bmatrix}$$

(7.2.5) Use the characteristic polynomial $f_A(\lambda) = \det(A - \lambda I_n)$ to find all the real eigenvalues of the matrix, with their algebraic multiplicities: where

$$A = \begin{bmatrix} 11 & -15 \\ 6 & -7 \end{bmatrix}$$

Metacognitive Exercise — Thinking About Thinking & Learning

Supplemental Material

Problem Statements 7.2

(7.2.11), (7.2.15), (7.2.17)

(7.2.11) Use the characteristic polynomial $f_A(\lambda) = \det(A - \lambda I_n)$ to find all the real eigenvalues of the matrix, with their algebraic multiplicities; where

$$A = \begin{bmatrix} 5 & 1 & -5 \\ 2 & 1 & 0 \\ 8 & 2 & -7 \end{bmatrix}$$

- (7.2.15) Consider the matrix $A = \begin{bmatrix} 1 & k \\ 1 & 1 \end{bmatrix}$, where k is an arbitrary (real) constant. For which values of k does A have two distinct real eigenvalues? Where is there no real eigenvalue?
- (7.2.17) Consider the matrix $A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$, where a and b are arbitrary (real) constants. Find all eigenvalues of A. Explain in terms of the geometric interpretation of the linear tranformation $T(\vec{x}) = A\vec{x}$.

Supplemental Material

Metacognitive Reflection Problem Statements 7.2 Complex Eigenvalues

(7.2.19), (7.2.23)

- (7.2.19) True of False? If the determinant of a matrix $A \in \mathbb{R}^{2 \times 2}$ is negative, then A has two distinct real eigenvalues.
- (7.2.23) Suppose a matrix A is similar to a matrix B ($A \sim B$). What is the relationship between the characteristic polynomials of A and B? What does that imply for the eigenvalues of A and B?

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (33/35)

Supplemental Material

Metacognitive Reflection Problem Statements 7.2 Complex Eigenvalues

C: Two Theorems

Theorem

A complex $(n \times n)$ matrix has n complex eigenvalues if they are counted with their algebraic multiplicities.

Theorem (Trace, Determinant, and Eigenvalues)

Consider an $(n \times n)$ matrix A with complex eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, listed with their algebraic multiplicities. Then

$$\operatorname{trace}(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$$

and

$$\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$$

C: Revisiting Rotations and Scalings

Example (Rotations and Scalings)

The matrix

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, \quad a, b \in \mathbb{R}$$

represents a combined rotation/scaling. What are the eigenvalues?

Solution: We get the eigenvalues from the characteristic polynomial

$$p_A(\lambda) = \det \left(\begin{bmatrix} a - \lambda & -b \\ b & a - \lambda \end{bmatrix} \right) = (a - \lambda)^2 + b^2 = 0$$

$$(a-\lambda)^2 = -b^2 \Leftrightarrow a-\lambda = \pm ib \Leftrightarrow \lambda = a \pm ib$$

SAN DIEGO ST. UNIVERSITY

Peter Blomgren (blomgren@sdsu.edu)

7.2. Finding the Eigenvalues of a Matrix

— (34/35)