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Student Learning Objectives SLOs: Finding the Eigenvectors of a Matrix

SLOs 7.3 Finding the Eigenvectors of a Matrix

After this lecture you should

Be familiar with Eigenspaces

Know the definition of, and be able to determine, the
Geometric Multiplicity of an Eigenvalue

Be able to complete the Process:
1 Identify Eigenvalues — characteristic equation pA(λ) = 0.

2 For each unique Eigenvalue, Identify its Eigenspace —
E (λ,A) = ker(A− λIn).

3 If an Eigenbasis exists, collect it; then Identify the
Diagonalizing Similarity Transform (Matrix S , and Diagonal
Matrix B).
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Characterization of Eigenvalues, and Eigenvectors
✞
✝

☎
✆λ ∈ C is an eigenvalue of A ∈ R

n×n

m✎

✍

☞

✌
There exists a non-zero vector ~v ∈ C

n such that
A~v = λ~v , or (A− λIn)~v = ~0

m☛

✡

✟

✠

✞
✝

☎
✆ker(A− λIn) 6= {~0} Today  Find Eigenvectors.

m✞
✝

☎
✆The matrix (A− λIn) is not invertible

m✞
✝

☎
✆det(A− λIn) = 0 Last Time  Find Eigenvalues.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Eigenvalues  Eigenvectors

OK, we have some ideas on how to find eigenvalues (e.g. through
the roots of the characteristic polynomial); the next step is to
identify the associated eigenvectors:

Definition (Eigenspaces, and Eigenvectors)

Consider an eigenvalue λ of an (n × n) matrix A. Then the kernel
of the matrix (A− λIn) is called the eigenspace associated with λ,
often denoted E (λ,A):

E (λ,A) = ker(A− λIn) = { ~v ∈ R
n : A~v = λ~v }.

All vectors ~w ∈ E (λ,A) are eigenvectors.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2× 2) Example

Example

Find the eigenspaces of the matrix A =

[
1 2
4 3

]

.

Solution:
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2× 2) Example

Example

Find the eigenspaces of the matrix A =

[
1 2
4 3

]

.

Solution: We have already shown that the eigenvalues are λ1 = 5 and
λ2 = −1.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2× 2) Example

Example

Find the eigenspaces of the matrix A =

[
1 2
4 3

]

.

Solution: We have already shown that the eigenvalues are λ1 = 5 and
λ2 = −1. We are looking for

E (5,A) = ker

([
−4 2
4 −2

])

, E (−1,A) = ker

([
2 2
4 4

])

here we can use the famous method of the eyeball∗ to see that

E (5,A) = span

([
1
2

])

, E (−1,A) = span

([
1

−1

])

∗ If/when this fails, we get the result by computing rref(A − λIn) and
finding the basis for the kernel as usual (via parameterization).
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2× 2) Example

Example (Checking Our Answer)

The claim is that the eigenvalues and eigenspaces of

A =

[
1 2
4 3

]

are
{

λ1 = 5, E(5,A) = span

([

1
2

])}

,

{

λ2 = −1, E(−1,A) = span

([

1
−1

])}

,

We multiply
[
1 2
4 3

] [
1
2

]

=

[
5

10

]

= 5

[
1
2

]

,

[
1 2
4 3

] [
1

−1

]

=

[
−1
1

]

= (−1)

[
1

−1

]

.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2× 2) Example

Example (Diagonalizing A)

If we collect the eigenvectors as columns in S , and the eigenvalues
in B :

S =

[
1 1
2 −1

]

, S−1 =
1

3

[
1 1
2 −1

]

, B =

[
5 0
0 −1

]

then
S−1AS = B, AS = SB :

[
1 2
4 3

] [
1 1
2 −1

]

=

[
5 −1
10 1

]

,

[
1 1
2 −1

] [
5 0
0 −1

]

=

[
5 −1
10 1

]

.

1

3

[
1 1
2 −1

] [
5 −1
10 1

]

=

[
5 0
0 −1

]

E(λ1, A) ↔ λ1

E(λ2, A) ↔ λ2
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (3× 3) Example

Example (Identifying The Eigenvalues)

Find the eigenspaces of the matrix A:

A =





1 1 1
0 0 1
0 0 1



 , note: rref(A) =





1 1 0
0 0 1
0 0 0





Solution: Since A is upper triangular, we see that the eigenvalues
are {1am:2, 0am:1} — pA(λ) = (1− λ)2(0− λ)

(1am:2 is my home-cooked notation for “algebraic multiplicity 2.”).

Note: The eigenvalues of a matrix are NOT preserved by row-
operations; the matrix we get by subtracting the 2nd from
the 1st and 3rd rows has eigenvalues {1am:1, 0am:2}.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (3× 3) Example

Example (Finding the Eigenspaces — E (0,A))

Since 0 is an eigenvalue, and the kernel is preserved by
row-operations, we have

E (0,A) = ker(A) = ker(rref(A)) = ker









1 1 0
0 0 1
0 0 0







 ,

as usual we parameterize the free variable (x2) and identify

E (0,A) = span









−1
1
0








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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (3× 3) Example

Example (Finding the Eigenspaces — E (1,A))

Since 1am:2 is an eigenvalue, and the kernel is preserved by
row-operations:

E(1,A) = ker(A− I3) = ker



rref









0 1 1
0 −1 1
0 0 0











 = ker









0 1 0
0 0 1
0 0 0









as usual we parameterize the free variable (x1) and identify

E (1,A) = span









1
0
0








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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (3× 3) Example

Example (Discussion)

We notice that both E (0,A) and E (1,A) are 1-dimensional subspaces of
R

3; for λ = 0am:1, this is not a big surprise. However, for λ = 1am:2 it is
a bit disturbing; it feels like something is missing?

Theorem (Geometric Multiplicity)

Consider an eigenvalue of an (n × n) matrix A. The dimension of the
eigenspace E (λ,A) = ker(A− λIn) is called the geometric multiplicity
of eigenvalue λ; we have

Geometric Multiplicity(λ) = nullity∗(A− λIn) = n − rank(A− λIn).

∗ nullity(A− λIn) ≡ dim (ker (A− λIn)) ≡ dim (E (λ,A)).
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Geometric vs. Algebraic Multiplicity

Theorem (Geometric vs. Algebraic Multiplicity)

Geometric Multiplicity(λ) ≤ Algebraic Multiplicity(λ)

Theorem (Eigenbases and Geometric Multiplicities)

a. Consider and (n × n) matrix A. If we find a basis for each
eigenspace of A and concatenate all these bases, then the resulting
eigenvectors ~v1, . . . , ~vs will be linearly independent.

Note: s is the sum of the geometric multiplicities of the
eigenvalues of A.

! This means that s ≤ n.

b. Matrix A is diagonalizable if and only if the geometric multiplicities
of the eigenvalues add up to n (i.e. s = n in part a.)
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

An (n × n) Matrix with n Distinct Eigenvalues

Theorem (An (n × n) Matrix with n Distinct Eigenvalues)

If an (n × n) matrix has n distinct eigenvalues, then A is
diagonalizable. We can construct the eigenbasis by finding an
eigenvector for each eigenvalue.

Note: “All the Eigenvalues are Distinct”
⇔ “All Eigenvalues have algebraic multiplicity 1”
⇒ “All Eigenvalues have geometric multiplicity 1”

⇔ Each Eigenspace has a single [eigen]vector.

Note: When λ is an eigenvalue, there is at least one eigenvector,
therefore 1 ≤ gm(λ) ≤ am(λ).
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

The Eigenvalues of Similar Matrices IMPORTANT!!!

Theorem (The Eigenvalues of Similar Matrices)

Suppose matrix A is similar to matrix B . Then

a. A and B has the same characteristic polynomial,
pA(λ) = pB(λ).

b. rank(A) = rank(B), nullity(A) = nullity(B).

c. A and B have the same eigenvalues, with the same algebraic
and geometric multiplicities. However, the eigenvectors need
not be the same.

d. A and B have the same determinant, and trace:
det(A) = det(B), trace(A) = trace(B).
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Similar Matrices?

Example (Similar Matrices?)

Is A =

[
2 3
5 7

]

similar to B =

[
3 2
8 5

]

?

Solution: We have an easy way to show that the answer is “no!”

trace(A) = 9, but trace(B) = 8.

Note that is it possible to have two matrices for which
det(A) = det(B), and trace(A) = trace(B) that are NOT similar,
e.g.

A =





1 0 0
0 3 0
0 0 5



 , B =






4 0 0

0 5+
√
10

2 0

0 0 5−
√
10

2





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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Strategy for Diagonalization

Theorem (Strategy for Diagonalization)

Given an (n × n) matrix A: in order to determine whether it is diagonalizable, we seek
S and B (diagonal) such that S−1AS = B:

a. Find the eigenvalues of A by solving the characteristic equation
pA(λ) = det(A− λIn) = 0.

b. For each eigenvalue, find a basis for the eigenspace E(λ,A) = ker(A− λIn).

c. The matrix is diagonalizable if and only if the dimensions of the eigenspaces add
up to n; in which case we collect the eigenspaces as columns in the matrix S ,
and place the corresponding eigenvalues on the diagonal of B:

S =
[

~v1 · · · ~vn
]

, S−1AS = B =











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn










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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

(Modified) A (3× 3) Example

Example (Identifying The Eigenvalues)

Find the eigenspaces of the matrix A:

A =





1 1 0
0 0 0
0 0 1



 , note: rref(A) =





1 1 0
0 0 1
0 0 0





Solution: Since A is upper triangular, we see that the eigenvalues are
{1am:2, 0am:1}.

(1am:2 is my home-cooked notation for “algebraic multiplicity 2.”).

Note: The eigenvalues of a matrix are NOT preserved by row-
operations; the matrix we get by swapping the 2nd and the
3rd row has eigenvalues {1am:1, 0am:2}.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

(Modified) A (3× 3) Example

Example (Finding the Eigenspaces — E (0,A))

Since 0 is an eigenvalue, and the kernel is preserved by
row-operations, we have

E (0,A) = ker(A) = ker(rref(A)) = ker









1 1 0
0 0 1
0 0 0







 ,

as usual we parameterize the free variable (x2) and identify

E (0,A) = span









−1
1
0







 ,  λ1 = 0 has am:1, and gm:1.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

(Modified) A (3× 3) Example

Example (Finding the Eigenspaces — E (1,A))

Since 1 is an eigenvalue, and the kernel is preserved by
row-operations, therefore

E(1,A) = ker(A− I3) = ker



rref









0 1 0
0 −1 0
0 0 0











 = ker









0 1 0
0 0 0
0 0 0









as usual we parameterize the free variables (x1, x3) and identify

E (1,A) = span









1
0
0



 ,





0
0
1








 λ2 = 1 has am:2, and gm:2.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

(Modified) A (3× 3) Example

Example

Now, since we have matching algebraic and geometric multiplicities
for ALL eigenvalues, the matrix is diagonalizable.

S =





−1 1 0
1 0 0
0 0 1



 , B =





0 0 0
0 1 0
0 0 1



 , S−1 =





0 1 0
1 1 0
0 0 1





Note that the ordering of eigenspaces and eigenvalues must match.

E(0, A) ↔ λ1 = 0

E(1, A) ↔ λ2 = 1
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Example (Rotations and Scalings — Complex Eigenvalues)

The matrix

A =

[
a −b

b a

]

, a, b ∈ R

represents a combined rotation/scaling. We now diagonalize this matrix,
allowing for complex eigenvalues...

Solution: We get the eigenvalues from the characteristic polynomial

pA(λ) = det

([
a− λ −b

b a− λ

])

= (a− λ)2 + b2 = 0

(a− λ)2 = −b2 ⇔ a− λ = ±ib ⇔ λ = a± ib
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Example (Rotations and Scalings — Complex Diagonalization)

Next, we find the eigenspaces

E (a+ ib,A) = ker

([
−ib −b

b −ib

])

= span

{[
i

1

]}

E (a− ib,A) = ker

([
ib −b

b ib

])

= span

{[
−i

1

]}

If we let

R =

[
i −i

1 1

]

⇒ R−1 =
1

2

[
−i 1
i 1

]

then

R−1

[
a −b

b a

]

R =

[
a+ ib 0

0 a− ib

]
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Example (Rotations and Scalings — Alternative Book-keeping)

Let us ponder the R ∈ C
2×2 which defined the diagonalizing similarity

transform — we split it into its real and imaginary parts:

R =

[
i −i

1 1

]

=

[
0 0
1 1

]

+ i

[
1 −1
0 0

]

now, let

~v =

[
0
1

]

, ~w =

[
1
0

]

,
(

clearly

{
span(~v) = im(real(R))
span(~w) = im(imag(R))

)

which means
R =

[
~v + i ~w ~v − i ~w

]

︸ ︷︷ ︸

Call this form P
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Example (Rotations and Scalings — Alternative Book-keeping)

We now have two equivalent expressions for the diagonalization:

R−1AR = P−1AP (P is just another way of building R...)

Pre-multiply by R and post-multiply by R−1, then

A = RR−1ARR−1 = (RP−1)A(PR−1)

Let S = PR−1; S−1 = RP−1, then

S =
[
~v + i ~w ~v − i ~w

] 1

2

[
−i 1
i 1

]

=
[
~w ~v

]

Formalizing...
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Theorem (Complex Eigenvalues and Rotation-Scaling Matrices)

If A ∈ R
2×2 with eigenvalues a± ib (where b 6= 0), and if ~v + i ~w is

an eigenvector of A with eigenvalue a+ ib, then

S−1AS =

[
a −b

b a

]

, where S =
[
~w ~v

]

Note that A, S ∈ R
2×2, and

[
a −b

b a

]

∈ R
2×2.

The matrix A is similar to a rotation-scaling matrix.
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Real (2× 2)-Block Diagonalization vs. Complex Diagonalization

For a complex pair of eigenvalues λ = a± ib —

if we keep the similarity-transform-matrix S =
[
~w ~v

]
real we can

get similarity to a rotation-scaling matrix

[
a −b

b a

]

; and

if we allow S =

[
i −i

1 1

]

to be complex we can get similarity to a

diagonal matrix (with complex entries)

[
a+ ib 0

0 a− ib

]
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Complex Diagonalization vs. Real Block-Diagonalization

This holds for any size matrices:

if a real matrix AR ∈ R
n×n is complex-diagonalizable

AR ∼ SCDCS
−1
C

, then

it can alternatively be similarity-transformed into a real
block-diagonal matrix AR ∼ SRBRS

−1
R

; where each diagonal

complex-pair-block (in DC)

[
ak + ibk 0

0 ak − ibk

]

is replaced

by a (2× 2)-block

[
a −b

b a

]

(in BR); −b is in the first

super-diagonal, and b in the first sub-diagonal.

See illustration on next slide...
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Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues  Eigenvectors and Eigenvectors
Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Complex Diagonalization vs. Real Block-Diagonalization

Figure: The (2× 2) blocks in DC ∈ C
n×n contain complex pairs of eigen-

values; and the corresponding blocks in BR ∈ R
n×n contain “rotation

blocks.”
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Finding the Eigenvectors of a Matrix
Suggested Problems

Suggested Problems 7.3 and 7.5
Lecture –Book Roadmap

Suggested Problems 7.3

Available on Learning Glass videos:
7.3 — 1, 3, 5, 9, 13, 17, 23, 27, 31, 35
7.5 — 13, 15, 17, 21, 23

Peter Blomgren 〈blomgren@sdsu.edu〉 7.3. Finding the Eigenvectors of a Matrix — (30/46)



Finding the Eigenvectors of a Matrix
Suggested Problems

Suggested Problems 7.3 and 7.5
Lecture –Book Roadmap

Lecture –Book Roadmap

Lecture Book, [GS5–]

7.1 §6.1
7.2 §6.1, §6.2
7.3 §6.1, §6.2
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Metacognitive Exercise — Thinking About Thinking & Learning

I know / learned Almost there Huh?!?

Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

(7.3.1), (7.3.3), (7.3.5)

(7.3.1) Find all (real) eigenvalues; then find a basis of each eigenspace, and
diagonalize A, if you can.

A =

[
7 8
0 9

]

(7.3.3) Find all (real) eigenvalues; then find a basis of each eigenspace, and
diagonalize A, if you can.

A =

[
6 3
2 7

]

(7.3.5) Find all (real) eigenvalues; then find a basis of each eigenspace, and
diagonalize A, if you can.

A =

[
4 5

−2 −2

]
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

(7.3.9), (7.3.13)

(7.3.9) Find all (real) eigenvalues; then find a basis of each eigenspace, and
diagonalize A, if you can.

A =





1 0 1
0 1 0
0 0 0





(7.3.13) Find all (real) eigenvalues; then find a basis of each eigenspace, and
diagonalize A, if you can.

A =





3 0 −2
−7 0 4
4 0 −3




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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

(7.3.17), (7.3.23), (7.3.27)

(7.3.17) Find all (real) eigenvalues; then find a basis of each eigenspace, and
diagonalize A, if you can.

A =







0 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1







(7.3.23) Find all eigenvalues and eigenvectors of A =

[
1 1
0 1

]

. Is there an

eigenbasis? Interpret your result geometrically.

(7.3.27) Consider a (2× 2) matrix A. Suppose that trace(A) = 5 and
det(A) = 6. Find the eigenvalues of A.
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

(7.3.31), (7.3.35)

(7.3.31) Suppose there is an eigenbasis for a matrix A. What is the
relationship between the algebraic and geometric multiplicities of its
eigenvalues?

(7.3.35) Is the matrix

[
1 2
0 3

]

similar to

[
3 0
1 2

]

.
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

(7.5.13, 15, 17, 21, 23)

For each of the the given matrices, find an invertible matrix S such that

S−1AS =

[
a −b

b a

]

(7.5.13)

A =

[

0 −4
1 0

]

(7.5.15)

A =

[

0 1
−5 4

]

(7.5.17)

A =

[

5 4
−5 1

]

For each of the the given matrices, find all (real and complex) eigenvalues

(7.5.21)

A =

[

11 −15
6 −7

]

(7.5.23)

A =





0 0 1
1 0 0
0 1 0




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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Definition, Complex Addition

Definition (Complex Numbers)

With a, b ∈ R, we define the complex value z ∈ C:

z = a+ ib

where i is the imaginary unit +
√
−1. a is the Real Part

(a = Re z), and b the Imaginary Part (b = Im z) of z .

Definition (Complex Addition)

Let z1, z2 ∈ C, then

z1 + z2 = (a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2)
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Complex Multiplication

Definition (Complex Multiplication)

Let z1, z2 ∈ C, then

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1)

this follows from the fact that i2 = −1.

Note: C is isomorphic to R
2

Let T : R2 → C be the linear transformation:

T

([
a

b

])

= a+ ib, T−1(a + ib) =

[
a

b

]

,

that is we can interpret vectors in R
2 as complex numbers (and the other

way around).
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Multiplication by i  Rotation

Example (Multiplication by i)

Consider z = a+ ib, and let a, b > 0 so that the corresponding vector
lives in the first quadrant.

z a+ ib

iz i(a+ ib) = ia+ i2b −b + ia

i2z i(−b + ia) = −ib + i2a −a− ib

i3z i(−a− ib) = −ia+ i2b b − ia

i4z i(b − ia) = ib − i2a a+ ib

We see that z = −i2z = i4z , and since
[
a

b

]

·
[
−b

a

]

= a(−b) + ba = 0,

[
a

b

]

·
[

b

−a

]

= ab + b(−a) = 0

we can interpret multiplication by i as a ccw-rotation by π/2 (90◦).

Complex numbers solve our issue of “no real eigenvalues” for rotations!
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Complex Conjugate

Definition (Complex Conjugate)

Given z = (a+ ib) ∈ C, the complex conjugate is defined by

z = (a− ib), sometimes z∗ = (a− ib)

(reversing the sign on the imaginary part). Note that this is a
reflection across the real axis in the complex plane.

Hey! It’s a reflection across the real axis!

z and z∗ form a conjugate pair of complex numbers, and
zz∗ = (a+ ib)(a− ib) = a2 + b2.
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Polar Coordinate Representation

Polar Coordinate Representation (Modulus and Argument)

We can represent z = a+ ib in terms of its length r (modulus) and angle
θ (argument); where

r = mod(z) = |z | =
√

a2 + b2, θ = arg(z) ∈ [0, 2π)

where

θ = arg(z) =







arctan( b
a
) if a > 0

arctan( b
a
) + π if a < 0 and b ≥ 0

arctan( b
a
)− π if a < 0 and b < 0

π

2 if a = 0 and b > 0

−π

2 if a = 0 and b < 0

indeterminate if a = 0 and b = 0.
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Polar Coordinate Representation

Polar form of z

Given r and θ we let

z = r(cos θ + i sin θ) ≡ re iθ,

where the identity
e iθ = (cos θ + i sin θ)

is known as Euler’s Formula.

Once we restrict the range of θ to an interval of length 2π, the
representation is unique. Common choices are θ ∈ [0, 2π) [we will
use this here], or θ ∈ [−π, π); but θ ∈ [ξ, ξ + 2π) for any ξ ∈ R

works (but why make life harder than necessary?!)
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Multiplying in Polar Form

Example

Given z1, z2 ∈ C, then

z1z2 =



























(a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + a2b1)

r1e
iθ1 r2e

iθ2 = (r1r2)e i(θ1+θ2)

r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2) =
(r1r2)((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2))

these three expressions are equivalent.

Since Euler’s formula says e i(θ1+θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2), we can restate
some old painful memories:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2
sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2

Bottom line, for z = z1z2, we have

|z| = |z1| |z2|, arg(z) = arg(z1) + arg(z2) (mod 2π).
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

From Euler to DeMoivre

From Euler’s Identity e iθ = (cos θ + i sin θ) we see that

(cos θ + i sin θ)n = (e iθ)n = e inθ = cos(nθ) + i sin(nθ),

which is known as De Moivre’s Formula.

OK, we have enough fragments of Complex Analysis to state the
key result we need prior to revisiting our Eigenvalue/Eigenvector
problem space.
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Supplemental Material

Metacognitive Reflection
Problem Statements 7.3 and 7.5
Complex Numbers: Quick Review / Crash Course
Fundamental Theorem of Algebra

Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)

Any nth degree polynomial pn(λ) with complex coefficients∗ can
be written as a product of linear factors

pn(λ) = k(λ− λ1)(λ− λ2) · · · (λ− λn)

for some complex numbers λ1, λ2, . . . , λn and k . (The λk ’s need
not be distinct).

Therefore a polynomial pn(λ) of degree n has precisely n complex
roots if they are counted with their multiplicity.

∗ Note that real coefficients are complex coefficients with zero
imaginary part.
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