Math 254: Introduction to Linear Algebra

Notes #7.3 — Finding the Eigenvectors of a Matrix

Peter Blomgren (blomgren@sdsu.edu)

Department of Mathematics and Statistics

Dynamical Systems Group Computational Sciences Research Center

San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2022

(Revised: April 27, 2022)

Outline

- Student Learning Objectives
 - SLOs: Finding the Eigenvectors of a Matrix
- 2 Finding the Eigenvectors of a Matrix

 - Diagonalizing Matrices
 - Complex Eigenvalues / Eigenvectors: Rotations and Scalings
- Suggested Problems
 - Suggested Problems 7.3 and 7.5
 - Lecture Book Roadmap
- Supplemental Material
 - Metacognitive Reflection
 - Problem Statements 7.3 and 7.5
 - Complex Numbers: Quick Review / Crash Course
 - Fundamental Theorem of Algebra

SLOs 7.3

Finding the Eigenvectors of a Matrix

After this lecture you should

- Be familiar with Eigenspaces
- Know the definition of, and be able to determine, the Geometric Multiplicity of an Eigenvalue
- Be able to complete the Process:
 - **1** Identify Eigenvalues characteristic equation $p_A(\lambda) = 0$.
 - ② For each unique Eigenvalue, Identify its Eigenspace $E(\lambda, A) = \ker(A \lambda I_n)$.
 - If an Eigenbasis exists, collect it; then Identify the Diagonalizing Similarity Transform (Matrix S, and Diagonal Matrix B).

Characterization of Eigenvalues, and Eigenvectors

 $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$

There exists a non-zero vector $\vec{v} \in \mathbb{C}^n$ such that

$$A\vec{v} = \lambda \vec{v}$$
, or $(A - \lambda I_n)\vec{v} = \vec{0}$

$$(\ker(A-\lambda I_n)\neq\{\vec{0}\})$$

Today → Find Eigenvectors.

The matrix $(A - \lambda I_n)$ is not invertible

$$\det(A - \lambda I_n) = 0$$
 | Last Time \leadsto Find Eigenvalues.

Eigenvalues → **Eigenvectors**

OK, we have some ideas on how to find eigenvalues (e.g. through the roots of the characteristic polynomial); the next step is to identify the associated eigenvectors:

Definition (Eigenspaces, and Eigenvectors)

Consider an eigenvalue λ of an $(n \times n)$ matrix A. Then the kernel of the matrix $(A - \lambda I_n)$ is called the *eigenspace* associated with λ , often denoted $E(\lambda, A)$:

$$E(\lambda, A) = \ker(A - \lambda I_n) = \{ \vec{v} \in \mathbb{R}^n : A\vec{v} = \lambda \vec{v} \}.$$

All vectors $\vec{w} \in E(\lambda, A)$ are eigenvectors.

Example

Find the eigenspaces of the matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.

Solution:

Example

Find the eigenspaces of the matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.

Solution: We have already shown that the eigenvalues are $\lambda_1=5$ and $\lambda_2=-1$.

Example

Find the eigenspaces of the matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.

Solution: We have already shown that the eigenvalues are $\lambda_1=5$ and $\lambda_2=-1$. We are looking for

$$E(5,A) = \ker \left(\begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \right), \quad E(-1,A) = \ker \left(\begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \right)$$

here we can use the famous method of the eyeball* to see that

$$E(5, A) = \operatorname{span}\left(\begin{bmatrix}1\\2\end{bmatrix}\right), \quad E(-1, A) = \operatorname{span}\left(\begin{bmatrix}1\\-1\end{bmatrix}\right)$$

* If/when this fails, we get the result by computing $\operatorname{rref}(A - \lambda I_n)$ and finding the basis for the kernel as usual (via parameterization).

Example (Checking Our Answer)

The claim is that the eigenvalues and eigenspaces of

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

are

$$\left\{\lambda_1=5,\ E(5,A)=\operatorname{span}\left(\begin{bmatrix}1\\2\end{bmatrix}\right)\right\},\quad \left\{\lambda_2=-1,\ E(-1,A)=\operatorname{span}\left(\begin{bmatrix}1\\-1\end{bmatrix}\right)\right\},$$

We multiply

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Example (Diagonalizing A)

If we collect the eigenvectors as columns in S, and the eigenvalues in B:

$$S = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}, \quad S^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$$

then

$$S^{-1}AS = B$$
, $AS = SB$:

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ 10 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ 10 & 1 \end{bmatrix}.$$

$$\frac{1}{3} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 10 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$$

Example (Identifying The Eigenvalues)

Find the eigenspaces of the matrix A:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{note: } rref(A) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Solution: Since A is upper triangular, we see that the eigenvalues are $\{1_{\text{am}:2}, 0_{\text{am}:1}\}$ — $p_A(\lambda) = (1 - \lambda)^2(0 - \lambda)$

 $(1_{am:2}$ is my home-cooked notation for "algebraic multiplicity 2.").

Note: The eigenvalues of a matrix are NOT preserved by row-operations; the matrix we get by subtracting the 2nd from the 1st and 3rd rows has eigenvalues $\{1_{am:1}, 0_{am:2}\}$.

Example (Finding the Eigenspaces — E(0, A))

Since 0 is an eigenvalue, and the kernel **is** preserved by row-operations, we have

$$E(0,A) = \ker(A) = \ker(\operatorname{rref}(A)) = \ker\left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}\right),$$

as usual we parameterize the free variable (x_2) and identify

$$E(0,A) = \operatorname{span}\left(\begin{bmatrix} -1\\1\\0\end{bmatrix}\right)$$

Example (Finding the Eigenspaces — E(1, A))

Since $\mathbf{1}_{am:2}$ is an eigenvalue, and the kernel is preserved by row-operations:

$$E(1,A)=\ker(A-I_3)=\ker\left(\operatorname{rref}\left(\begin{bmatrix}0&1&1\\0&-1&1\\0&0&0\end{bmatrix}\right)\right)=\ker\left(\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}\right)$$

as usual we parameterize the free variable (x_1) and identify

$$E(1,A) = \operatorname{span}\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right)$$

Example (Discussion)

We notice that both E(0,A) and E(1,A) are 1-dimensional subspaces of \mathbb{R}^3 ; for $\lambda=0_{\mathrm{am}:1}$, this is not a big surprise. However, for $\lambda=1_{\mathrm{am}:2}$ it is a bit disturbing; it feels like something is missing?

Theorem (Geometric Multiplicity)

Consider an eigenvalue of an $(n \times n)$ matrix A. The dimension of the eigenspace $E(\lambda, A) = \ker(A - \lambda I_n)$ is called the **geometric multiplicity** of eigenvalue λ ; we have

Geometric_Multiplicity(λ) = nullity*($A - \lambda I_n$) = $n - \text{rank}(A - \lambda I_n)$.

^{*} nullity $(A - \lambda I_n) \equiv \dim(\ker(A - \lambda I_n)) \equiv \dim(E(\lambda, A)).$

Geometric vs. Algebraic Multiplicity

Theorem (Geometric vs. Algebraic Multiplicity)

 $Geometric_Multiplicity(\lambda) \le Algebraic_Multiplicity(\lambda)$

Theorem (Eigenbases and Geometric Multiplicities)

- a. Consider and $(n \times n)$ matrix A. If we find a basis for each eigenspace of A and concatenate all these bases, then the resulting eigenvectors $\vec{v}_1, \ldots, \vec{v}_s$ will be linearly independent.
 - **Note:** *s* is the sum of the geometric multiplicities of the eigenvalues of *A*.
 - 1 This means that $s \le n$.
- **b.** Matrix A is diagonalizable if and only if the geometric multiplicities of the eigenvalues add up to n (i.e. s = n in part **a.**)

An $(n \times n)$ Matrix with n Distinct Eigenvalues

Theorem (An $(n \times n)$ Matrix with n Distinct Eigenvalues)

If an $(n \times n)$ matrix has n distinct eigenvalues, then A is diagonalizable. We can construct the eigenbasis by finding an eigenvector for each eigenvalue.

Note: "All the Eigenvalues are Distinct"

- ⇔ "All Eigenvalues have algebraic multiplicity 1"
- ⇒ "All Eigenvalues have geometric multiplicity 1"
 - ⇔ Each Eigenspace has a single [eigen] vector.

Note: When λ is an eigenvalue, there is at least one eigenvector, therefore $1 \leq \operatorname{gm}(\lambda) \leq \operatorname{am}(\lambda)$.

7.3. Finding the Eigenvectors of a Matrix

Theorem (The Eigenvalues of Similar Matrices)

Suppose matrix A is similar to matrix B. Then

- **a.** A and B has the same characteristic polynomial, $p_A(\lambda) = p_B(\lambda)$.
- **b.** rank(A) = rank(B), nullity(A) = nullity(B).
- c. A and B have the same eigenvalues, with the same algebraic and geometric multiplicities. However, the eigenvectors need not be the same.
- **d.** A and B have the same determinant, and trace: det(A) = det(B), trace(A) = trace(B).

Similar Matrices?

Example (Similar Matrices?)

Is
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$
 similar to $B = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$?

Solution: We have an easy way to show that the answer is "no!"

• $\operatorname{trace}(A) = 9$, but $\operatorname{trace}(B) = 8$.

Note that is it possible to have two matrices for which det(A) = det(B), and trace(A) = trace(B) that are NOT similar, e.g.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 0 & 0 \\ 0 & \frac{5+\sqrt{10}}{2} & 0 \\ 0 & 0 & \frac{5-\sqrt{10}}{2} \end{bmatrix}$$

Strategy for Diagonalization

Theorem (Strategy for Diagonalization)

Given an $(n \times n)$ matrix A: in order to determine whether it is diagonalizable, we seek S and B (diagonal) such that $S^{-1}AS = B$:

- a. Find the eigenvalues of A by solving the characteristic equation $p_A(\lambda) = \det(A \lambda I_n) = 0$.
- **b.** For each eigenvalue, find a basis for the eigenspace $E(\lambda, A) = \ker(A \lambda I_n)$.
- c. The matrix is diagonalizable if and only if the dimensions of the eigenspaces add up to n; in which case we collect the eigenspaces as columns in the matrix S, and place the corresponding eigenvalues on the diagonal of B:

$$S = [\vec{v}_1 \quad \cdots \quad \vec{v}_n], \quad S^{-1}AS = B = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Example (Identifying The Eigenvalues)

Find the eigenspaces of the matrix A:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{note: } \operatorname{rref}(A) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Solution: Since A is upper triangular, we see that the eigenvalues are $\{1_{am:2}, 0_{am:1}\}$.

 $(1_{am:2})$ is my home-cooked notation for "algebraic multiplicity 2.").

Note: The eigenvalues of a matrix are NOT preserved by row-operations; the matrix we get by swapping the 2nd and the 3rd row has eigenvalues $\{1_{am:1}, 0_{am:2}\}$.

Example (Finding the Eigenspaces — E(0, A))

Since 0 is an eigenvalue, and the kernel **is** preserved by row-operations, we have

$$E(0,A) = \ker(A) = \ker(\operatorname{rref}(A)) = \ker\left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}\right),$$

as usual we parameterize the free variable (x_2) and identify

$$E(0,A)=\mathrm{span}\left(\begin{bmatrix}-1\\1\\0\end{bmatrix}\right), \ \rightsquigarrow \ \lambda_1=0 \ \ \text{has am:1, and gm:1.}$$

Example (Finding the Eigenspaces — E(1, A))

Since 1 is an eigenvalue, and the kernel **is** preserved by row-operations, therefore

$$E(1,A) = \ker(A - I_3) = \ker\left(\mathrm{rref}\left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}\right)\right) = \ker\left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}\right)$$

as usual we parameterize the free variables (x_1, x_3) and identify

$$E(1,A) = \operatorname{span}\left(\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right) \rightsquigarrow \lambda_2 = 1 \text{ has am:2, and gm:2.}$$

Example

Now, since we have matching algebraic and geometric multiplicities for ALL eigenvalues, the matrix **is** diagonalizable.

$$S = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad S^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E(1, A) \leftrightarrow \lambda_2 = 1$$

Note that the ordering of eigenspaces and eigenvalues must match.

Example (Rotations and Scalings — Complex Eigenvalues)

The matrix

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, \quad a, b \in \mathbb{R}$$

represents a combined rotation/scaling. We now diagonalize this matrix, allowing for complex eigenvalues...

Solution: We get the eigenvalues from the characteristic polynomial

$$p_A(\lambda) = \det \left(\begin{bmatrix} a - \lambda & -b \\ b & a - \lambda \end{bmatrix} \right) = (a - \lambda)^2 + b^2 = 0$$

$$(a-\lambda)^2 = -b^2 \Leftrightarrow a-\lambda = \pm ib \Leftrightarrow \lambda = \mathbf{a} \pm \mathbf{ib}$$

Example (Rotations and Scalings — Complex Diagonalization)

Next, we find the eigenspaces

$$E(a+ib,A) = \ker\left(\begin{bmatrix} -ib & -b \\ b & -ib \end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix} i \\ 1 \end{bmatrix}\right\}$$

$$E(a-ib,A) = \ker\left(\begin{bmatrix} ib & -b \\ b & ib \end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix} -i \\ 1 \end{bmatrix}\right\}$$

If we let

$$R = \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad R^{-1} = \frac{1}{2} \begin{bmatrix} -i & 1 \\ i & 1 \end{bmatrix}$$

then

$$\mathbf{R}^{-1} \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \mathbf{R} = \begin{bmatrix} a+ib & 0 \\ 0 & a-ib \end{bmatrix}$$

Example (Rotations and Scalings — Alternative Book-keeping)

Let us ponder the $R \in \mathbb{C}^{2\times 2}$ which defined the diagonalizing similarity transform — we split it into its real and imaginary parts:

$$R = \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} + i \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

now, let

$$\vec{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \left(\text{clearly } \left\{ \begin{array}{ll} \operatorname{span}(\vec{v}) & = & \operatorname{im}(\operatorname{real}(R)) \\ \operatorname{span}(\vec{w}) & = & \operatorname{im}(\operatorname{imag}(R)) \end{array} \right)$$

which means

$$R = \underbrace{\begin{bmatrix} \vec{v} + i\vec{w} & \vec{v} - i\vec{w} \end{bmatrix}}_{\text{Call this form } P}$$

Example (Rotations and Scalings — Alternative Book-keeping)

We now have two equivalent expressions for the diagonalization:

$$R^{-1}AR = P^{-1}AP$$
 (P is just another way of building R...)

Pre-multiply by R and post-multiply by R^{-1} , then

$$A = RR^{-1}ARR^{-1} = (RP^{-1})A(PR^{-1})$$

Let $S = PR^{-1}$; $S^{-1} = RP^{-1}$, then

$$S = \begin{bmatrix} \vec{v} + i\vec{w} & \vec{v} - i\vec{w} \end{bmatrix} \frac{1}{2} \begin{bmatrix} -i & 1 \\ i & 1 \end{bmatrix} = \begin{bmatrix} \vec{w} & \vec{v} \end{bmatrix}$$

Formalizing...

Theorem (Complex Eigenvalues and Rotation-Scaling Matrices)

If $A \in \mathbb{R}^{2 \times 2}$ with eigenvalues $a \pm ib$ (where $b \neq 0$), and if $\vec{v} + i\vec{w}$ is an eigenvector of A with eigenvalue a + ib, then

$$S^{-1}AS = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, \text{ where } S = \begin{bmatrix} \vec{w} & \vec{v} \end{bmatrix}$$

Note that
$$A, S \in \mathbb{R}^{2 \times 2}$$
, and $\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \in \mathbb{R}^{2 \times 2}$.

The matrix A is similar to a rotation-scaling matrix.

Real (2×2) -Block Diagonalization vs. Complex Diagonalization

For a complex pair of eigenvalues $\lambda = a \pm ib$ —

- if we keep the similarity-transform-matrix $S = \begin{bmatrix} \vec{w} & \vec{v} \end{bmatrix}$ real we can get similarity to a rotation-scaling matrix $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$; and
- if we allow $S = \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}$ to be *complex* we can get similarity to a diagonal matrix (with complex entries) $\begin{bmatrix} a+ib & 0 \\ 0 & a-ib \end{bmatrix}$

Complex Diagonalization vs. Real Block-Diagonalization

This holds for any size matrices:

- if a real matrix $A_{\mathbb{R}} \in \mathbb{R}^{n \times n}$ is complex-diagonalizable $A_{\mathbb{R}} \sim S_{\mathbb{C}} D_{\mathbb{C}} S_{\mathbb{C}}^{-1}$, then
- it can alternatively be similarity-transformed into a real block-diagonal matrix $A_{\mathbb{R}} \sim S_{\mathbb{R}} B_{\mathbb{R}} S_{\mathbb{R}}^{-1}$; where each diagonal complex-pair-block (in $D_{\mathbb{C}}$) $\begin{bmatrix} a_k + ib_k & 0 \\ 0 & a_k ib_k \end{bmatrix}$ is replaced by a (2×2) -block $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ (in $B_{\mathbb{R}}$); -b is in the first super-diagonal, and b in the first sub-diagonal.

See illustration on next slide...

Complex Diagonalization vs. Real Block-Diagonalization

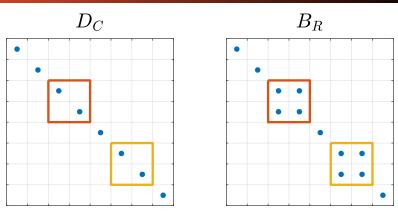


Figure: The (2×2) blocks in $D_{\mathbb{C}} \in \mathbb{C}^{n \times n}$ contain complex pairs of eigenvalues; and the corresponding blocks in $B_{\mathbb{R}} \in \mathbb{R}^{n \times n}$ contain "rotation blocks."

7.3. Finding the Eigenvectors of a Matrix

Suggested Problems 7.3

Available on Learning Glass videos:

7.3 — 1, 3, 5, 9, 13, 17, 23, 27, 31, 35

7.5 — 13, 15, 17, 21, 23

Lecture – Book Roadmap

Lecture	Book, [GS5-]
7.1	§6.1
7.2	§6.1, §6.2
7.3	§6.1, §6.2

7.3. Finding the Eigenvectors of a Matrix

Metacognitive Reflection

Metacognitive Exercise — Thinking About Thinking & Learning

	- C	0	
I know / learned	Almost there	Huh?!?	
Right After Lecture			
	TI: 1: / OS: 11 / CI		
After Thinking / Office Hours / SI-session			
After Reviewing for Quiz/Midterm/Final			
		SAN DIEG UNIVE	

(7.3.1), (7.3.3), (7.3.5)

(7.3.1) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$A = \begin{bmatrix} 7 & 8 \\ 0 & 9 \end{bmatrix}$$

(7.3.3) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$A = \begin{bmatrix} 6 & 3 \\ 2 & 7 \end{bmatrix}$$

(7.3.5) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$A = \begin{bmatrix} 4 & 5 \\ -2 & -2 \end{bmatrix}$$

(7.3.9), (7.3.13)

(7.3.9) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(7.3.13) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$A = \begin{bmatrix} 3 & 0 & -2 \\ -7 & 0 & 4 \\ 4 & 0 & -3 \end{bmatrix}$$

(7.3.17), (7.3.23), (7.3.27)

(7.3.17) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (7.3.23) Find all eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Is there an eigenbasis? Interpret your result geometrically.
- (7.3.27) Consider a (2×2) matrix A. Suppose that trace(A) = 5 and det(A) = 6. Find the eigenvalues of A.

(7.3.31), (7.3.35)

(7.3.31) Suppose there is an eigenbasis for a matrix A. What is the relationship between the algebraic and geometric multiplicities of its eigenvalues?

(7.3.35) Is the matrix $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ similar to $\begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix}$.

(7.5.13, 15, 17, 21, 23)

For each of the the given matrices, find an invertible matrix S such that

$$S^{-1}AS = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$(7.5.13)$$

$$A = \begin{bmatrix} 0 & -4 \\ 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 \\ -5 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 4 \\ -5 & 1 \end{bmatrix}$$

For each of the the given matrices, find all (real and complex) eigenvalues

(7.5.21)
$$A = \begin{bmatrix} 11 & -15 \\ 6 & -7 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Definition, Complex Addition

Definition (Complex Numbers)

With $a, b \in \mathbb{R}$, we define the complex value $z \in \mathbb{C}$:

$$z = a + ib$$

where *i* is the imaginary unit $+\sqrt{-1}$. *a* is the *Real Part* $(a = \operatorname{Re} z)$, and *b* the *Imaginary Part* $(b = \operatorname{Im} z)$ of *z*.

Definition (Complex Addition)

Let $z_1, z_2 \in \mathbb{C}$, then

$$z_1 + z_2 = (a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2)$$

Complex Multiplication

Definition (Complex Multiplication)

Let $z_1, z_2 \in \mathbb{C}$, then

$$z_1z_2 = (a_1 + ib_1)(a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)$$

this follows from the fact that $i^2 = -1$.

Note: \mathbb{C} is isomorphic to \mathbb{R}^2

Let $T: \mathbb{R}^2 \to \mathbb{C}$ be the linear transformation:

$$T\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = a + ib, \quad T^{-1}(a + ib) = \begin{bmatrix} a \\ b \end{bmatrix},$$

that is we can interpret vectors in \mathbb{R}^2 as complex numbers (and the other way around).

Multiplication by $i \rightsquigarrow Rotation$

Example (Multiplication by i)

Consider z = a + ib, and let a, b > 0 so that the corresponding vector lives in the first quadrant.

$$z$$
 $a+ib$
 iz $i(a+ib) = ia + i^2b$ $-b+ia$
 i^2z $i(-b+ia) = -ib + i^2a$ $-a-ib$
 i^3z $i(-a-ib) = -ia + i^2b$ $b-ia$
 i^4z $i(b-ia) = ib - i^2a$ $a+ib$

We see that $z = -i^2 z = i^4 z$, and since

$$\begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} -b \\ a \end{bmatrix} = a(-b) + ba = 0, \quad \begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} b \\ -a \end{bmatrix} = ab + b(-a) = 0$$

we can interpret multiplication by i as a ccw-rotation by $\pi/2$ (90°).

Complex numbers solve our issue of "no real eigenvalues" for rotations!

4 D > 4 B > 4 E > 4 E >

Complex Conjugate

Definition (Complex Conjugate)

Given $z = (a + ib) \in \mathbb{C}$, the complex conjugate is defined by

$$\overline{z} = (a - ib)$$
, sometimes $z^* = (a - ib)$

(reversing the sign on the imaginary part). Note that this is a reflection across the real axis in the complex plane.

Hey! It's a reflection across the real axis!

z and z* form a conjugate pair of complex numbers, and $zz^* = (a + ib)(a - ib) = a^2 + b^2$.

Polar Coordinate Representation

Polar Coordinate Representation (Modulus and Argument)

We can represent z = a + ib in terms of its length r (modulus) and angle θ (argument); where

$$r=\operatorname{mod}(z)=|z|=\sqrt{a^2+b^2},\quad \theta=\operatorname{arg}(z)\in[0,2\pi)$$

where

$$\theta = \arg(z) = \begin{cases} \arctan(\frac{b}{a}) & \text{if } a > 0\\ \arctan(\frac{b}{a}) + \pi & \text{if } a < 0 \text{ and } b \geq 0\\ \arctan(\frac{b}{a}) - \pi & \text{if } a < 0 \text{ and } b < 0\\ \frac{\pi}{2} & \text{if } a = 0 \text{ and } b > 0\\ -\frac{\pi}{2} & \text{if } a = 0 \text{ and } b < 0\\ \text{indeterminate} & \text{if } a = 0 \text{ and } b = 0. \end{cases}$$

Polar Coordinate Representation

Polar form of z

Given r and θ we let

$$z = r(\cos\theta + i\sin\theta) \equiv re^{i\theta},$$

where the identity

$$e^{i\theta} = (\cos\theta + i\sin\theta)$$

is known as Euler's Formula.

Once we restrict the range of θ to an interval of length 2π , the representation is unique. Common choices are $\theta \in [0,2\pi)$ [we will use this here], or $\theta \in [-\pi,\pi)$; but $\theta \in [\xi,\xi+2\pi)$ for any $\xi \in \mathbb{R}$ works (but why make life harder than necessary?!)

Multiplying in Polar Form

Example

Given $z_1, z_2 \in \mathbb{C}$, then

$$z_1 z_2 = \begin{cases} (a_1 + ib_1)(a_2 + ib_2) = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1) \\ r_1 e^{i\theta_1} r_2 e^{i\theta_2} = (r_1 r_2) e^{i(\theta_1 + \theta_2)} \\ r_1(\cos \theta_1 + i \sin \theta_1) r_2(\cos \theta_2 + i \sin \theta_2) = \\ (r_1 r_2)((\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2)) \end{cases}$$

these three expressions are equivalent.

Since Euler's formula says $e^{i(\theta_1+\theta_2)}=\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)$, we can restate some old painful memories:

$$cos(\theta_1 + \theta_2) = cos \theta_1 cos \theta_2 - sin \theta_1 sin \theta_2 sin(\theta_1 + \theta_2) = cos \theta_1 sin \theta_2 + sin \theta_1 cos \theta_2$$

Bottom line, for $z = z_1 z_2$, we have

$$|z| = |z_1||z_2|$$
, $\arg(z) = \arg(z_1) + \arg(z_2) \pmod{2\pi}$.

From Euler to De Moivre

From Euler's Identity $e^{i\theta} = (\cos \theta + i \sin \theta)$ we see that

$$(\cos\theta + i\sin\theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i\sin(n\theta),$$

which is known as De Moivre's Formula.

OK, we have enough fragments of Complex Analysis to state the key result we need prior to revisiting our Eigenvalue/Eigenvector problem space.

Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)

Any nth degree polynomial $p_n(\lambda)$ with complex coefficients* can be written as a product of linear factors

$$p_n(\lambda) = k(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

for some complex numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ and k. (The λ_k 's need not be distinct).

Therefore a polynomial $p_n(\lambda)$ of degree n has precisely n complex roots if they are counted with their multiplicity.

* Note that real coefficients are complex coefficients with zero imaginary part.

