Math 254：Introduction to Linear Algebra Notes \＃7．3－Finding the Eigenvectors of a Matrix

Peter Blomgren
〈blomgren＠sdsu．edu〉
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

Spring 2022
（Revised：April 27，2022）

Outline

(1) Student Learning Objectives

- SLOs: Finding the Eigenvectors of a Matrix
(2) Finding the Eigenvectors of a Matrix
- Eigenvalues \rightsquigarrow Eigenvectors and Eigenvectors
- Diagonalizing Matrices
- Complex Eigenvalues / Eigenvectors: Rotations and Scalings
(3) Suggested Problems
- Suggested Problems 7.3 and 7.5
- Lecture-Book Roadmap

4 Supplemental Material

- Metacognitive Reflection
- Problem Statements 7.3 and 7.5
- Complex Numbers: Quick Review / Crash Course
- Fundamental Theorem of Algebra

SLOs 7.3

Finding the Eigenvectors of a Matrix

After this lecture you should

- Be familiar with Eigenspaces
- Know the definition of, and be able to determine, the Geometric Multiplicity of an Eigenvalue
- Be able to complete the Process:
(1) Identify Eigenvalues - characteristic equation $p_{A}(\lambda)=0$.
(2) For each unique Eigenvalue, Identify its Eigenspace $E(\lambda, A)=\operatorname{ker}\left(A-\lambda I_{n}\right)$.
(3) If an Eigenbasis exists, collect it; then Identify the Diagonalizing Similarity Transform (Matrix S, and Diagonal Matrix B).

Finding the Eigenvectors of a Matrix
Suggested Problems

Eigenvalues \rightsquigarrow Eigenvectors and Eigenvectors Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

Characterization of Eigenvalues, and Eigenvectors

$\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$

\Uparrow
There exists a non-zero vector $\vec{v} \in \mathbb{C}^{n}$ such that

$$
A \vec{v}=\lambda \vec{v}, \quad \text { or } \quad\left(A-\lambda I_{n}\right) \vec{v}=\overrightarrow{0}
$$

\uparrow

$$
\begin{aligned}
& \underbrace{\operatorname{ker}\left(A-\lambda I_{n}\right) \neq\{\overrightarrow{0}\}}_{\uparrow} \text { Today } \rightsquigarrow \text { Find Eigenvectors. } \\
& \text { The matrix }\left(A-\lambda I_{n}\right) \text { is not invertible } \\
& \sqrt{\operatorname{det}\left(A-\lambda I_{n}\right)=0} \text { Last Time } \rightsquigarrow \text { Find Eigenvalues. }
\end{aligned}
$$

Eigenvalues \rightsquigarrow Eigenvectors

OK, we have some ideas on how to find eigenvalues (e.g. through the roots of the characteristic polynomial); the next step is to identify the associated eigenvectors:

Definition (Eigenspaces, and Eigenvectors)

Consider an eigenvalue λ of an $(n \times n)$ matrix A. Then the kernel of the matrix $\left(A-\lambda I_{n}\right)$ is called the eigenspace associated with λ, often denoted $E(\lambda, A)$:

$$
E(\lambda, A)=\operatorname{ker}\left(A-\lambda I_{n}\right)=\left\{\vec{v} \in \mathbb{R}^{n}: A \vec{v}=\lambda \vec{v}\right\} .
$$

All vectors $\vec{w} \in E(\lambda, A)$ are eigenvectors.

Finding the Eigenvectors of a Matrix

Suggested Problems

Eigenvalues \rightsquigarrow Eigenvectors and Eigenvectors Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2×2) Example

Example

Find the eigenspaces of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.

Solution:

Finding the Eigenvectors of a Matrix

Suggested Problems

Eigenvalues \rightsquigarrow Eigenvectors and Eigenvectors Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2×2) Example

Example

Find the eigenspaces of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.
Solution: We have already shown that the eigenvalues are $\lambda_{1}=5$ and $\lambda_{2}=-1$.

A (2×2) Example

Example

Find the eigenspaces of the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$.
Solution: We have already shown that the eigenvalues are $\lambda_{1}=5$ and $\lambda_{2}=-1$. We are looking for

$$
E(5, A)=\operatorname{ker}\left(\left[\begin{array}{rr}
-4 & 2 \\
4 & -2
\end{array}\right]\right), \quad E(-1, A)=\operatorname{ker}\left(\left[\begin{array}{ll}
2 & 2 \\
4 & 4
\end{array}\right]\right)
$$

here we can use the famous method of the eyeball ${ }^{*}$ to see that

$$
E(5, A)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right), \quad E(-1, A)=\operatorname{span}\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)
$$

* If/when this fails, we get the result by computing $\operatorname{rref}\left(A-\lambda I_{n}\right)$ and finding the basis for the kernel as usual (via parameterization).

Eigenvalues \rightsquigarrow Eigenvectors and Eigenvectors Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2×2) Example

Example (Checking Our Answer)

The claim is that the eigenvalues and eigenspaces of

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

are

$$
\left\{\lambda_{1}=5, E(5, A)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)\right\}, \quad\left\{\lambda_{2}=-1, E(-1, A)=\operatorname{span}\left(\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right)\right\}
$$

We multiply

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] } & =\left[\begin{array}{r}
5 \\
10
\end{array}\right]=5\left[\begin{array}{l}
1 \\
2
\end{array}\right], \\
{\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right] } & =\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}=(-1)\left[\begin{array}{r}
1 \\
-1
\end{array}\right] . .
$$

Eigenvalues \rightsquigarrow Eigenvectors and Eigenvectors Diagonalizing Matrices
Complex Eigenvalues / Eigenvectors: Rotations and Scalings

A (2×2) Example

Example (Diagonalizing A)

If we collect the eigenvectors as columns in S, and the eigenvalues in B :

$$
\begin{aligned}
& E\left(\lambda_{1}, A\right) \leftrightarrow \lambda_{1} \\
& S=\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right], \quad S^{-1}=\frac{1}{3}\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{rr}
5 & 0 \\
0 & -1
\end{array}\right] \\
& E\left(\lambda_{2}, A\right) \leftrightarrow \lambda_{2}
\end{aligned}
$$

then

$$
\begin{gathered}
S^{-1} \mathbf{A} S=\mathbf{B}, \quad \mathbf{A} S=S \mathbf{B}: \\
{\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{rr}
5 & -1 \\
10 & 1
\end{array}\right], \quad\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{rr}
5 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
5 & -1 \\
10 & 1
\end{array}\right] .} \\
\frac{1}{3}\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{rr}
5 & -1 \\
10 & 1
\end{array}\right]=\left[\begin{array}{rr}
5 & 0 \\
0 & -1
\end{array}\right]
\end{gathered}
$$

A (3×3) Example

Example (Identifying The Eigenvalues)

Find the eigenspaces of the matrix A :

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right], \quad \text { note: } \operatorname{rref}(A)=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Solution: Since A is upper triangular, we see that the eigenvalues are $\left\{1_{\mathrm{am}: 2}, 0_{\mathrm{am}: 1}\right\}-p_{A}(\lambda)=(1-\lambda)^{2}(0-\lambda)$
($1_{\text {am:2 }}$ is my home-cooked notation for "algebraic multiplicity 2.").
Note: The eigenvalues of a matrix are NOT preserved by rowoperations; the matrix we get by subtracting the 2 nd from the 1 st and 3 rd rows has eigenvalues $\left\{1_{\mathrm{am}: 1}, 0_{\mathrm{am}: 2}\right\}$.

A (3×3) Example

Example (Finding the Eigenspaces - $E(0, A)$)

Since 0 is an eigenvalue, and the kernel is preserved by row-operations, we have

$$
E(0, A)=\operatorname{ker}(A)=\operatorname{ker}(\operatorname{rref}(A))=\operatorname{ker}\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right)
$$

as usual we parameterize the free variable (x_{2}) and identify

$$
E(0, A)=\operatorname{span}\left(\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]\right)
$$

A (3×3) Example

Example (Finding the Eigenspaces - $E(1, A)$)

Since $1_{\mathrm{am}: 2}$ is an eigenvalue, and the kernel is preserved by row-operations:

$$
E(1, A)=\operatorname{ker}\left(A-I_{3}\right)=\operatorname{ker}\left(\operatorname{rref}\left(\left[\begin{array}{rrr}
0 & 1 & 1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]\right)\right)=\operatorname{ker}\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right)
$$

as usual we parameterize the free variable $\left(x_{1}\right)$ and identify

$$
E(1, A)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)
$$

Eigenvalues \rightsquigarrow Eigenvectors and Eigenvectors Diagonalizing Matrices

A (3×3) Example

Example (Discussion)

We notice that both $E(0, A)$ and $E(1, A)$ are 1-dimensional subspaces of \mathbb{R}^{3}; for $\lambda=0_{\mathrm{am}: 1}$, this is not a big surprise. However, for $\lambda=1_{\mathrm{am}: 2}$ it is a bit disturbing; it feels like something is missing?

Theorem (Geometric Multiplicity)

Consider an eigenvalue of an $(n \times n)$ matrix A. The dimension of the eigenspace $E(\lambda, A)=\operatorname{ker}\left(A-\lambda I_{n}\right)$ is called the geometric multiplicity of eigenvalue λ; we have

Geometric_Multiplicity $(\lambda)=\operatorname{nullity}^{*}\left(A-\lambda I_{n}\right)=n-\operatorname{rank}\left(A-\lambda I_{n}\right)$.

* $\operatorname{nullity}\left(A-\lambda I_{n}\right) \equiv \operatorname{dim}\left(\operatorname{ker}\left(A-\lambda I_{n}\right)\right) \equiv \operatorname{dim}(E(\lambda, A))$.

Eigenvalues \rightsquigarrow Eigenvectors and Eigenvectors Diagonalizing Matrices
Complex Eigenvalues／Eigenvectors：Rotations and Scalings

Geometric vs．Algebraic Multiplicity

Theorem（Geometric vs．Algebraic Multiplicity）

Geometric＿Multiplicity $(\lambda) \leq$ Algebraic＿Multiplicity (λ)

Theorem（Eigenbases and Geometric Multiplicities）

a．Consider and $(n \times n)$ matrix A ．If we find a basis for each eigenspace of A and concatenate all these bases，then the resulting eigenvectors $\vec{v}_{1}, \ldots, \overrightarrow{v_{s}}$ will be linearly independent．
Note：s is the sum of the geometric multiplicities of the eigenvalues of A ．
（1）This means that $s \leq n$ ．
b．Matrix A is diagonalizable if and only if the geometric multiplicities of the eigenvalues add up to n（i．e．$s=n$ in part a．）

An $(n \times n)$ Matrix with n Distinct Eigenvalues

> Theorem (An $(n \times n)$ Matrix with n Distinct Eigenvalues)
> If an $(n \times n)$ matrix has n distinct eigenvalues, then A is diagonalizable. We can construct the eigenbasis by finding an eigenvector for each eigenvalue.

Note: "All the Eigenvalues are Distinct"
\Leftrightarrow "All Eigenvalues have algebraic multiplicity 1"
\Rightarrow "All Eigenvalues have geometric multiplicity 1 "
\Leftrightarrow Each Eigenspace has a single [eigen]vector.
Note: When λ is an eigenvalue, there is at least one eigenvector, therefore $1 \leq \operatorname{gm}(\lambda) \leq \operatorname{am}(\lambda)$.

The Eigenvalues of Similar Matrices

IMPORTANT!!!

Theorem (The Eigenvalues of Similar Matrices)

Suppose matrix A is similar to matrix B. Then
a. A and B has the same characteristic polynomial, $p_{A}(\lambda)=p_{B}(\lambda)$.
b. $\operatorname{rank}(A)=\operatorname{rank}(B), \operatorname{nullity}(A)=\operatorname{nullity}(B)$.
c. A and B have the same eigenvalues, with the same algebraic and geometric multiplicities. However, the eigenvectors need not be the same.
d. A and B have the same determinant, and trace: $\operatorname{det}(A)=\operatorname{det}(B), \operatorname{trace}(A)=\operatorname{trace}(B)$.

Similar Matrices?

Example (Similar Matrices?)

Is $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$ similar to $B=\left[\begin{array}{ll}3 & 2 \\ 8 & 5\end{array}\right]$?
Solution: We have an easy way to show that the answer is "no!"

- $\operatorname{trace}(A)=9$, but trace $(B)=8$.

Note that is it possible to have two matrices for which $\operatorname{det}(A)=\operatorname{det}(B)$, and $\operatorname{trace}(A)=\operatorname{trace}(B)$ that are NOT similar, e.g.

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right], \quad B=\left[\begin{array}{rrr}
4 & 0 & 0 \\
0 & \frac{5+\sqrt{10}}{2} & 0 \\
0 & 0 & \frac{5-\sqrt{10}}{2}
\end{array}\right]
$$

Strategy for Diagonalization

Theorem (Strategy for Diagonalization)

Given an $(n \times n)$ matrix A : in order to determine whether it is diagonalizable, we seek S and B (diagonal) such that $S^{-1} A S=B$:
a. Find the eigenvalues of A by solving the characteristic equation $p_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
b. For each eigenvalue, find a basis for the eigenspace $E(\lambda, A)=\operatorname{ker}\left(A-\lambda I_{n}\right)$.
c. The matrix is diagonalizable if and only if the dimensions of the eigenspaces add up to n; in which case we collect the eigenspaces as columns in the matrix S, and place the corresponding eigenvalues on the diagonal of B :

$$
S=\left[\begin{array}{lll}
\vec{v}_{1} & \cdots & \vec{v}_{n}
\end{array}\right], \quad S^{-1} A S=B=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

(Modified) A (3×3) Example

Example (Identifying The Eigenvalues)

Find the eigenspaces of the matrix A :

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { note: } \operatorname{rref}(A)=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Solution: Since A is upper triangular, we see that the eigenvalues are $\left\{1_{\text {am: } 2}, 0_{\text {am:1 }}\right\}$.
($1_{\text {am:2 }}$ is my home-cooked notation for "algebraic multiplicity 2.").
Note: The eigenvalues of a matrix are NOT preserved by rowoperations; the matrix we get by swapping the $2 n d$ and the 3rd row has eigenvalues $\left\{1_{\mathrm{am}: 1}, 0_{\mathrm{am}: 2}\right\}$.

(Modified) A (3×3) Example

Example (Finding the Eigenspaces - $E(0, A)$)

Since 0 is an eigenvalue, and the kernel is preserved by row-operations, we have

$$
E(0, A)=\operatorname{ker}(A)=\operatorname{ker}(\operatorname{rref}(A))=\operatorname{ker}\left(\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right)
$$

as usual we parameterize the free variable (x_{2}) and identify

$$
E(0, A)=\operatorname{span}\left(\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]\right), \rightsquigarrow \lambda_{1}=0 \quad \text { has am:1, and gm:1. }
$$

(Modified) A (3×3) Example

Example (Finding the Eigenspaces - $E(1, A)$)

Since 1 is an eigenvalue, and the kernel is preserved by row-operations, therefore

$$
E(1, A)=\operatorname{ker}\left(A-I_{3}\right)=\operatorname{ker}\left(\operatorname{rref}\left(\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\right)\right)=\operatorname{ker}\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)
$$

as usual we parameterize the free variables (x_{1}, x_{3}) and identify

$$
E(1, A)=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) \rightsquigarrow \lambda_{2}=1 \quad \text { has am:2, and gm:2. }
$$

(Modified) A (3×3) Example

Example

Now, since we have matching algebraic and geometric multiplicities for ALL eigenvalues, the matrix is diagonalizable.

$$
S=\left[\begin{array}{r}
\left.\sqrt{-1} \begin{array}{rrr}
1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad S^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{array}\right.
$$

Note that the ordering of eigenspaces and eigenvalues must match.

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Example (Rotations and Scalings - Complex Eigenvalues)

The matrix

$$
A=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right], \quad a, b \in \mathbb{R}
$$

represents a combined rotation/scaling. We now diagonalize this matrix, allowing for complex eigenvalues...

Solution: We get the eigenvalues from the characteristic polynomial

$$
\begin{aligned}
& p_{A}(\lambda)=\operatorname{det}\left(\left[\begin{array}{rr}
a-\lambda & -b \\
& b \\
a-\lambda
\end{array}\right]\right)=(a-\lambda)^{2}+b^{2}=0 \\
& (a-\lambda)^{2}=-b^{2} \quad \Leftrightarrow \quad a-\lambda= \pm i b \quad \Leftrightarrow \quad \lambda=\mathbf{a} \pm \mathbf{i b}
\end{aligned}
$$

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Example (Rotations and Scalings - Complex Diagonalization)

Next, we find the eigenspaces

$$
\begin{aligned}
& E(a+i b, A)=\operatorname{ker}\left(\left[\begin{array}{rr}
-i b & -b \\
b & -i b
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}
i \\
1
\end{array}\right]\right\} \\
& E(a-i b, A)=\operatorname{ker}\left(\left[\begin{array}{rr}
i b & -b \\
b & i b
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{c}
-i \\
1
\end{array}\right]\right\}
\end{aligned}
$$

If we let

$$
R=\left[\begin{array}{rr}
i & -i \\
1 & 1
\end{array}\right] \quad \Rightarrow \quad R^{-1}=\frac{1}{2}\left[\begin{array}{rr}
-i & 1 \\
i & 1
\end{array}\right]
$$

then

$$
\mathbf{R}^{\mathbf{- 1}}\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \mathbf{R}=\left[\begin{array}{rr}
a+i b & 0 \\
0 & a-i b
\end{array}\right]
$$

Revisiting Rotations and Scalings with Complex Eigenvalue／Eigenvectors

Example（Rotations and Scalings－Alternative Book－keeping）

Let us ponder the $R \in \mathbb{C}^{2 \times 2}$ which defined the diagonalizing similarity transform－we split it into its real and imaginary parts：

$$
R=\left[\begin{array}{rr}
i & -i \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]+i\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right]
$$

now，let

$$
\vec{v}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \vec{w}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad\left(\operatorname{clearly}\left\{\begin{aligned}
\operatorname{span}(\vec{v}) & =\operatorname{im}(\operatorname{real}(R)) \\
\operatorname{span}(\vec{w}) & =\operatorname{im}(\operatorname{imag}(R))
\end{aligned}\right)\right.
$$

which means

$$
R=\underbrace{\left[\begin{array}{ll}
\vec{v}+i \vec{w} & \vec{v}-i \vec{w}
\end{array}\right]}_{\text {Call this form } P}
$$

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Example (Rotations and Scalings - Alternative Book-keeping)

We now have two equivalent expressions for the diagonalization:

$$
R^{-1} A R=P^{-1} A P \quad(P \text { is just another way of building } R \ldots)
$$

Pre-multiply by R and post-multiply by R^{-1}, then

$$
A=R R^{-1} A R R^{-1}=\left(R P^{-1}\right) A\left(P R^{-1}\right)
$$

Let $S=P R^{-1} ; S^{-1}=R P^{-1}$, then

$$
S=\left[\begin{array}{ll}
\vec{v}+i \vec{w} & \vec{v}-i \vec{w}
\end{array}\right] \frac{1}{2}\left[\begin{array}{rr}
-i & 1 \\
i & 1
\end{array}\right]=\left[\begin{array}{ll}
\vec{w} & \vec{v}
\end{array}\right]
$$

Formalizing...

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Theorem (Complex Eigenvalues and Rotation-Scaling Matrices)

If $A \in \mathbb{R}^{2 \times 2}$ with eigenvalues $a \pm i b$ (where $b \neq 0$), and if $\vec{v}+i \vec{w}$ is an eigenvector of A with eigenvalue $a+i b$, then

$$
S^{-1} A S=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right], \quad \text { where } S=\left[\begin{array}{ll}
\vec{w} & \vec{v}
\end{array}\right]
$$

Note that $A, S \in \mathbb{R}^{2 \times 2}$, and $\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right] \in \mathbb{R}^{2 \times 2}$.
The matrix A is similar to a rotation-scaling matrix.

Revisiting Rotations and Scalings with Complex Eigenvalue / Eigenvectors

Real (2 $\times 2$)-Block Diagonalization vs. Complex Diagonalization

For a complex pair of eigenvalues $\lambda=a \pm i b-$

- if we keep the similarity-transform-matrix $S=\left[\begin{array}{ll}\vec{w} & \vec{v}\end{array}\right]$ real we can get similarity to a rotation-scaling matrix $\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$; and
- if we allow $S=\left[\begin{array}{rr}i & -i \\ 1 & 1\end{array}\right]$ to be complex we can get similarity to a diagonal matrix (with complex entries) $\left[\begin{array}{rrr}a+i b & 0 \\ 0 & a-i b\end{array}\right]$

Complex Diagonalization vs. Real Block-Diagonalization

This holds for any size matrices:

- if a real matrix $A_{\mathbb{R}} \in \mathbb{R}^{n \times n}$ is complex-diagonalizable $A_{\mathbb{R}} \sim S_{\mathbb{C}} D_{\mathbb{C}} S_{\mathbb{C}}^{-1}$, then
- it can alternatively be similarity-transformed into a real block-diagonal matrix $A_{\mathbb{R}} \sim S_{\mathbb{R}} B_{\mathbb{R}} S_{\mathbb{R}}^{-1}$; where each diagonal complex-pair-block (in $D_{\mathbb{C}}$) $\left[\begin{array}{rr}a_{k}+i b_{k} & 0 \\ 0 & a_{k}-i b_{k}\end{array}\right]$ is replaced by a (2×2)-block $\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ (in $B_{\mathbb{R}}$); $-b$ is in the first super-diagonal, and b in the first sub-diagonal.

See illustration on next slide...

Complex Diagonalization vs. Real Block-Diagonalization

Figure: The (2×2) blocks in $D_{\mathbb{C}} \in \mathbb{C}^{n \times n}$ contain complex pairs of eigenvalues; and the corresponding blocks in $B_{\mathbb{R}} \in \mathbb{R}^{n \times n}$ contain "rotation blocks."

Suggested Problems 7.3

Available on Learning Glass videos:

7.3 - 1, 3, 5, 9, 13, 17, 23, 27, 31, 35
$7.5-13,15,17,21,23$

Lecture-Book Roadmap

Lecture	Book, [GS5-]
7.1	$\S 6.1$
7.2	$\S 6.1, \S 6.2$
7.3	$\S 6.1, \S 6.2$

Metacognitive Exercise - Thinking About Thinking \& Learning

I know / learned	Almost there	Huh?!?
Right After Lecture		
After Thinking / Office Hours / SI-session		
After Reviewing for Quiz/Midterm/Final		

(7.3.1), (7.3.3), (7.3.5)

(7.3.1) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$
A=\left[\begin{array}{ll}
7 & 8 \\
0 & 9
\end{array}\right]
$$

(7.3.3) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$
A=\left[\begin{array}{ll}
6 & 3 \\
2 & 7
\end{array}\right]
$$

(7.3.5) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$
A=\left[\begin{array}{rr}
4 & 5 \\
-2 & -2
\end{array}\right]
$$

(7.3.9), (7.3.13)

(7.3.9) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(7.3.13) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$
A=\left[\begin{array}{rrr}
3 & 0 & -2 \\
-7 & 0 & 4 \\
4 & 0 & -3
\end{array}\right]
$$

(7.3.17), (7.3.23), (7.3.27)

(7.3.17) Find all (real) eigenvalues; then find a basis of each eigenspace, and diagonalize A, if you can.

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(7.3.23) Find all eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Is there an eigenbasis? Interpret your result geometrically.
(7.3.27) Consider a (2×2) matrix A. Suppose that $\operatorname{trace}(A)=5$ and $\operatorname{det}(A)=6$. Find the eigenvalues of A.

(7.3.31), (7.3.35)

(7.3.31) Suppose there is an eigenbasis for a matrix A. What is the relationship between the algebraic and geometric multiplicities of its eigenvalues?
(7.3.35) Is the matrix $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ similar to $\left[\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right]$.

(7.5.13, 15, 17, 21, 23)

For each of the the given matrices, find an invertible matrix S such that $S^{-1} A S=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ (7.5.13)
(7.5.17)

$$
A=\left[\begin{array}{rr}
0 & -4 \\
1 & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-5 & 4
\end{array}\right]
$$

$$
A=\left[\begin{array}{rr}
5 & 4 \tag{7.5.15}\\
-5 & 1
\end{array}\right]
$$

For each of the the given matrices, find all (real and complex) eigenvalues (7.5.21) (7.5.23)

$$
A=\left[\begin{array}{rr}
11 & -15 \\
6 & -7
\end{array}\right] \quad A=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Definition, Complex Addition

Definition (Complex Numbers)

With $a, b \in \mathbb{R}$, we define the complex value $z \in \mathbb{C}$:

$$
z=a+i b
$$

where i is the imaginary unit $+\sqrt{-1}$. a is the Real Part $(a=\operatorname{Re} z)$, and b the Imaginary Part $(b=\operatorname{Im} z)$ of z.

Definition (Complex Addition)

Let $z_{1}, z_{2} \in \mathbb{C}$, then

$$
z_{1}+z_{2}=\left(a_{1}+i b_{1}\right)+\left(a_{2}+i b_{2}\right)=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)
$$

Complex Multiplication

Definition (Complex Multiplication)

Let $z_{1}, z_{2} \in \mathbb{C}$, then

$$
z_{1} z_{2}=\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right)
$$

this follows from the fact that $i^{2}=-1$.

Note: \mathbb{C} is isomorphic to \mathbb{R}^{2}
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{C}$ be the linear transformation:

$$
T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=a+i b, \quad T^{-1}(a+i b)=\left[\begin{array}{l}
a \\
b
\end{array}\right],
$$

that is we can interpret vectors in \mathbb{R}^{2} as complex numbers (and the other way around).

Multiplication by $i \rightsquigarrow$ Rotation

Example (Multiplication by i)

Consider $z=a+i b$, and let $a, b>0$ so that the corresponding vector lives in the first quadrant.

z		$a+i b$
$i z$	$i(a+i b)=i a+i^{2} b$	$-b+i a$
$i^{2} z$	$i(-b+i a)=-i b+i^{2} a$	$-a-i b$
$i^{3} z$	$i(-a-i b)=-i a+i^{2} b$	$b-i a$
$i^{4} z$	$i(b-i a)=i b-i^{2} a$	$a+i b$

We see that $z=-i^{2} z=i^{4} z$, and since

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{r}
-b \\
a
\end{array}\right]=a(-b)+b a=0, \quad\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{r}
b \\
-a
\end{array}\right]=a b+b(-a)=0
$$

we can interpret multiplication by i as a ccw-rotation by $\pi / 2\left(90^{\circ}\right)$.
Complex numbers solve our issue of "no real eigenvalues" for rotations!

Complex Conjugate

Definition (Complex Conjugate)

Given $z=(a+i b) \in \mathbb{C}$, the complex conjugate is defined by

$$
\bar{z}=(a-i b), \quad \text { sometimes } z^{*}=(a-i b)
$$

(reversing the sign on the imaginary part). Note that this is a reflection across the real axis in the complex plane.

Hey! It's a reflection across the real axis!
z and z^{*} form a conjugate pair of complex numbers, and $z z^{*}=(a+i b)(a-i b)=a^{2}+b^{2}$.

Polar Coordinate Representation

Polar Coordinate Representation (Modulus and Argument)

We can represent $z=a+i b$ in terms of its length r (modulus) and angle θ (argument); where

$$
r=\bmod (z)=|z|=\sqrt{a^{2}+b^{2}}, \quad \theta=\arg (z) \in[0,2 \pi)
$$

where

$$
\theta=\arg (z)= \begin{cases}\arctan \left(\frac{b}{a}\right) & \text { if } a>0 \\ \arctan \left(\frac{b}{a}\right)+\pi & \text { if } a<0 \text { and } b \geq 0 \\ \arctan \left(\frac{b}{a}\right)-\pi & \text { if } a<0 \text { and } b<0 \\ \frac{\pi}{2} & \text { if } a=0 \text { and } b>0 \\ -\frac{\pi}{2} & \text { if } a=0 \text { and } b<0 \\ \text { indeterminate } & \text { if } a=0 \text { and } b=0 .\end{cases}
$$

Polar Coordinate Representation

Polar form of z

Given r and θ we let

$$
z=r(\cos \theta+i \sin \theta) \equiv r e^{i \theta}
$$

where the identity

$$
e^{i \theta}=(\cos \theta+i \sin \theta)
$$

is known as Euler's Formula.

Once we restrict the range of θ to an interval of length 2π, the representation is unique. Common choices are $\theta \in[0,2 \pi$) [we will use this here], or $\theta \in[-\pi, \pi)$; but $\theta \in[\xi, \xi+2 \pi)$ for any $\xi \in \mathbb{R}$ works (but why make life harder than necessary?!)

Multiplying in Polar Form

Example

Given $z_{1}, z_{2} \in \mathbb{C}$, then
these three expressions are equivalent.
Since Euler's formula says $e^{i\left(\theta_{1}+\theta_{2}\right)}=\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)$, we can restate some old painful memories:

$$
\begin{aligned}
\cos \left(\theta_{1}+\theta_{2}\right) & =\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \\
\sin \left(\theta_{1}+\theta_{2}\right) & =\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}
\end{aligned}
$$

Bottom line, for $z=z_{1} z_{2}$, we have

$$
|z|=\left|z_{1}\right|\left|z_{2}\right|, \quad \arg (z)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)(\bmod 2 \pi)
$$

From Euler to De Moivre

From Euler's Identity $e^{i \theta}=(\cos \theta+i \sin \theta)$ we see that

$$
(\cos \theta+i \sin \theta)^{n}=\left(e^{i \theta}\right)^{n}=e^{i n \theta}=\cos (n \theta)+i \sin (n \theta)
$$

which is known as De Moivre's Formula.

OK, we have enough fragments of Complex Analysis to state the key result we need prior to revisiting our Eigenvalue/Eigenvector problem space.

Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)

Any nth degree polynomial $p_{n}(\lambda)$ with complex coefficients* can be written as a product of linear factors

$$
p_{n}(\lambda)=k\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

for some complex numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and k. (The λ_{k} 's need not be distinct).
Therefore a polynomial $p_{n}(\lambda)$ of degree n has precisely n complex roots if they are counted with their multiplicity.

* Note that real coefficients are complex coefficients with zero imaginary part.

