Math 254, Spring 2017 Final — Practice Test 1 2 3 4 5 6 7 8 9 **RedID**

Tools: Brain/Pen/Pencil/Eraser/Paper. Rules: This is just a test-test; see below:

v 2017.5.11.0

I, ______, understand that this is a practice exam; which is provided for adults and entertainment purposes only. Any resemblence to a real test is purely intentional, but not guaranteed.

Signature (REQUIRED to continue (yeah, that will be enforced?!?))

Suggestions:

- Present your solutions using standard notation in an easy-to-read format. It is your job to yourself you did the problem correctly...
- Your answers MUST logically follow from your calculations in order to be considered! ("Miracle solutions" ⇒ zero points.)
- If you are a computer science major, perform all calculations in the hexadecimal basis.

Note:

- There is a high probability that the actual test will have slightly fewer questions.
- Hint: The first 3 problems are extra highly recommended.

Problem	Pts Possible	Pts Scored
1	000	
•	000	
25	000	
Total	000	

1. Consider the matrices^{*}

$A = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1))))	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\0\\0\\1\end{bmatrix},$	<i>B</i> =	$\begin{bmatrix} 2\\0\\0\\0\\0\\0\end{bmatrix}$	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 2 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 2 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\0\\0\\2\end{bmatrix},$	C =	$\begin{bmatrix} 3\\0\\0\\0\\0\\0\end{bmatrix}$	$ \begin{array}{c} 1 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$egin{array}{c} 0 \\ 1 \\ 3 \\ 0 \\ 0 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 3 & 0 \\ 0 & 3 \end{array}$,	D :	$= \begin{bmatrix} 4\\0\\0\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 4 & 1 \\ 0 & 4 \\ 0 & 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 4 \end{bmatrix}$		
$E = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	5 0 0 0	0 5 0 0	0 0 6 0 0	0 0 0 6 0	$\begin{bmatrix} 0\\0\\0\\0\\6\end{bmatrix},$	F =	$\begin{bmatrix} 7\\0\\0\\0\\0\\0\end{bmatrix}$	$egin{array}{c} 1 \\ 7 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 8 0 0	0 0 0 8 0	$\begin{bmatrix} 0\\0\\0\\0\\8\end{bmatrix},$	G =	$\begin{bmatrix}9\\0\\0\\0\\0\end{bmatrix}$	$ \begin{array}{c} 1 \\ 9 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 10 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 10 \\ 0 \end{array}$,	H =	$\begin{bmatrix} 11\\0\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 11 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 12 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 12 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 12 \end{array}$

For each matrix:

- (a) What are the eigenvalues, with *algebraic multiplicities*?
- (b) For each matrix, and corresponding eigenvalue(s), find the Eigenspace(s); indicate the dimension of the Eigenspace(s) (and thus the geometric multiplicity of the associated eigenvalue)
- (c) What matrices are invertible / non-invertible? Why/Why not?
- (d) Do you see any patterns here?
- (e) For the Eigenspaces, state the dimension of the orthogonal complements E_{λ}^{\perp} ; then find bases for E_{λ}^{\perp}
- * Not every matrix can be diagonalized, but every matrix can (via a similarity transform) be put into this form, known as the *Jordan Normal Form*, or *Jordan Canonical Form*.

2. Let

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\1\\1\\0\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\1\\-1\\-1\\1\\0 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1\\-1\\2\\2\\-1\\1\\1 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix},$$

- (a) i. Find an orthonormal basis for the subspace $V = \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$? ii. dim(V) =
- (b) Project the vector \vec{x} onto:
 - i. The vector \vec{v}_1
 - ii. The subspace V, giving \vec{x}^{\parallel}
- (c) Next, reflect the vector \vec{x} in
 - i. (25 pts.) The origin (the point (0, 0, 0), or vector $\vec{0}$)
 - ii. (25 pts.) The vector \vec{v}_1
 - iii. (25 pts.) The subspace V
- (d) Consider V^{\perp} , the orthonormal complement of V
 - i. dim $(V^{\perp}) =$
 - ii. The following problems may be messy:
 - A. Find V^\perp
 - B. Find an orthonomal basis for V^{\perp}
 - C. Project \vec{x} onto V^{\perp}
 - D. Reflect \vec{x} in V^{\perp}

3. Consider the matrix, $A \in \mathbb{R}^{r \times c}$:

$$A = \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

and the linear transformation $T(\vec{x}) = A\vec{x}$.

- (a) What can you say about the relations between
 - i. $\dim(\operatorname{im}(A))$, and $\dim(\operatorname{ker}(A))$
 - ii. dim(im(A)), and dim $(im(A)^{\perp})$
 - iii. dim $(\ker(A))$, and dim $(\ker(A)^{\perp})$

The following sketch may be useful (or useless):

$$\begin{bmatrix} \mathbb{R}^m \\ & \\ \ker(A)^{\perp} \\ \ker(A) \end{bmatrix} \xrightarrow{T(\vec{x})} \begin{bmatrix} \mathbb{R}^n \\ \operatorname{im}(A)^{\perp} \\ \operatorname{im}(A) \\ \vec{0} \end{bmatrix}$$

- (b) Find Bases for
 - i. $\operatorname{im}(A)$.
 - ii. $\ker(A)$.
 - iii. $\operatorname{im}(A)^{\perp}$.
 - iv. $\ker(A)^{\perp}$.

(c) Find Orthonormal Bases for (and forever curse Jørgen Pedersen Gram and Erhard Schmidt)

- i. im(A).
- ii. $\ker(A)$.
- iii. $\operatorname{im}(A)^{\perp}$.
- iv. $\ker(A)^{\perp}$.
- (d) Use the QR-factorization to relate the answers {(b).i–iv} and {(c).i–iv}.

4. $(\S3.1)$ Find vectors that span the kernel of

$$A = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 4 \end{bmatrix}$$

5. $(\S3.1)$ Find vectors that span the *image* of

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

6. $(\S3.1, \S3.2)$ (i) Are the column vectors in

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

linearly independent? Why/Why Not? — Give *(ii)* a "mechanical" (computational) answer, and *(iii)* a "theoretical" answer which does not require any computations.

7. $(\S2.4, \S3.2, \S3.3)$ (i) Determine whether the given vectors are linearly independent:

[1	1	[1]		[1]	
1	,	2	,	3	
[1		3		6	

(*ii*) If we use these vectors as the columns in a matrix A, will the matrix be invertible? (*iii*) Why/Why not? (*iv*) If the inverse exists, compute it.

8. (§3.2) Consider the 5×4 matrix

$$A = \begin{bmatrix} | & | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 \\ | & | & | & | \end{bmatrix},$$

we are told that the vector

$$\vec{n}_1 = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$

is in the *kernel* of A. (i) Find a linear relation between the vectors; and (ii) write \vec{v}_4 as a linear combination of \vec{v}_1 , \vec{v}_2 , \vec{v}_3 .

9. (§3.3) Find the reduced row echelon form of A; then find a basis for im(A), and a basis ker(A), where

$$A = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -3 & -1 \\ 3 & 4 & -6 & 8 \\ 0 & -1 & 3 & 1 \end{bmatrix}.$$

10. (§3.3) Determine whether the following vectors form a basis of \mathbb{R}^4 :

$$\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\4\\8 \end{bmatrix}, \begin{bmatrix} 1\\-2\\4\\-8 \end{bmatrix}.$$

11. (§3.3) (i) Find a basis of the subspace, V of \mathbb{R}^4 defined by the equation

$$2x_1 - x_2 + 2x_3 + 4x_4 = 0.$$

then (ii) find a basis for the orthogonal complement V^{\perp} .

12. (§3.4) Determine whether the vector \vec{x} is in $V = \operatorname{span}(\vec{v}_1, \ldots, \vec{v}_m)$. If $\vec{x} \in V$, find the coordinates of \vec{x} with respect to the basis $\mathfrak{B} = (\vec{v}_1, \ldots, \vec{v}_m)$ of V, and write the coordinate vector $[\vec{x}]_{\mathfrak{B}}$:

$$\vec{x} = \begin{bmatrix} 3\\1\\-4 \end{bmatrix}; \quad \vec{v}_1 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}.$$

13. (§3.4) Find the matrix B of the linear transformation $T(\vec{x}) = A\vec{x}$, with respect to the basis $\mathfrak{B} = (\vec{v}_1, \ldots, \vec{v}_m)$.

$$A = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & = 2 & 4 \end{bmatrix}; \quad \vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

14. (§2.2, §3.1, §3.2, §3.3) Describe (i) the image, im(A); and (ii) the kernel, ker(A) of the transformation $T(\vec{x}) = A\vec{x}$ geometrically, where

$$T(\vec{x}) = \left\{ \begin{array}{c} \text{Orthogonal projection onto the plane} \\ \left\{ x + 2y + 3z = 0 \right\} \text{ in } \mathbb{R}^3 \end{array} \right\}$$

.

what is (*iii*) dim(im(A)), and (*iv*) dim(ker(A))? Then find a basis for (v) im(A) and (vi) ker(A)

15. (§5.1) Find the orthogonal projections of \vec{e}_1 onto the subspaces W, and W^{\perp} of \mathbb{R}^4 , where

$$W = \operatorname{span}\left(\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \right), \quad \vec{e}_1 = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}.$$

16. (§5.2) Perform the Gram-Schmidt process on the sequence of vectors given:

$$\vec{v}_1 = \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 18\\0\\0 \end{bmatrix}.$$

17. $(\S5.2)$ Find an orthonormal basis for the image of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & -2 & 0 \end{bmatrix}.$$

18. $(\S5.3)$ Are the given matrices Orthogonal?

$$A = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & 0.6 \end{bmatrix}, \quad B = \begin{bmatrix} -0.8 & 0.6 \\ 0.6 & 0.8 \end{bmatrix}$$

19. $(\S5.3)$

- (a) Consider an $n \times m$ matrix A such that $A^T A = I_m$. Is is necessarily true that $AA^T = I_n$? (Explain!)
- (b) Consider an $n \times n$ matrix A such that $A^T A = I_n$. Is is necessarily true that $AA^T = I_n$? (Explain!)
- 20. (§6.1) Use the determinant to decide whether the matrices are invertible:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 5 & 7 \\ 0 & 11 & 7 \\ 0 & 0 & 5 \end{bmatrix}$$

21. (§6.1) For which values of k, ℓ are the matrices invertible?

$$A = \begin{bmatrix} k & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} \ell & 3 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 4 \end{bmatrix}$$

- 22. (§6.1–§6.2) Given the value of det(A), what is the value of
 - (a) $det(A^T)$
 - (b) $det(A^{-1})$
 - (c) $det(A^2)$
 - (d) $\det(A^T A^{-1})$
- 23. $(\S6.2)$ Ponder the matrix

$$A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \end{bmatrix}$$

compute the determinant using

- (a) The Combinatorial "Pattern" Method
- (b) Row Reductions (Gaussian Elimination)
- (c) The Laplace co-factor Method
- 24. (§6.2) Given the values of det(A) and det(B) is the value of det(AB) always defined? (Explain) If/when it is defined, what is it?
- 25. (§6.2) Explain how the Row Reduction operations impact the value of the determinant:

(a) Row swap

- (b) Row scaling
- (c) Row addition
- (d) In the light of 9.(a) what does (a)–(c) imply for column operations?