Math 254 Midterm #1 Practice Test

1	2	3	4	5	6	7	8	9
RedID								

Tools: Brain/Pen/Pencil/Eraser/Paper. Rules: This is just a test-test; see below:

v	20	17	.9.	26.

I, ______, understand that this is a practice exam; which is provided for adults and entertainment purposes only. Any resemblence to a real test is purely intentional, but not guaranteed.

Signature (REQUIRED to continue (yeah, that will be enforced?!?))

Suggestions:

- Present your solutions using standard notation in an easy-to-read format. It is your job to convince yourself you did the problem correctly...
- Your answers MUST logically follow from your calculations in order to be considered! ("Miracle solutions" \Rightarrow -zero points.)
- If you are a computer science major, perform all calculations in the hexadecimal basis.

Note:

• There is a high probability that the actual test will have slightly fewer questions.

Problem	Pts Possible	Pts Scored	
1	000	000	
2	000	000	
3	000	000	
4	000	000	
5	000	000	
6	000	000	
7	000	000	
8	000	000	
9	000	000	
10	000	000	
11	000	000	
12	000	000	
13	000	000	
14	000	000	
15	000	000	
Total	000	0/0 "Undefined"	

1. (§1.1) Consider the linear system

$$\begin{vmatrix} x & + & y & - & z & = & -2 \\ 3x & - & 5y & + & 13z & = & 18 \\ x & - & 2y & + & 5z & = & k \end{vmatrix}$$

where $k \in \mathbb{R}^n$ is an arbitrary number.

- **a.** For which values of k does this system have one, or infinitely many solutions?
- **b.** For each value of k you found in part a, how many solutions does the system have.
- **c.** Find all solutions for each value of k.
- $2. (\S 1.1, \S 1.2)$
 - **a.** Solve the lower triangular system

$$\begin{vmatrix} x_1 & = -3 \\ -3x_1 + x_2 & = 14 \\ x_1 + 2x_2 + x_3 & = 9 \\ -x_1 + 8x_2 - 5x_3 + x_4 & = 33 \end{vmatrix}$$

b. Solve the upper triangular system

$$\begin{vmatrix} x_1 + 2x_2 - x_3 + 4x_4 = -3 \\ x_2 + 3x_3 + 7x_4 = 5 \\ x_3 + 2x_4 = 2 \\ x_4 = 0 \end{vmatrix}$$

c. Solve the upper triangular system

$$\begin{vmatrix} x_1 + 2x_2 - x_3 + 4x_4 = -3 \\ x_2 + 3x_3 + 7x_4 = 5 \\ x_3 + 2x_4 = 2 \end{vmatrix}$$

3. (§1.2) Find all solutions to the linear system using elimination:

$$\begin{vmatrix} x_1 & + 2x_3 + 4x_4 = -8 \\ x_2 - 3x_3 - x_4 = 6 \\ 3x_1 + 4x_2 - 6x_3 + 8x_4 = 0 \\ - x_2 + 3x_3 + 4x_4 = -12 \end{vmatrix}$$

4. (§1.3) The reduced-row-echelon-forms (RREF) of the augmented matrices of three systems are given. How many solutions does each system have?

(a)
$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 6 \end{bmatrix}$, (c) $\begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$.

5. $(\S1.3)$ Find the rank of

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{array} \right]$$

2

6. (§1.3) Find all vectors \vec{x} such that $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.$$

7. (§2.1) Consider the transformations from \mathbb{R}^3 to \mathbb{R}^3 defined by

which ones are linear transformations?

8. (§2.1) Consider the transformation from \mathbb{R}^3 to \mathbb{R}^2 with

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}7\\11\end{bmatrix}, \quad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}6\\9\end{bmatrix}, \quad \text{and } T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-13\\17\end{bmatrix}.$$

Find the matrix A of $T: \mathbb{R}^3 \to \mathbb{R}^2$.

9. (§2.1) Give a geometric interpretation of the linear transformation defined by the matrix

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Show the effect of the transformation on the letter L, described by the two vectors

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

Is the transformation invertible? Find the inverse if it exists, and interpret it geometrically.

10. (§2.2) Sketch the image of the "L," described by the two vectors

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

under the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \vec{x}.$$

3

11. (§2.2) Let L be the line in \mathbb{R}^3 that consists of all scalar multiples of the vector $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$.

(a.) Find the orthogonal projection of the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto L.

(b.) Find the reflection of the vector $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ about the line L.

- 12. (§2.2) Find the...
 - **a.** scaling matrix A that transforms $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ into $\begin{bmatrix} 8 \\ -4 \end{bmatrix}$
 - **b.** orthogonal projection matrix B that transforms $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ into $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$
 - **c.** rotation matrix C that transforms $\begin{bmatrix} 0 \\ 5 \end{bmatrix}$ into $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$
 - **d.** shear matrix D that transforms $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ into $\begin{bmatrix} 7 \\ 3 \end{bmatrix}$
 - **e.** reflection matrix E that transforms $\begin{bmatrix} 7 \\ 1 \end{bmatrix}$ into $\begin{bmatrix} -5 \\ 5 \end{bmatrix}$
- 13. (§2.3) Compute (if possible) the matrix products

(a.)
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, (b.) $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, (c.) $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$

14. (§2.4) Decide whether the matrices are invertible; if they are, find the inverse(s).

(a.)
$$\begin{bmatrix} 2 & 3 \\ 5 & 8 \end{bmatrix}$$
, (b.) $\begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$, (c.) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

15. (§2.4) Decide whether the linear transformations are invertible; if they are, find the inverse transformation(s).

(a.)
$$\begin{vmatrix} y_1 &=& 3x_1 &+& 5x_2 \\ y_2 &=& 5x_1 &+& 8x_2 \end{vmatrix}$$
, (b.) $\begin{vmatrix} y_1 &=& x_1 &+& 2x_2 \\ y_2 &=& 4x_1 &+& 8x_2 \end{vmatrix}$