
MPEG-4 Compression without all the Math

Peter Blomgren
Department of Mathematics
San Diego State University

November 2, 2016

Contents

1 Introduction: Rationale 1

2 Description of the Problem 1
2.1 1080p Movies . 1
2.2 A Single Frame . 2

2.2.1 Looking at a Single Horizontal/Vertical Line of the Image 2
2.2.2 Back to 2D . 3

1 Introduction: Rationale

In Math 254: Intro to Linear Algebra I used the idea of video compression to motivate why we should care
about orthogonal basis... The discussion was somewhat hand-wavy, and afterward I got the question

Yesterday in the 12pm math 254 class you mentioned that, because of data constraints, for a
movie to be stored on a disc, something like 95% of the movie’s data would need to be discarded.
That sounds really interesting to me, and I can’t think of how only 5% of the data could still be
seen as a smooth/complete version of the movie. How does this work?

This document is an attempt at describing the key ideas of video compression, using only concepts from
calculus and half a semester of linear algebra. (Good luck to me!)

2 Description of the Problem

2.1 1080p Movies

Imagine a 2-hour 1080p24 Movie; where we are showing 24 frames/second, and each frame is 1920×1080
pixels, each pixel has a bit depth of 8-bits per color (whether that’s Red-Green-Blue, or Y-Cb-Cr, is a
discussion for someplace else); but the bottom line is that we have 3 bytes/pixel, so we end of with a raw
datastream with

3 bytes/pixel × 24 frames/second × 7200 seconds × (1920 × 1080) pixels/frame = 1, 074, 954, 240, 000 bytes.

Now, keeping in mind that a standard dual-layer Blu-ray disc holds a measly 50,050,629,632 bytes of data,
we need a compression ratio of 1 : 21.5 in order to fit the movie onto a disk. This means we can only store
slightly less than 4.7% of the datastream.

1

2.2 A Single Frame

Let’s for a moment restict our discussion to a single 1920×1080 pixel frame; and for simplicity, let’s make it
gray-scale.

Figure 1: Gandalf, looking particularly gray...

Next we are going to discuss how we can compress this single snapshot to use only 4.6% storage. This is
going to require a little bit of mathematics...

2.2.1 Looking at a Single Horizontal/Vertical Line of the Image

First, we can consider the image to be constructed out of 1080 lines, each with 1920 pixels; which means we
have a collection of 1080 vectors ~r1, ~r2, . . . , ~r1080, each “living it up” in R1920; we can also (simultaneously)
think of the as being constructed out of 1920 columns, each with 1080 (vertical) pixels; giving us vectors
~c1,~c2, . . . ,~c1920, each “living it up” in R1080.

What we need are some good (orthonormal) bases for R1080 and R1920. It turns out that if we given an
even number, 2n points, we can use the 2n vectors generated by the functions

Φ0(x) =
1

2
Φk(x) = cos(kx), k = 1, . . . , n

Φn+k(x) = sin(kx), k = 1, . . . , n− 1

evaluated in the interval [−π, π], at the equally spaced points xj = −π+ (jπ/n), j = 0, 1, . . . , (2n− 1). The
generated set of vectors are orthonormal!

Now, align the points xj with the pixels, numbered from j = 0 to j = (2n− 1), horizontally or vertically.
Let pj denote the pixel value (gray-scale intensity). Now, if we let

ak =
1

n

2n−1∑
j=0

fj cos(kxj) bk =
1

n

2n−1∑
j=0

fj sin(kxj),

2

be the values of the [pixel-vector]–[cos/sin-vector] dot-products. In our language the ak and bk coefficients
are coordinates in the cos/sin-vector basis for R2n; and given the coordinates, we can fully reconstruct the
pixel values:

pj ≡ S(xj) =
a0
2

+
an
2

cos(nxj) +

n−1∑
k=1

[ak cos(kxj) + bk sin(kxj)] .

We now have a set-up where we can go from “image coordinates” to [cos/sin-vector] coordinates (and back)
using only dot products. What we have defined is known as the (one dimensional) Fourier transform.

2.2.2 Back to 2D

Even though the previos discussion gave us a nice way to build orthonormal bases in one dimension, it is
far from clear why this is desirable. Now, consider the image we had of Gandalf; and lets perform the above
procedure first in the horizontal direction (which transforms the image into 1080 lines of [cos/sin-vector]
coordinates. Next, transform that “image” in the vertical direction. This now gives us an “image” of vertial
[cos/sin-vector] coordinates of (horizonal [cos/sin-vector] of Gandalf). This is known as the two dimensional
Fourier transform. Figure 2 shows what that looks like.

Figure 2: The two dimensional Fourier transform of Gandalf.

3

Figure 3: Gandalf, Fourier transformed and filtered: only the largest 4.6% of coefficients have been kept.

Figure 4: Gandalf, Fourier transformed and filtered: only the largest 4.6% of coefficients have been kept.

4

