MPEG-4 Compression without all the Math

Peter Blomgren
Department of Mathematics
San Diego State University

November 2, 2016

Contents
1 Introduction: Rationale 1

2 Description of the Problem
2.1 1080p Movies oL e
2.2 A Single Frame
2.2.1 Looking at a Single Horizontal/Vertical Line of the Image
222 Backto2D e

W NN ==

1 Introduction: Rationale

In Math 25/: Intro to Linear Algebra I used the idea of video compression to motivate why we should care
about orthogonal basis... The discussion was somewhat hand-wavy, and afterward I got the question

Yesterday in the 12pm math 254 class you mentioned that, because of data constraints, for a
movie to be stored on a disc, something like 95% of the movie’s data would need to be discarded.
That sounds really interesting to me, and I can’t think of how only 5% of the data could still be
seen as a smooth/complete version of the movie. How does this work?

This document is an attempt at describing the key ideas of video compression, using only concepts from
calculus and half a semester of linear algebra. (Good luck to me!)

2 Description of the Problem

2.1 1080p Movies

Imagine a 2-hour 1080p24 Movie; where we are showing 24 frames/second, and each frame is 1920x1080
pixels, each pixel has a bit depth of 8-bits per color (whether that’s Red-Green-Blue, or Y-Cb-Cr, is a
discussion for someplace else); but the bottom line is that we have 3 bytes/pixel, so we end of with a raw
datastream with

3bytes/pixel x 24 frames/second x 7200 seconds x (1920 x 1080) pixels/frame = 1,074, 954, 240, 000 bytes.

Now, keeping in mind that a standard dual-layer Blu-ray disc holds a measly 50,050,629,632 bytes of data,
we need a compression ratio of 1 : 21.5 in order to fit the movie onto a disk. This means we can only store
slightly less than 4.7% of the datastream.

2.2 A Single Frame

Let’s for a moment restict our discussion to a single 1920x 1080 pixel frame; and for simplicity, let’s make it
gray-scale.

Figure 1: Gandalf, looking particularly gray...

Next we are going to discuss how we can compress this single snapshot to use only 4.6% storage. This is
going to require a little bit of mathematics...

2.2.1 Looking at a Single Horizontal/Vertical Line of the Image

First, we can consider the image to be constructed out of 1080 lines, each with 1920 pixels; which means we
have a collection of 1080 vectors 7, 7, . . . , 71080, €ach “living it up” in R92%; we can also (simultaneously)
think of the as being constructed out of 1920 columus, each with 1080 (vertical) pixels; giving us vectors
61, 52, ceey 81920, each “liVng it up” in RlOSO.

What we need are some good (orthonormal) bases for R1%80 and R920. Tt turns out that if we given an
even number, 2n points, we can use the 2n vectors generated by the functions

1
Po(z) = 3
Op(x) = cos(kz), k=1,...,n
O, x(x) = sin(kz), k=1,...,n—1

evaluated in the interval [—7, 7], at the equally spaced points z; = —7 + (jm/n), j =0,1,...,(2n —1). The
generated set of vectors are orthonormall!

Now, align the points x; with the pixels, numbered from j = 0 to j = (2n — 1), horizontally or vertically.
Let p; denote the pixel value (gray-scale intensity). Now, if we let

2n—1 2n—1

1 1
_ = 4 k) b. — = sin(krs
ay - jEZO fjcos(kxj) by - JE:O fjsin(kz;),

be the values of the [pixel-vector]—[cos/sin-vector] dot-products. In our language the a; and by coefficients
are coordinates in the cos/sin-vector basis for R?"; and given the coordinates, we can fully reconstruct the
pixel values:

n—1
pj = S(xj) = % + C%n cos(nz;) + Z la cos(kxj) + by sin(kx;)] .
k=1

We now have a set-up where we can go from “image coordinates” to [cos/sin-vector] coordinates (and back)
using only dot products. What we have defined is known as the (one dimensional) Fourier transform.

2.2.2 Back to 2D

Even though the previos discussion gave us a nice way to build orthonormal bases in one dimension, it is
far from clear why this is desirable. Now, consider the image we had of Gandalf; and lets perform the above
procedure first in the horizontal direction (which transforms the image into 1080 lines of [cos/sin-vector]
coordinates. Next, transform that “image” in the vertical direction. This now gives us an “image” of vertial
[cos/sin-vector] coordinates of (horizonal [cos/sin-vector] of Gandalf). This is known as the two dimensional
Fourier transform. Figure 2 shows what that looks like.

Figure 2: The two dimensional Fourier transform of Gandalf.

Figure 3: Gandalf, Fourier transformed and filtered: only the largest 4.6% of coefficients have been kept.

Figure 4: Gandalf, Fourier transformed and filtered: only the largest 4.6% of coefficients have been kept.

