	Outline
Math 524: Linear Algebra Notes #1 — Vector Spaces	 Student Learning Targets, and Objectives SLOs: Vector Spaces
Peter Blomgren (blomgren@sdsu.edu) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/ Fall 2021 (Revised: December 7, 2021)	 Vector Spaces, i Rⁿ and Cⁿ Definition of Vector Space Vector Spaces, ii Definition of Vector Space Subspaces Problems, Homework, and Supplements Suggested Problems Assigned Homework Supplements
Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces	Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces — (2/58)
Student Learning Targets, and Objectives SLOs: Vector Spaces	Student Learning Targets, and Objectives SLOs: Vector Spaces
Student Learning Targets, and Objectives	Student Learning Targets, and Objectives
 Target Properties of the Complex Numbers, C Objective Know the definitions of, and be able to perform basic complex arithmetic (addition, multiplication, subtraction, division) Objective Be able to apply the properties of commutativity, associativity, additive and multiplicative identities and inverses, as well as the distributive property. 	 Target Vector Spaces Objective Be able to define a vector space in terms of its necessary operations, and properties. Objective Be able to understand the notation F^S, and show that it is a vector space. Objective Be able to formally show the uniqueness of the additive identity and inverse.
Target \mathbb{R}^n and \mathbb{C}^n Objective Be able to define \mathbb{R}^n and \mathbb{C}^n as lists of length <i>n</i> , and to abstract to general fields, \mathbb{F}^n . Objective Be able to transfer the algebraic rules and properties from \mathbb{R} and \mathbb{C} (\mathbb{F}), to \mathbb{F}^n .	Target Subspaces Objective Be able to apply the subspace conditions in order to show that a subset of a Vector space is (or is not) a Subspace Target Sums and Direct Sums of Subspaces

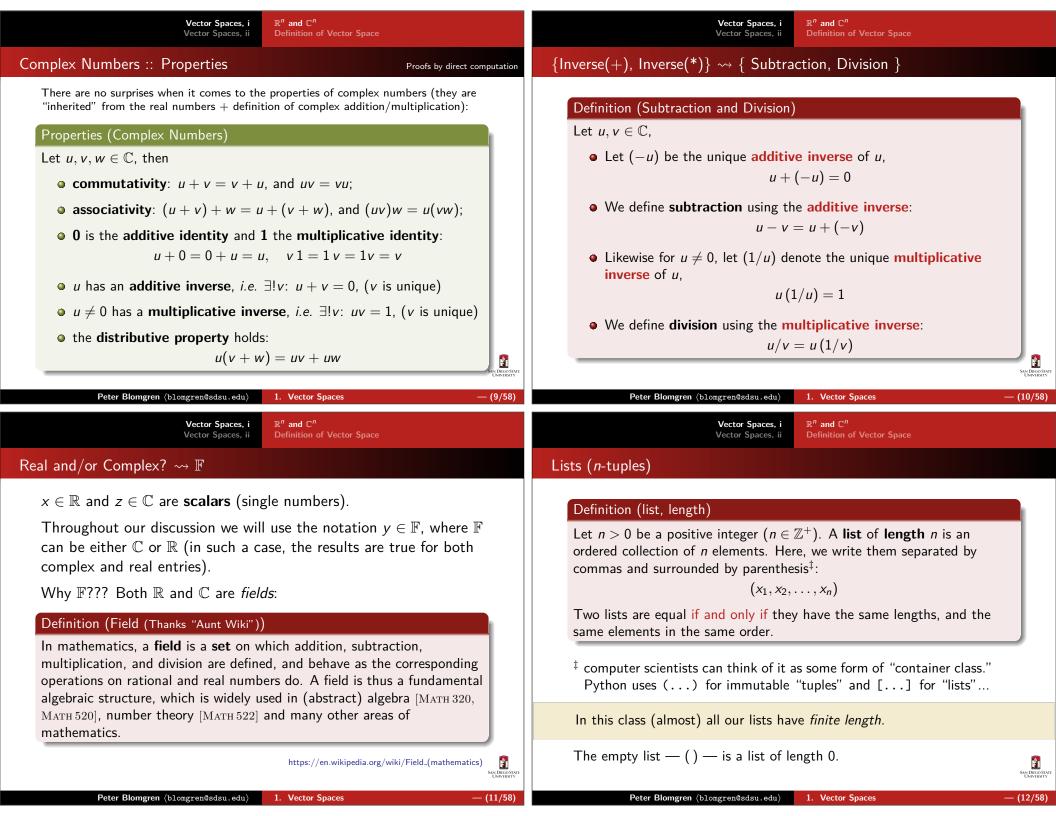
— (3/58)

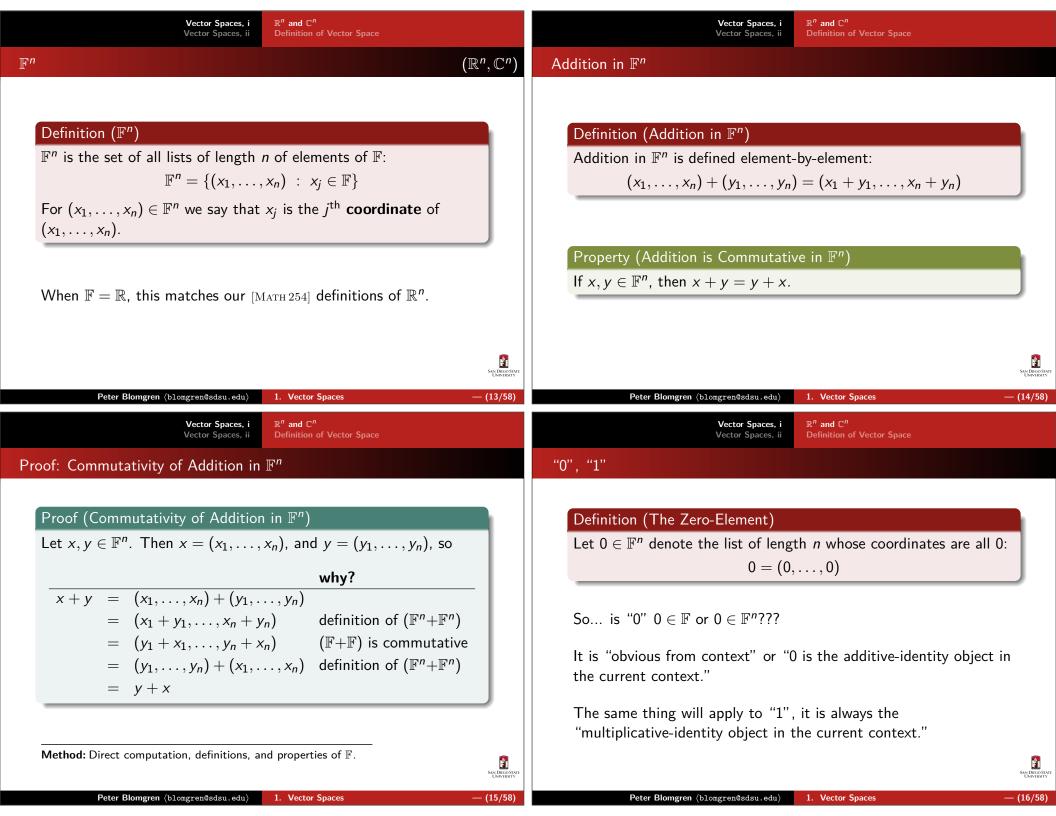
 Peter Blomgren (blomgren@sdsu.edu)
 1.
 Vector Spaces

— (4/58)

Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces

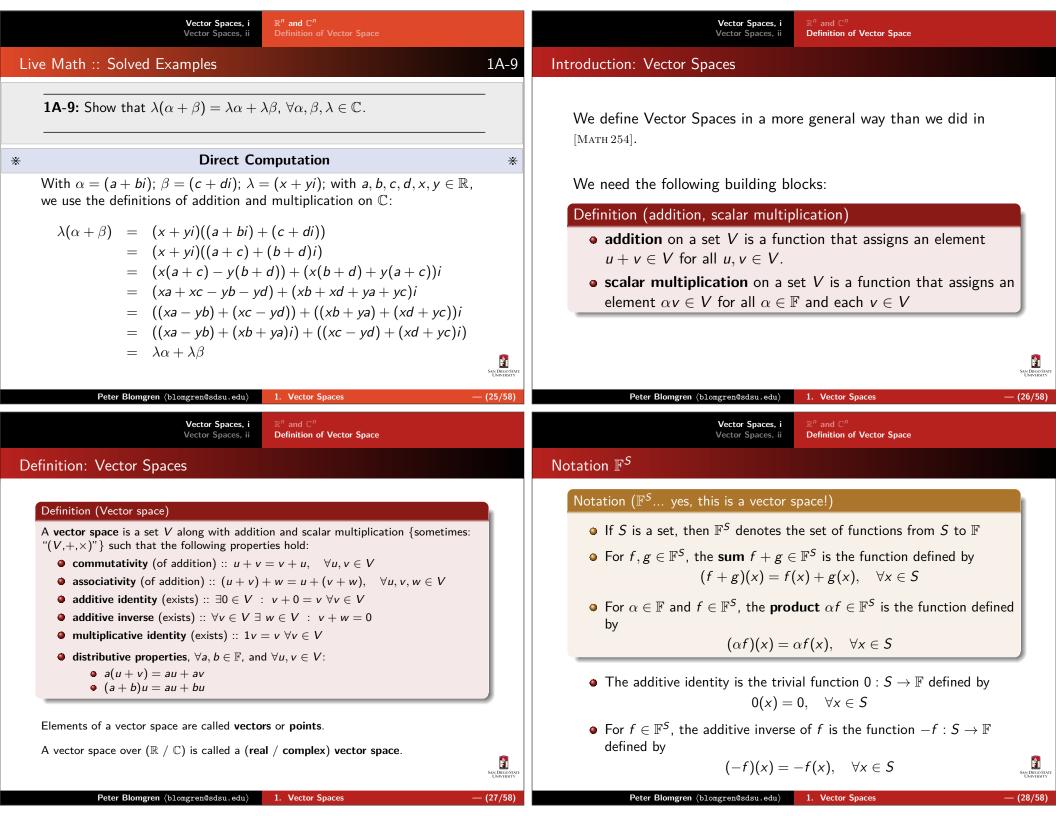
Vector Spaces, i \mathbb{R}^n and \mathbb{C}^n Vector Spaces, iiDefinition of Vector Space	Vector Spaces, i \mathbb{R}^n and \mathbb{C}^n Vector Spaces, iiDefinition of Vector Space	
Introduction	Math 254 → Math 524	
 We will follow the notation, and structure of Axler's <i>Linear Algebra Done Right</i>. The first couple of lectures will fairly quickly cover material (mostly) familiar from [MATH 254] (or alternatives). The goal is to shake off some mental "dust," and build a foundation of common notation and language. Note that some new matrial will be "folded" into these lectures. 	One fairly significant difference between [MATH 254] and [MATH 524] is that we will state most of our results in terms of complex numbers $z \in \mathbb{C}$ rather than real numbers $x \in \mathbb{R}$. When there are differences behaviour/properties over \mathbb{C} and \mathbb{R} , we carefully explore those. $z = x + yi$, where $x, y \in \mathbb{R}$; and we view the real numbers as a special case of the complex numbers (where $y = 0$). The added bonus is that we get <i>more general</i> results, which are "future-proofed" (for cases where we need complex numbers). Additionally, [MATH 524] provides a <i>much more formal</i> and complete discussion of linear algebra.	
	Studies State	
Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces (5/58)	Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces (6/58)	
Vector Spaces, i \mathbb{R}^n and \mathbb{C}^n Vector Spaces, iiDefinition of Vector Space	Vector Spaces, i \mathbb{R}^n and \mathbb{C}^n Vector Spaces, iiDefinition of Vector Space	
Complex Numbers	Complex Numbers :: Formal Definition	
Hopefully you have not forgotten all your encounters with complex numbers. We quickly review / introduce the essentials of complex arithmetic that we need. The complex numbers solve the "core problem" of assigning a value to $\sqrt{-1}$. Following Euler ⁽¹⁷⁷⁷⁾ : $i = \sqrt{-1}$, $i^2 = -1$.	 Definition (Complex Numbers) A complex number z is an ordered pair (a, b) where a, b ∈ ℝ; usually we write z = a + b i. The set of all complex numbers is denoted by ℂ: ℂ = {a + b i : a, b ∈ ℝ} Rules for addition and multiplication (a, b, c, d ∈ ℝ) (a + bi) + (c + di) = (a + c) + (b + d)i (a + bi)(a + di) = (a + c) + (a + ba)i 	
Following Euler Elements: $I = \sqrt{-1}$, $I^{2} = -1$. Note: Mathematicians tend to use $i = \sqrt{-1}$, whereas (electrical) engineers prefer $j = \sqrt{-1}$ (<i>i</i> being reserved for electrical current).	• $(a + bi)(c + di) = (ac - bd) + (ad + bc)i$ • Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces - (8/58)	



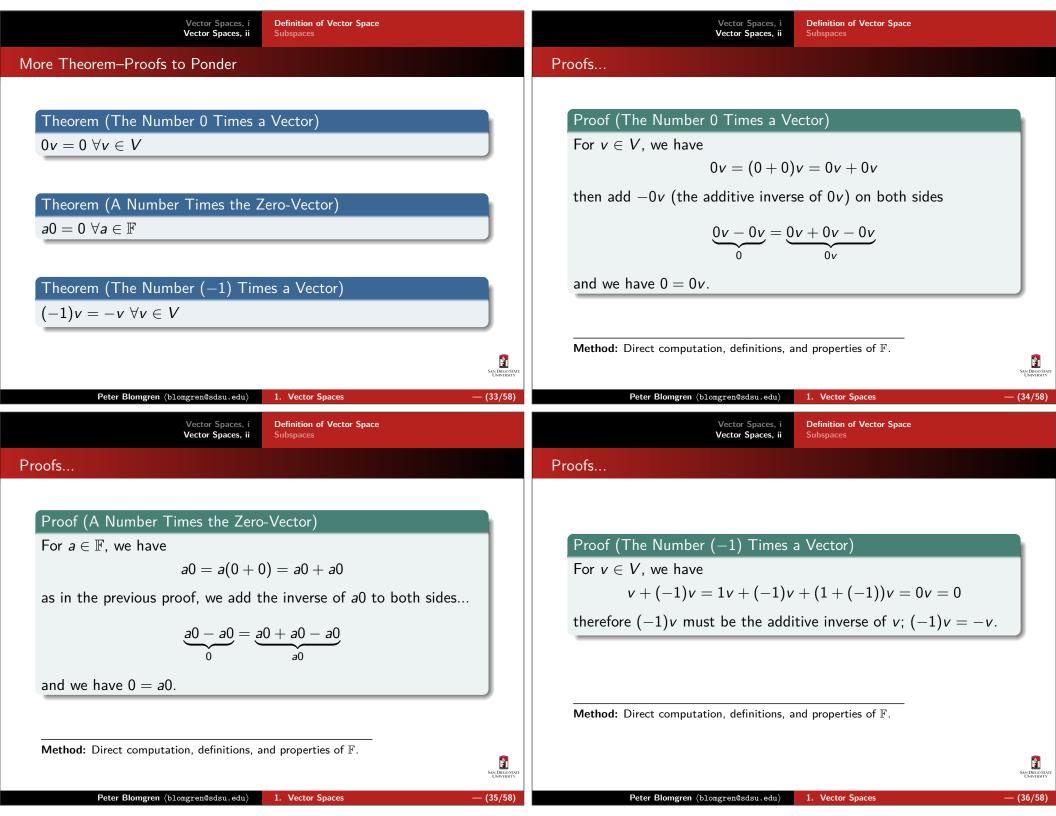


Vector Spaces, i \mathbb{R}^n and \mathbb{C}^n Vector Spaces, iiDefinition of Vector Space		Vector Spaces, i \mathbb{R}^n and \mathbb{C}^n Vector Spaces, iiDefinition of Vector Space	
Lists, <i>n</i> -tuples, and vectors		Additive Inverse, and Scalar Multiplication	
They're all the "same" thing it's just a matter of perspective.		Definition (Additive inverse in \mathbb{F}^n) For $x \in \mathbb{F}^n$ the additive inverse of x , $(-x)$ is the vector $(-x) \in \mathbb{F}^n$ such that x + (-x) = 0 that is, if $x = (x_1, \dots, x_n)$, then $(-x) = (-x_1, \dots, -x_n)$.	
	Sing Direce Statt University	Definition (Scalar multiplication in \mathbb{F}^n) The product of a number $\alpha \in \mathbb{F}$ and a vector $v \in \mathbb{F}^n$ is computed by multiplying each coordinate of the vector by α : $\alpha v = \alpha(v_1, \dots, v_n) = (\alpha v_1, \dots, \alpha v_n).$	SUDAVESTIVE STANDARGO STATE
Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces	— (17/58)		(18/58)
Vector Spaces, i \mathbb{R}^n and \mathbb{C}^n Vector Spaces, iiDefinition of Vector Space		Vector Spaces, i \mathbb{R}^n and \mathbb{C}^n Vector Spaces, iiDefinition of Vector Space	
		Live Math :: Solved Examples 1A-1	1, 1 of 2
		1A-1: Suppose $a, b \in \mathbb{R}$, not both 0. Find $c, d \in \mathbb{R}$ such that	-
		$\frac{1/(a+bi)=c+di}{$	-
$\langle \langle \langle Live Math \rangle \rangle \rangle$			*
⟨⟨⟨ Live Math ⟩⟩⟩ e.g. 1A-{1, 4, 7 , 8, 9}		* "Trick" — Multiply by 1 We multiply by a conveniently complicated way to write "1":	- *
		* "Trick" — Multiply by 1	- *
		* "Trick" — Multiply by 1 We multiply by a conveniently complicated way to write "1": $\left[\frac{a-bi}{a-bi}\right]\frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$ We can identify $c = \frac{a}{a^2+b^2}$, and $d = \frac{-b}{a^2+b^2}$; both of which are	- *
	Swy Daugo Stort	* "Trick" — Multiply by 1 We multiply by a conveniently complicated way to write "1": $\left[\frac{a-bi}{a-bi}\right]\frac{1}{a+bi} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i$	- **

Vector Spaces, i Vector Spaces, ii	\mathbb{R}^n and \mathbb{C}^n Definition of Vector Space		Vector Spaces, i Vector Spaces, ii	\mathbb{R}^n and \mathbb{C}^n Definition of Vector Space	
Live Math :: Solved Examples	1A-1,	2 of 2	Live Math :: Solved Examples		1A-4
			1A-4: Show that $\alpha + \beta = \beta + \alpha \ \forall \alpha$	$\alpha, \beta \in \mathbb{C}$	-
	ication	*			_
Using the definition of multiplication that the expression we derived above of any non-zero complex number (<i>a</i>	e is indeed the multiplicative inverse		* Direct Co	omputation	*
$(a+bi)\left(\frac{a}{a^2+b^2}+\frac{a^2}{a^2}\right)$,		Since $\alpha, \beta \in \mathbb{C}$, we can represent $\alpha = a, b, c, d \in \mathbb{R}$; then $\alpha + \beta = (a + bi) + (c + di)$ = (a + c) + (b + d)i = (c + a) + (d + b)i = (c + di) + (a + bi) $= \beta + \alpha$	= $a + bi$ and $\beta = c + di$ where representation of complex numbers definition of addition on \mathbb{C} commutativity of addition on \mathbb{R} definition of addition on \mathbb{C} representation of complex numbers	
	Sin t	DIEGO STATE IVERSITY			SAN DIEGO STATE UNIVERSITY
Peter Blomgren (blomgren@sdsu.edu)	1. Vector Spaces — (2:	/58)	Peter Blomgren $\langle \texttt{blomgren@sdsu.edu} angle$	1. Vector Spaces —	- (22/58)
Vector Spaces, i Vector Spaces, ii	\mathbb{R}^n and \mathbb{C}^n Definition of Vector Space		Vector Spaces, i Vector Spaces, ii	\mathbb{R}^n and \mathbb{C}^n Definition of Vector Space	
Live Math :: Solved Examples	1	4-7	Live Math :: Solved Examples		1A-8
1A-7: Show that for every $\alpha \in \mathbb{C}$, t $\alpha + \beta = 0$	here exists a unique $\beta \in \mathbb{C}$ such that		1A-8: Show that for every $\alpha \in \mathbb{C} \setminus \{$ that $\alpha\beta = 1$	$\{0\},$ there exists a unique $eta\in\mathbb{C}$ such	- 1
* Exis	tence	*	* Exis	tence	*
Suppose $\alpha = (a + bi)$, where $a, b \in$ using the unique additive inverses of of complex addition:	$\mathbb R.$ Let $eta=(-a-bi)$ — here we are		$lpha = (a + bi); a, b \in \mathbb{R}$ such that $(a^2$ $eta = rac{a}{a^2 + b^2}$ Now $(a + bi)\left(rac{a}{a^2 + b^2} + rac{a^2}{a^2} ight)$	$\frac{1}{a^2+b^2}i$	
	ueness	*	which establishes existence.	· / ·	
l ∗ Uniq			* Uniqu	ueness	*
Now, suppose $\gamma \in \mathbb{C}$ such that $\alpha + \gamma$ the equality:	$\gamma=$ 0. We add eta on both sides of		Now, suppose $\gamma \in \mathbb{C}$ such that $\alpha \gamma =$	= 1. We multiply by eta on both sides	
Now, suppose $\gamma \in \mathbb{C}$ such that $\alpha + \gamma$ the equality:	$\gamma=$ 0. We add eta on both sides of ch shows that $\gamma=eta.$	Pico State IVVRSTY	of the equality:	= 1. We multiply by β on both sides shows that $\gamma = \beta$.	SAN DIIGO STATE UNIVERSITY

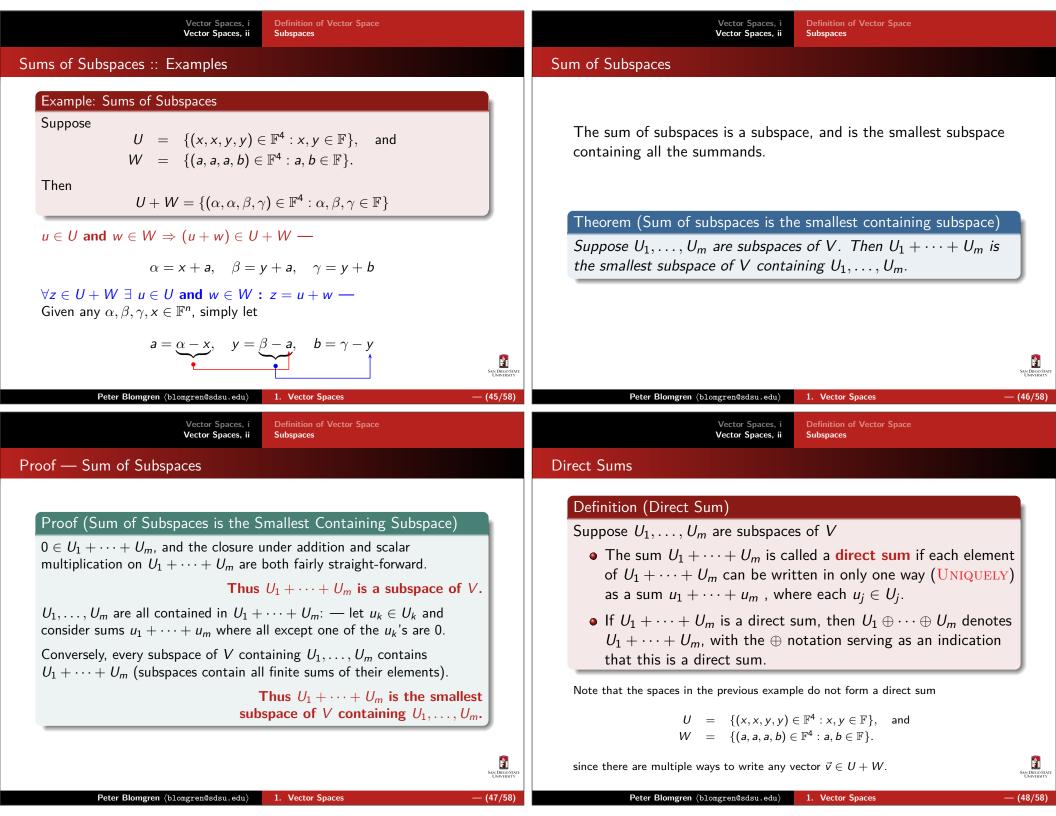


Vector Spaces, i Definition of Vector Space Vector Spaces, ii Subspaces	Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces
Things to Prove	Proof :: Uniqueness of the Additive Identity
Property (Unique Additive Identity) A vector space has a unique additive identity. Property (Unique Additive Inverse) Every element in a vector space has a unique additive inverse.	Method: Assume $\exists 2$, show they are the same; using the properties. Proof (Additive Identity is Unique) Suppose 0 and 0' are both additive identities for some vector space V. Then $0' \stackrel{(1)}{=} 0' + 0 \stackrel{(2)}{=} 0 + 0' \stackrel{(3)}{=} 0$ where we used (1) that 0 is an additive identity, then (2) commutativity, and then (3) that 0' is also an additive identity. Thus we have $0' = 0$.
Sou Dires Stat	SN DIGOSTATI UNIVERTY
Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces - (29/58)	Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces - (30/58)
Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces	Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces
Proof :: Uniqueness of the Additive Inverse	Notation: $-v$, $w - v$
Method: Assume $\exists 2$, show they are the same; using the properties.	
Proof (Additive Inverse is Unique) Suppose V is a vector space. Let $v \in V$, and suppose both w and w' are additive inverses of v. Then $w \stackrel{(1)}{=} w + 0 \stackrel{(2)}{=} w + (v + w') \stackrel{(3)}{=} (w + v) + w' \stackrel{(4)}{=} 0 + w' \stackrel{(5)}{=} w'$ where we used ⁽¹⁾ the additive identity; ⁽²⁾ w' is an additive inverse of v; ⁽³⁾ associativity; ⁽⁴⁾ w is an additive inverse; ⁽⁵⁾ the additive identity. Thus we have $w = w'$.	Notation $(-v, w - v)$ (additive inverse, subtraction)Let $v, w \in V$, then• $-v$ denotes the additive inverse of v ,• $w - v$ is defined to be $w + (-v)$ Convention: V — Going Forward —Unless otherwise specified, V denotes the vector space over \mathbb{F}
Proof (Additive Inverse is Unique) Suppose V is a vector space. Let $v \in V$, and suppose both w and w' are additive inverses of v. Then $w \stackrel{(1)}{=} w + 0 \stackrel{(2)}{=} w + (v + w') \stackrel{(3)}{=} (w + v) + w' \stackrel{(4)}{=} 0 + w' \stackrel{(5)}{=} w'$ where we used ⁽¹⁾ the additive identity; ⁽²⁾ w' is an additive inverse of v; ⁽³⁾ associativity; ⁽⁴⁾ w is an additive inverse; ⁽⁵⁾ the additive identity.	Let $v, w \in V$, then • $-v$ denotes the additive inverse of v, • $w - v$ is defined to be $w + (-v)$ Convention: V — Going Forward —



Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces	Vector Spaces, i Definition of Vector Space Vector Spaces, ii Subspaces
	Live Math :: Solved Examples 1B-
$\langle \langle \langle Live Math \rangle \rangle \rangle$ e.g. 1B-{ 5 }	1B-5: Show that in the definition of a vector space, the additive inverse condition can be replaced with the condition that $0v = 0 \ \forall v \in V$. Here the 0 on the left side is the number 0, and the 0 on the right side is the additive identity of V.Suppose $0v = 0 \ \forall v \in V$, then for $v \in V$: $0 = 0v = (1 + (-1))v$ $= 1v + (-1)v$ $= v + (-1)v$
	which makes $(-1)v$ an additive inverse of $v \rightsquigarrow$ the additive inverse condition is satisfied. We used the additive inverse of $1 \in \mathbb{R}$, and the distributive property of V .
Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces (37/58)	Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces (38/5)
Vector Spaces, i Definition of Vector Space Vector Spaces, ii Subspaces	Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces
Subspace :: Definition	Subspace :: Conditions
Definition ([Linear] Subspace) A subset U of V is called a subspace of V if U also is a vector space ("inheriting" the addition and scalar multiplication from V). Some "obvious examples" of subspaces of \mathbb{F}^4 : • $\{(x_1, x_2, x_3, x_4) : x_1, x_2, x_3, x_4 \in \mathbb{F}\}$ • $\{(x_1, x_2, x_3, 0) : x_1, x_2, x_3 \in \mathbb{F}\}$ • $\{(x_1, 0, 0, x_4) : x_1, x_4 \in \mathbb{F}\}$ • $\{(0, x_2, 0, 0) : x_2 \in \mathbb{F}\}$	Conditions for a Subspace A subset U of V is a subspace of V if and only if U satisfies: • U has an additive identity $0 \in U$ • U is closed under addition $u, w \in U \Rightarrow u + w \in U$ • U is closed under scalar multiplication $a \in \mathbb{F}$ and $u \in U \Rightarrow au \in U$

Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces	Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces
Proof — Subspace :: Conditions	Subspaces :: Examples
 Proof (Conditions for a Subspace) ⇒ If U is a subspace of V, then U satisfies the three conditions (BY DEFINITION, since it is a vector space). ⇐ Conversely; if U satifies the three conditions. The additive identity condition ensures that the additive identity of V is in U; additive closure of U means that addition is well-defined on U; closure of U under scalar multiplication means that scalar multiplication is well-defined on U. Now, if u ∈ U, then -u ⁽³⁾/₌ (-1)u also ∈ U (so, every element in U 	 V(α, b) = { (x₁, x₂, x₃, x₄) ∈ F⁴ : x₃ = αx₄ + b} is a subspace of F⁴ ∀α ∈ F, and b = 0; if b ≠ 0, then (0,0,0,0) ∉ F⁴. (additive identity) C([-π, π]) (the set of continuous functions on [-π, π]) is a subspace of R^[-π,π]. The set of differentiable real-valued functions on R is a subspace of R^R. The set of differentiable real-valued functions f on the interval (-π, π) such that f'(0) = β is a subspace of R^(-π,π) if and only if β = 0. (additive closure) The set of all sequences of complex numbers is a subspace of C[∞]
Now, if $u \in U$, then $-u \equiv (-1)u$ also $\in U$ (so, every element in U has an additive inverse in U). Associativity and Commutativity holds in U since they hold in the larger space V. Therefore, U is a vector space; and since U is a subset of V it is a subspace of V.	(2)-(3)-(4) show that a huge amount of calculus is built on top of linear structures; and a better understanding of linear algebra can improve and formalize our understanding of calculus.
Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces (41/58)	Peter Blomgren (blomgren@sdsu.edu) 1. Vector Spaces (42/58)
Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces	Vector Spaces, iDefinition of Vector SpaceVector Spaces, iiSubspaces
Sums of Subspaces :: Definition	Sums of Subspaces :: Examples
<section-header>Definition (Sum of Subsets)Suppose U1,, Um are subsets of V.The sum of U1,, Um, denotedU1 + ··· + Um,is the set of all possible sums of elements of U1,, Um.More precisely,U1 + ··· + Um = {u1 + ··· + um : u1 ∈ U1,, um ∈ Um}.</section-header>	<section-header><equation-block><text><equation-block><equation-block><text><equation-block><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></text></equation-block></equation-block></text></equation-block></section-header>



Example :: Direct Sum

Example :: Direct Sum

Let U_k be the subspace of \mathbb{F}^n of the form

$$U_k = \{(0,\ldots,0,u_k,0,\ldots,0) \in \mathbb{F}^n, u_k \in \mathbb{F}\}$$

i.e. only the k^{th} coordinate is allowed to be non-zero. Then $\mathbb{F}^n = U_1 \oplus \cdots \oplus U_n$.

With

$$W_k = \bigoplus_{j=1}^k U_j = U_1 \oplus \cdots \oplus U_k$$

then

$$W_k = \{(w_1, \ldots, w_k, 0, \ldots, 0) \in \mathbb{F}^n : w_j \in \mathbb{F}, j = 1, \ldots, k\}, \ k = 1, \ldots, n$$

		SAN DIEGO STATI UNIVERSITY
Peter Blomgren (blomgren@sdsu.edu)	1. Vector Spaces	— (49/58)
Vector Spaces, i Vector Spaces, ii	Definition of Vector Space Subspaces	

Condition for a direct sum; Direct sum of two subspaces

Theorem (Condition for a direct sum)

Suppose U_1, \ldots, U_m are subspaces of V. Then $U_1 + \cdots + U_m$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each $u_i \in U_i$, is by taking each $u_i = 0$.

Theorem (Direct sum of **two** subspaces)

Suppose U and W are subspaces of V. Then $U \oplus W$ is a direct sum if and only if $U \cap W = \{0\}$.

Example :: Not a Direct Sum

Let

so th way, Note

Proof -

Ê

Ê

SAN DIEGO UNIVER

- (51/58)

Example :: Not a Direct Sum

Let

$$U_{1} = \{(x, y, 0) \in \mathbb{F}^{3} : x, y \in \mathbb{F}\}$$

$$U_{2} = \{(0, 0, z) \in \mathbb{F}^{3} : z \in \mathbb{F}\}$$

$$U_{3} = \{(0, \beta, \beta) \in \mathbb{F}^{3} : \beta \in \mathbb{F}\}$$
Then $\mathbb{F}^{3} = U_{1} + U_{2} + U_{3}$; also $0 \in U_{1} \cap U_{2} \cap U_{3}$, but $\forall \alpha \in \mathbb{F}$:

$$u_{1} = (0, \alpha, 0) \in U_{1}$$

$$u_{2} = (0, 0, \alpha) \in U_{2}$$

$$u_{3} = (0, -\alpha, -\alpha) \in U_{3}$$
so that $u_{1} + u_{2} + u_{3} = 0$. Since we can write $0 \in \mathbb{F}^{3}$ in more than one
way, $U_{1} + U_{2} + U_{3}$ is not a direct sum.
Note: $\mathbb{F}^{3} = U_{1} \oplus U_{2}$. Question: Are there more direct sums?

$$\underbrace{\text{Vector Spaces, i}}_{\text{Vector Spaces, ii}} \underbrace{\text{Definition of Vector Space}}_{\text{Subspaces}}$$
cof — Condition for a Direct Sum

First suppose $U_1 + \cdots + U_m$ is a direct sum. Then the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each $u_i \in U_i$, is by taking each $u_i = 0$. (By uniqueness)

Now suppose that the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each $u_i \in U_i$, is by taking each $u_i = 0$. To show that $U_1 + \cdots + U_m$ is a direct sum, let $v \in U_1 + \cdots + U_m$.

We can write $v = u_1 + \cdots + u_m$, for some $u_i \in U_i$, $(j = 1, \dots, m)$.

To show that this representation is unique, suppose we also have $v = v_1 + \cdots + v_m$ where $v_1 \in U_1, \ldots, v_m \in U_m$. Subtracting these two equations, we have

$$0 = (u_1 - v_1) + \cdots + (u_m - v_m).$$

Because $(u_i - v_i) \in U_i$, the equation above implies that each $(u_i - v_i) = 0$. Thus $u_i = v_i$, $(j = 1, \dots, m)$, as desired.

Method: Assume $\exists 2$, show they are the same (using the properties).

Êı

