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Student Learning Targets, and Objectives SLOs: Vector Spaces

Student Learning Targets, and Objectives

Target Properties of the Complex Numbers, C
Objective Know the definitions of, and be able to perform basic complex

arithmetic (addition, multiplication, subtraction, division)
Objective Be able to apply the properties of commutativity, associativity,

additive and multiplicative identities and inverses, as well as
the distributive property.

Target Rn and Cn

Objective Be able to define Rn and Cn as lists of length n, and to
abstract to general fields, Fn.

Objective Be able to transfer the algebraic rules and properties from R
and C (F), to Fn.
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Student Learning Targets, and Objectives SLOs: Vector Spaces

Student Learning Targets, and Objectives

Target Vector Spaces
Objective Be able to define a vector space in terms of its necessary

operations, and properties.
Objective Be able to understand the notation FS , and show that it is a

vector space.
Objective Be able to formally show the uniqueness of the additive

identity and inverse.

Target Subspaces
Objective Be able to apply the subspace conditions in order to show that

a subset of a Vector space is (or is not) a Subspace

Target Sums and Direct Sums of Subspaces
Objective Be able to apply the definitions to identify whether a sum of

subspaces is a direct sum, or not.
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Vector Spaces, i
Vector Spaces, ii

Rn and Cn

Definition of Vector Space

Introduction

We will follow the notation, and structure of Axler’s Linear Algebra
Done Right.

The first couple of lectures will fairly quickly cover material
(mostly) familiar from [Math 254] (or alternatives).

The goal is to shake off some mental “dust,” and build a
foundation of common notation and language.

Note that some new matrial will be “folded” into these lectures.

Time-Target: 3×75-minute lectures.
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Vector Spaces, i
Vector Spaces, ii
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Definition of Vector Space

Math 254  Math 524

One fairly significant difference between [Math 254] and [Math 524] is
that we will state most of our results in terms of complex numbers
z ∈ C rather than real numbers x ∈ R. When there are differences
behaviour/properties over C and R, we carefully explore those.

z = x + yi , where x , y ∈ R; and we view the real numbers as a
special case of the complex numbers (where y = 0).

The added bonus is that we get more general results, which are
“future-proofed” (for cases where we need complex numbers).

Additionally, [Math 524] provides a much more formal and complete
discussion of linear algebra.
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Complex Numbers

Hopefully you have not forgotten all your encounters with complex
numbers.

We quickly review / introduce the essentials of complex arithmetic
that we need.

The complex numbers solve the “core problem” of assigning a value
to

√
−1.

Following Euler(1777): i =
√

−1, i2 = −1.

Note: Mathematicians tend to use i =
√

−1, whereas (electrical) engineers prefer j =√
−1 (i being reserved for electrical current).
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Definition of Vector Space

Complex Numbers :: Formal Definition

Definition (Complex Numbers)
A complex number z is an ordered pair (a, b) where
a, b ∈ R; usually we write z = a + b i .
The set of all complex numbers is denoted by C:

C = {a + b i : a, b ∈ R}
Rules for addition and multiplication (a, b, c , d ∈ R)

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi)(c + di) = (ac − bd) + (ad + bc)i
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Complex Numbers :: Properties Proofs by direct computation

There are no surprises when it comes to the properties of complex numbers (they are
“inherited” from the real numbers + definition of complex addition/multiplication):

Properties (Complex Numbers)
Let u, v ,w ∈ C, then

commutativity: u + v = v + u, and uv = vu;
associativity: (u + v) + w = u + (v + w), and (uv)w = u(vw);
0 is the additive identity and 1 the multiplicative identity:

u + 0 = 0 + u = u, v 1 = 1 v = 1v = v

u has an additive inverse, i.e. ∃!v : u + v = 0, (v is unique)
u 6= 0 has a multiplicative inverse, i.e. ∃!v : uv = 1, (v is unique)
the distributive property holds:

u(v + w) = uv + uw
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Definition of Vector Space

{Inverse(+), Inverse(*)}  { Subtraction, Division }

Definition (Subtraction and Division)
Let u, v ∈ C,

Let (−u) be the unique additive inverse of u,
u + (−u) = 0

We define subtraction using the additive inverse:
u − v = u + (−v)

Likewise for u 6= 0, let (1/u) denote the unique multiplicative
inverse of u,

u (1/u) = 1

We define division using the multiplicative inverse:
u/v = u (1/v)
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Real and/or Complex?  F

x ∈ R and z ∈ C are scalars (single numbers).
Throughout our discussion we will use the notation y ∈ F, where F
can be either C or R (in such a case, the results are true for both
complex and real entries).
Why F??? Both R and C are fields:

Definition (Field (Thanks “Aunt Wiki”))
In mathematics, a field is a set on which addition, subtraction,
multiplication, and division are defined, and behave as the corresponding
operations on rational and real numbers do. A field is thus a fundamental
algebraic structure, which is widely used in (abstract) algebra [Math 320,
Math 520], number theory [Math 522] and many other areas of
mathematics.

https://en.wikipedia.org/wiki/Field (mathematics)
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Lists (n-tuples)

Definition (list, length)
Let n > 0 be a positive integer (n ∈ Z+). A list of length n is an
ordered collection of n elements. Here, we write them separated by
commas and surrounded by parenthesis‡:

(x1, x2, . . . , xn)
Two lists are equal if and only if they have the same lengths, and the
same elements in the same order.

‡ computer scientists can think of it as some form of “container class.”
Python uses (...) for immutable “tuples” and [...] for “lists”...

In this class (almost) all our lists have finite length.

The empty list — ( ) — is a list of length 0.
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Fn (Rn,Cn)

Definition (Fn)
Fn is the set of all lists of length n of elements of F:

Fn = {(x1, . . . , xn) : xj ∈ F}
For (x1, . . . , xn) ∈ Fn we say that xj is the j th coordinate of
(x1, . . . , xn).

When F = R, this matches our [Math 254] definitions of Rn.
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Addition in Fn

Definition (Addition in Fn)
Addition in Fn is defined element-by-element:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

Property (Addition is Commutative in Fn)
If x , y ∈ Fn, then x + y = y + x .
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Proof: Commutativity of Addition in Fn

Proof (Commutativity of Addition in Fn)
Let x , y ∈ Fn. Then x = (x1, . . . , xn), and y = (y1, . . . , yn), so

why?
x + y = (x1, . . . , xn) + (y1, . . . , yn)

= (x1 + y1, . . . , xn + yn) definition of (Fn+Fn)
= (y1 + x1, . . . , yn + xn) (F+F) is commutative
= (y1, . . . , yn) + (x1, . . . , xn) definition of (Fn+Fn)
= y + x

Method: Direct computation, definitions, and properties of F.
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“0”, “1”

Definition (The Zero-Element)
Let 0 ∈ Fn denote the list of length n whose coordinates are all 0:

0 = (0, . . . , 0)

So... is “0” 0 ∈ F or 0 ∈ Fn???

It is “obvious from context” or “0 is the additive-identity object in
the current context.”

The same thing will apply to “1”, it is always the
“multiplicative-identity object in the current context.”
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Lists, n-tuples, and vectors

They’re all the “same” thing... it’s just a matter of perspective.
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Additive Inverse, and Scalar Multiplication

Definition (Additive inverse in Fn)
For x ∈ Fn the additive inverse of x , (−x) is the vector (−x) ∈ Fn such
that

x + (−x) = 0
that is, if x = (x1, . . . , xn), then (−x) = (−x1, . . . , −xn).

Definition (Scalar multiplication in Fn)
The product of a number α ∈ F and a vector v ∈ Fn is computed by
multiplying each coordinate of the vector by α:

αv = α(v1, . . . , vn) = (αv1, . . . , αvn).
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〈〈〈 Live Math 〉〉〉

e.g. 1A-{1, 4, 7, 8, 9}
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Live Math :: Solved Examples 1A-1, 1 of 2

1A-1: Suppose a, b ∈ R, not both 0. Find c , d ∈ R such that
1/(a + bi) = c + di

> “Trick” — Multiply by 1 >
We multiply by a conveniently complicated way to write “1”:

[
a − bi

a − bi

]
1

a + bi
= a − bi

a2 + b2 = a

a2 + b2 + −b

a2 + b2 i

We can identify c = a

a2 + b2 , and d = −b

a2 + b2 ; both of which are
well-defined since a and b not both being 0 ⇒ (a2 + b2) > 0.
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Live Math :: Solved Examples 1A-1, 2 of 2

> Verification >
Using the definition of multiplication of complex numbers, we can show
that the expression we derived above is indeed the multiplicative inverse
of any non-zero complex number (a + bi)

(a + bi)
(

a

a2 + b2 + −b

a2 + b2 i

)
= a2 + b2

a2 + b2 = 1.

�
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Live Math :: Solved Examples 1A-4

1A-4: Show that α + β = β + α ∀α, β ∈ C

> Direct Computation >
Since α, β ∈ C, we can represent α = a + bi and β = c + di where
a, b, c , d ∈ R; then

α + β = (a + bi) + (c + di) representation of complex numbers
= (a + c) + (b + d)i definition of addition on C
= (c + a) + (d + b)i commutativity of addition on R
= (c + di) + (a + bi) definition of addition on C
= β + α representation of complex numbers
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Live Math :: Solved Examples 1A-7

1A-7: Show that for every α ∈ C, there exists a unique β ∈ C such that
α + β = 0

> Existence >
Suppose α = (a + bi), where a, b ∈ R. Let β = (−a − bi) — here we are
using the unique additive inverses of a, b ∈ R. Then, using the definition
of complex addition:

α + β = (a + bi) + (−a − bi) = (a − a) + (b − b)i = 0 + 0i = 0

> Uniqueness >
Now, suppose γ ∈ C such that α + γ = 0. We add β on both sides of
the equality:

α + β︸ ︷︷ ︸
0

+ γ = β, which shows that γ = β.
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Live Math :: Solved Examples 1A-8

1A-8: Show that for every α ∈ C \ {0}, there exists a unique β ∈ C such
that αβ = 1

> Existence >
α = (a + bi); a, b ∈ R such that (a2 + b2) > 0. Inspired by 1A-1, we let

β = a

a2 + b2 + −b

a2 + b2 i

Now
(a + bi)

(
a

a2 + b2 + −b

a2 + b2 i

)
= a2 + b2

a2 + b2 = 1

which establishes existence.
> Uniqueness >

Now, suppose γ ∈ C such that αγ = 1. We multiply by β on both sides
of the equality:

βα︸︷︷︸
1

γ = β, which shows that γ = β.
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Live Math :: Solved Examples 1A-9

1A-9: Show that λ(α + β) = λα + λβ, ∀α, β, λ ∈ C.

> Direct Computation >
With α = (a + bi); β = (c + di); λ = (x + yi); with a, b, c , d , x , y ∈ R,
we use the definitions of addition and multiplication on C:

λ(α + β) = (x + yi)((a + bi) + (c + di))
= (x + yi)((a + c) + (b + d)i)
= (x(a + c) − y(b + d)) + (x(b + d) + y(a + c))i
= (xa + xc − yb − yd) + (xb + xd + ya + yc)i
= ((xa − yb) + (xc − yd)) + ((xb + ya) + (xd + yc))i
= ((xa − yb) + (xb + ya)i) + ((xc − yd) + (xd + yc)i)
= λα + λβ
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Introduction: Vector Spaces

We define Vector Spaces in a more general way than we did in
[Math 254].

We need the following building blocks:

Definition (addition, scalar multiplication)
addition on a set V is a function that assigns an element
u + v ∈ V for all u, v ∈ V .
scalar multiplication on a set V is a function that assigns an
element αv ∈ V for all α ∈ F and each v ∈ V
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Definition: Vector Spaces

Definition (Vector space)
A vector space is a set V along with addition and scalar multiplication {sometimes:
“(V ,+,×)”} such that the following properties hold:

commutativity (of addition) :: u + v = v + u, ∀u, v ∈ V

associativity (of addition) :: (u + v) + w = u + (v + w), ∀u, v ,w ∈ V

additive identity (exists) :: ∃0 ∈ V : v + 0 = v ∀v ∈ V

additive inverse (exists) :: ∀v ∈ V ∃ w ∈ V : v + w = 0
multiplicative identity (exists) :: 1v = v ∀v ∈ V

distributive properties, ∀a, b ∈ F, and ∀u, v ∈ V :
a(u + v) = au + av
(a + b)u = au + bu

Elements of a vector space are called vectors or points.

A vector space over (R / C) is called a (real / complex) vector space.
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Notation FS

Notation (FS ... yes, this is a vector space!)

If S is a set, then FS denotes the set of functions from S to F

For f , g ∈ FS , the sum f + g ∈ FS is the function defined by
(f + g)(x) = f (x) + g(x), ∀x ∈ S

For α ∈ F and f ∈ FS , the product αf ∈ FS is the function defined
by

(αf )(x) = αf (x), ∀x ∈ S

The additive identity is the trivial function 0 : S → F defined by
0(x) = 0, ∀x ∈ S

For f ∈ FS , the additive inverse of f is the function −f : S → F
defined by

(−f )(x) = −f (x), ∀x ∈ S
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Subspaces

Things to Prove

Property (Unique Additive Identity)
A vector space has a unique additive identity.

Property (Unique Additive Inverse)
Every element in a vector space has a unique additive inverse.
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Proof :: Uniqueness of the Additive Identity

Method: Assume ∃2, show they are the same; using the properties.

Proof (Additive Identity is Unique)
Suppose 0 and 0’ are both additive identities for some vector space
V . Then

0′ (1)= 0′ + 0 (2)= 0 + 0′ (3)= 0

where we used
(1) that 0 is an additive identity, then
(2) commutativity, and then
(3) that 0′ is also an additive identity.

Thus we have 0′ = 0.
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Proof :: Uniqueness of the Additive Inverse

Method: Assume ∃2, show they are the same; using the properties.

Proof (Additive Inverse is Unique)
Suppose V is a vector space. Let v ∈ V , and suppose both w and w ′ are
additive inverses of v . Then

w
(1)= w + 0 (2)= w + (v + w ′) (3)= (w + v) + w ′ (4)= 0 + w ′ (5)= w ′

where we used
(1) the additive identity;
(2) w ′ is an additive inverse of v ;
(3) associativity;
(4) w is an additive inverse;
(5) the additive identity.

Thus we have w = w ′.
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Notation: −v , w − v

Notation (−v , w − v) (additive inverse, subtraction)
Let v ,w ∈ V , then

−v denotes the additive inverse of v,
w − v is defined to be w + (−v)

Convention: V — Going Forward —
Unless otherwise specified, V denotes the vector space over F
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More Theorem–Proofs to Ponder

Theorem (The Number 0 Times a Vector)
0v = 0 ∀v ∈ V

Theorem (A Number Times the Zero-Vector)
a0 = 0 ∀a ∈ F

Theorem (The Number (−1) Times a Vector)
(−1)v = −v ∀v ∈ V
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Proofs...

Proof (The Number 0 Times a Vector)
For v ∈ V , we have

0v = (0 + 0)v = 0v + 0v

then add −0v (the additive inverse of 0v) on both sides

0v − 0v︸ ︷︷ ︸
0

= 0v + 0v − 0v︸ ︷︷ ︸
0v

and we have 0 = 0v .

Method: Direct computation, definitions, and properties of F.
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Proofs...

Proof (A Number Times the Zero-Vector)
For a ∈ F, we have

a0 = a(0 + 0) = a0 + a0

as in the previous proof, we add the inverse of a0 to both sides...

a0 − a0︸ ︷︷ ︸
0

= a0 + a0 − a0︸ ︷︷ ︸
a0

and we have 0 = a0.

Method: Direct computation, definitions, and properties of F.
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Proofs...

Proof (The Number (−1) Times a Vector)
For v ∈ V , we have

v + (−1)v = 1v + (−1)v + (1 + (−1))v = 0v = 0

therefore (−1)v must be the additive inverse of v ; (−1)v = −v .

Method: Direct computation, definitions, and properties of F.
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〈〈〈 Live Math 〉〉〉

e.g. 1B-{5}
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Live Math :: Solved Examples 1B-5

1B-5: Show that in the definition of a vector space, the additive inverse
condition can be replaced with the condition that 0v = 0 ∀v ∈ V .
Here the 0 on the left side is the number 0, and the 0 on the right
side is the additive identity of V.

Suppose 0v = 0 ∀v ∈ V , then for v ∈ V :

0 = 0v = (1 + (−1))v
= 1v + (−1)v
= v + (−1)v

which makes (−1)v an additive inverse of v  the additive inverse
condition is satisfied.
We used the additive inverse of 1 ∈ R, and the distributive property of V .
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Subspace :: Definition

Definition ([Linear] Subspace)
A subset U of V is called a subspace of V if U also is a vector
space (“inheriting” the addition and scalar multiplication from V ).

Some “obvious examples” of subspaces of F4:
{(x1, x2, x3, x4) : x1, x2, x3, x4 ∈ F}
{(x1, x2, x3, 0) : x1, x2, x3 ∈ F}
{(x1, 0, 0, x4) : x1, x4 ∈ F}
{(0, x2, 0, 0) : x2 ∈ F}
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Subspace :: Conditions

Conditions for a Subspace
A subset U of V is a subspace of V if and only if U satisfies:

1 U has an additive identity
0 ∈ U

2 U is closed under addition
u,w ∈ U ⇒ u + w ∈ U

3 U is closed under scalar multiplication
a ∈ F and u ∈ U ⇒ au ∈ U
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Proof — Subspace :: Conditions

Proof (Conditions for a Subspace)
⇒ If U is a subspace of V , then U satisfies the three conditions (By

Definition, since it is a vector space).

⇐ Conversely; if U satifies the three conditions.
(1) The additive identity condition ensures that the additive iden-

tity of V is in U;
(2) additive closure of U means that addition is well-defined on

U;
(3) closure of U under scalar multiplication means that scalar

multiplication is well-defined on U.

Now, if u ∈ U, then −u
(3)≡ (−1)u also ∈ U (so, every element in U

has an additive inverse in U). Associativity and Commutativity holds
in U since they hold in the larger space V . Therefore, U is a vector
space; and since U is a subset of V it is a subspace of V .
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Subspaces :: Examples

1 V (α, b) = { (x1, x2, x3, x4) ∈ F4 : x3 = αx4 + b} is a subspace of F4

∀α ∈ F, and b = 0; if b 6= 0, then (0, 0, 0, 0) 6∈ F4. (additive identity)

2 C ([−π, π]) (the set of continuous functions on [−π, π]) is a
subspace of R[−π,π].

3 The set of differentiable real-valued functions on R is a subspace of
RR.

4 The set of differentiable real-valued functions f on the interval
(−π, π) such that f ′(0) = β is a subspace of R(−π,π) if and only if
β = 0. (additive closure)

5 The set of all sequences of complex numbers is a subspace of C∞

(2)-(3)-(4) show that a huge amount of calculus is built on top of
linear structures; and a better understanding of linear algebra can
improve and formalize our understanding of calculus.
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Sums of Subspaces :: Definition

Definition (Sum of Subsets)
Suppose U1, . . . ,Um are subsets of V .
The sum of U1, . . . ,Um, denoted

U1 + · · · + Um,

is the set of all possible sums of elements of U1, . . . ,Um.
More precisely,

U1 + · · · + Um = {u1 + · · · + um : u1 ∈ U1, . . . , um ∈ Um}.
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Sums of Subspaces :: Examples

Captain Obvious’ Example: Sums of Subspaces
Suppose U is the set of all elements of Fn whose second-to-nth

coordinates equal 0, and W is the set of all elements of Fn whose first
and third-to-nth coordinates equal 0:

U = {(x , 0, 0, . . . , 0) ∈ Fn : x ∈ F} and
W = {(0, y , 0, . . . , 0) ∈ Fn : y ∈ F}

Then
U + W = {(x , y , 0, . . . , 0) ∈ Fn : x , y ∈ F}
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Example: Sums of Subspaces
Suppose

U = {(x , x , y , y) ∈ F4 : x , y ∈ F}, and
W = {(a, a, a, b) ∈ F4 : a, b ∈ F}.

Then
U + W = {(α, α, β, γ) ∈ F4 : α, β, γ ∈ F}

u ∈ U and w ∈ W ⇒ (u + w) ∈ U + W —

α = x + a, β = y + a, γ = y + b

∀z ∈ U + W ∃ u ∈ U and w ∈ W : z = u + w —
Given any α, β, γ, x ∈ Fn, simply let

a = α − x︸ ︷︷ ︸, y = β − a︸ ︷︷ ︸, b = γ − y
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Sum of Subspaces

The sum of subspaces is a subspace, and is the smallest subspace
containing all the summands.

Theorem (Sum of subspaces is the smallest containing subspace)
Suppose U1, . . . ,Um are subspaces of V . Then U1 + · · · + Um is
the smallest subspace of V containing U1, . . . ,Um.
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Proof — Sum of Subspaces

Proof (Sum of Subspaces is the Smallest Containing Subspace)
0 ∈ U1 + · · · + Um, and the closure under addition and scalar
multiplication on U1 + · · · + Um are both fairly straight-forward.

Thus U1 + · · · + Um is a subspace of V .
U1, . . . ,Um are all contained in U1 + · · · + Um: — let uk ∈ Uk and
consider sums u1 + · · · + um where all except one of the uk ’s are 0.
Conversely, every subspace of V containing U1, . . . ,Um contains
U1 + · · · + Um (subspaces contain all finite sums of their elements).

Thus U1 + · · · + Um is the smallest
subspace of V containing U1, . . . ,Um.
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Definition (Direct Sum)
Suppose U1, . . . ,Um are subspaces of V

The sum U1 + · · · +Um is called a direct sum if each element
of U1 + · · · + Um can be written in only one way (Uniquely)
as a sum u1 + · · · + um , where each uj ∈ Uj .
If U1 + · · · + Um is a direct sum, then U1 ⊕ · · · ⊕ Um denotes
U1 + · · · + Um, with the ⊕ notation serving as an indication
that this is a direct sum.

Note that the spaces in the previous example do not form a direct sum

U = {(x , x , y , y) ∈ F4 : x , y ∈ F}, and
W = {(a, a, a, b) ∈ F4 : a, b ∈ F}.

since there are multiple ways to write any vector ~v ∈ U + W .
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Example :: Direct Sum
Let Uk be the subspace of Fn of the form

Uk = {(0, . . . , 0, uk , 0, . . . , 0) ∈ Fn, uk ∈ F}
i.e. only the kth coordinate is allowed to be non-zero.
Then Fn = U1 ⊕ · · · ⊕ Un.

With

Wk =
k⊕

j=1
Uj = U1 ⊕ · · · ⊕ Uk

then

Wk = {(w1, . . . ,wk , 0, . . . , 0) ∈ Fn : wj ∈ F, j = 1, . . . , k}, k = 1, . . . , n
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Example :: Not a Direct Sum
Let

U1 = {(x , y , 0) ∈ F3 : x , y ∈ F}
U2 = {(0, 0, z) ∈ F3 : z ∈ F}
U3 = {(0, β, β) ∈ F3 : β ∈ F}

Then F3 = U1 + U2 + U3; also 0 ∈ U1 ∩ U2 ∩ U3, but ∀α ∈ F:
u1 = (0, α, 0) ∈ U1

u2 = (0, 0, α) ∈ U2

u3 = (0, −α, −α) ∈ U3

so that u1 + u2 + u3 = 0. Since we can write 0 ∈ F3 in more than one
way, U1 + U2 + U3 is not a direct sum.
Note: F3 = U1 ⊕ U2. Question: Are there more direct sums?
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Condition for a direct sum; Direct sum of two subspaces

Theorem (Condition for a direct sum)
Suppose U1, . . . ,Um are subspaces of V . Then U1 + · · · + Um is a
direct sum if and only if the only way to write 0 as a sum
u1 + · · · + um, where each uj ∈ Uj , is by taking each uj = 0.

Theorem (Direct sum of two subspaces)
Suppose U and W are subspaces of V . Then U ⊕ W is a direct
sum if and only if U ∩ W = {0}.
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Proof (Condition for a Direct Sum)
First suppose U1 + · · · + Um is a direct sum. Then the only way to write 0 as a sum
u1 + · · · + um, where each uj ∈ Uj , is by taking each uj = 0. (By uniqueness)

Now suppose that the only way to write 0 as a sum u1 + · · · + um , where each
uj ∈ Uj , is by taking each uj = 0. To show that U1 + · · · + Um is a direct sum, let
v ∈ U1 + · · · + Um.
We can write v = u1 + · · · + um, for some uj ∈ Uj , (j = 1, . . . ,m).
To show that this representation is unique, suppose we also have v = v1 + · · · + vm
where v1 ∈ U1, . . . , vm ∈ Um. Subtracting these two equations, we have

0 = (u1 − v1) + · · · + (um − vm).

Because (uj − vj ) ∈ Uj , the equation above implies that each (uj − vj ) = 0. Thus
uj = vj , (j = 1, . . . ,m), as desired.

Method: Assume ∃2, show they are the same (using the properties).
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Proof (Direct Sum of two Subspaces)
First suppose that U + W is a direct sum. If v ∈ U ∩ W , then
0 = v + (−v), where v ∈ U and (−v) ∈ W .
By the unique representation of 0 as the sum of a vector in U and a
vector in W, we have v = 0. Thus U ∩W = {0}, completing the proof in
one direction.
To prove the other direction, now suppose U ∩ W = {0}. To prove that
U + W is a direct sum, suppose u ∈ U, w ∈ W , and 0 = u + w :
We need only show that u + w = 0 (by the previous theorem). The
equation above implies that u = −w ∈ W . Thus u ∈ U ∩ W . Hence
u = 0, which by the equation above implies that w = 0, completing the
proof.
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〈〈〈 Live Math 〉〉〉

e.g. 1C-{1, 5}
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Live Math :: Solved Examples 1C-5

1C-5: Is R2 a subspace of the complex vector space C2?

No: For R2 to be a subspace, is must be closed under the operations
(addition, and scalar multiplication) “inherited” from C2.

Addition is not a problems since ∀u, v ∈ R2, (u + v) ∈ R2.
However, whereas C2 is closed under scaling by α ∈ C, R2 is not; in
particular ∀u ∈ R2: u 6= 0, iu 6∈ R2.
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Suggested Problems

1.A—1, 4, 5, 6, 7, 8, 9

1.B—1, 3, 5

1.C—1, 5, 10, 20
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Assigned Homework HW#1, Due Date in Canvas/Gradescope

1.A—5, 6

1.B—1, 3

1.C—10, 20

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Supplements

〈Placeholder〉
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