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Student Learning Targets, and Objectives SLOs: Finite-Dimensional Vector Spaces

Student Learning Targets, and Objectives

Target Span

Objective Know how to build a finite-dimensional vector space using
spanning vectors.

Target Linear Independence

Objective Know how to determine whether a set of vectors is linearly
independent, and how to remove linearly dependent vectors
from a set to generate a linearly independent set.

Target Bases

Objective Be able to reduce a spanning list to a basis of a vector space
Objective Be able to extend a linearly indepenent list to a basis of a
vector space

Target Dimension
Objective Know how to determine the dimension of a subspace
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Finite-Dimensional Vector Spaces, i

L . . . Span and Linear Independence
Finite-Dimensional Vector Spaces, ii P3 ‘ P

Introduction

Previously, we discussed vector spaces; and we even included one
brief mention of C°.

However in Linear Algebra the main focus is on finite-dimensional
vector spaces (which we will formally introduce shortly).

The study of infinite-dimensional vector spaces mainly fall
under the umbrella of

Functional Analysis =~ Linear Algebra + Real Analysis - -

see e.g. Hilbert Spaces, Banach Spaces. The Road to Infinity...

Time-Target: 3X75-minute lectures.

Image Credit: Creative Commons BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1160957
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Spanfandifineaindepsndence

Span and Linear Independence

Linearly independent vectors in R® — 3D Visualization

Image Credit: Creative Commons Attribution-Share Alike 4.0 International License.
https://commons.wikimedia.org/wiki/File:Vec-indep.png
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Spanfantiinearlindspendence

Linear Combination :: Definition

Definition (Linear Combination)

A linear combination of a set {vi,..

vector of the form
m
w = E Ak Vi,
k=1

., Vm} vectors v, € V is a

with a, € F.

Rewind (Notation)

V is a vector space.
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Finite-Dimensional Vector Spaces, i

. " X I Span and Linear Independence
Finite-Dimensional Vector Spaces, ii P P

Linear Combination :: Examples

We follow the Axler's notation, writing vectors as lists:

The vector (5,10, 12 + 2i,30) € F* is a linear combination of the
vectors (1,2,1,3), and (1,2,4,8) since

(5,10,12 + 2i,30) = 2(1,2,,3) + 3(1,2, 4, 8)

The vector (1,1,1) € F® is not a linear combination of the vectors
(1,0,0), and (1,1,0) since Vay, a € F:

(13 il 1) 7£ 31(1, 0, 0) + 32(17 il 0)
Or, if you prefer: fay,ap € F: (1,1,1) = a1(1,0,0) + ax(1,1,0)
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Span

Definition (Span)

The set of all linear combinations of a list of vectors
Vi,...,Vm € V is called the span of vq,..., v, denoted
span(vi, ..., Vmy). In other words,

span(vi,...,Vm) ={a1vi + -+ amVm : a1,...,am € F}.

We define the span of the empty list () to be {0}.
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Finite-Dimensional Vector Spaces, i
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Span and Linear Independence

Span :: Examples Rewind :: Span and Linear Independence Connecting with Previous Classes
Revisiting the previous examples On vectors in C" and R” we can directly re-use row-reductions
from [Maru254] to Reduced Row Echelon Form to determine
existence of linear combinations:
(5,10,12 + 2i,30) € span | (1,2,1,3),(1,2,4,8) Rewind (Span and Linear Independence)
~ - —— N——
w Vi V2
: . L 11 5 @ o2
since there is a linear combination so that w = ajv; + a>ws.
’ ef 2 2 10 0 @ 3 = a 2, a 3
IT . . = | = = 3.
412420 000 L= =2
3 8 30 0 0|0
(1,1,1) ¢ span | (1,0,0),(1,1,0) 1 171 OO e solutions:
~~—— —— —— rref 0 1|1 =10 1|1 | = .
w vi w /T T e not in the span
) 0 0|1 0 0|® )
since there is no linear combination so that w = ajvy + asws. ‘
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Span is the Smallest Containing Subspace Proof :: Span is the Smallest Containing Subspace 1/2

Theorem (Span is the Smallest Containing Subspace) Proof (Span is the Smallest Containing Subspace)

The span of a list of vectors in V' is the smallest subspace of V Let vi,....vm € V.

containing all the vectors in the list. (1) Show that W = span(vy,...,vy,) is a subspace of V:

@ 0€ Wsince0 =5, 0w

We notice that this statment is similar to e W is closed under addition since
Rewind (Sum of Subspaces is the Smallest Containing Subspace [NOTES#1]) ZT:l Ak Vi + ZT:l bevic = ZT:l(ak + bk)vk
Suppose U, ..., Uy, are subspaces of V. Then U; + - - - + Uy, is the @ W is closed under scalar multiplication since VA € F :
smallest subspace of V containing Uy, ..., Uy,. A akvie) = > (Nak) vk

Therefore W is a subspace of V.

and, not surprisingly, the proof is also similar... Next, we show that it is the smallest subspace...
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Proof :: Span is the Smallest Containing Subspace 2/2

Proof (Span is the Smallest Containing Subspace)

Each v, € W = span(vi, ..., Vm), since vp = > Sekvk, Where

s _ [ 1 =k
TV 0 0f £k

Conversely, every subspace W of V which contains each of the vectors
Vi,...,Vm must contain span(vi, ..., Vy) (since subspaces are closed
under addition and scalar multiplication).

Therefore W is the smallest subspace of V.

Note: sk is known as the Kronecker delta; (Leopold Kronecker, 1823 -
1891). It is a very convenient notation for generating coefficients
that are either zero or one, with predicable patterns. _

SAN DIFGO STATE
UNIVERSITY
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Spanfantiinearlindspendence

Challenge :: Alternative Proof

Challenge (Alternative Proof)

Can you formulate a different proof, which directly uses the
SUM-OF-SUBSPACES result from [NoTes#1]?

— (14/67)
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Finite-Dimensional Vector Space :: Formal Definition

Definition (Language: “Spans”)

Vm), then we say that the set of vectors
., Vm Spans

If V =span(vy,...,
{v1,...,Vvm}, or if you prefer the list of vectors vy, ..
the vector space V.

Definition (Finite-Dimensional Vector Space)

A vector space is called finite-dimensional if some list [FiniTE
LeNGTH, n, BY DEFINITION] Of vectors in it spans the space.

Definition (Infinite-Dimensional Vector Space)

A vector space is called infinite-dimensional if it is not
finite-dimensional.

N
U
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Polynomial Detour

Polynomials will have many uses for us going forward, so let's
introduce some (familiar?) definitions:

Definition (Polynomial, P(TF))

@ A function p:F — T is called a polynomial with coefficients
on [F if there exists ag,...,am € F such that Vz € F

m
p(z) = Z azk.
k=0

e P(IF) is the set of all polynomials with coefficients in IF.
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Finite-Dimensional Vector Spaces, ii Spanfandifineaindepsndence

Polynomial Detour P(F) C F¥

With the usual definitions of addition and scalar multiplication, P(FF) is a
subspace of F¥

Definition (Degree of a Polynomial)

@ A polynomial p € P(F) is said to have degree m if there exist
scalars ag, ...,am € F, with a,, # 0 such that

m
= E aka.
k=0

Vz € F. If p has degree m, we write deg(p) = m.

@ We define the degree of the zero-polynomial p(z) =0 to be —co
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Polynomial Detour

Definition (Pm(F))

For a non-negative integer m, Pp,,(IF) denotes the set of all
polynomials with coefficients in F and degree at most m.

Note: P, (F)=span(l,z,...,z™M).

Note: P,(F) is a finite-dimensional vector space for each non-
negative integer m.

Note: P(F) is infinite-dimensional.
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Linear Independence

Vm € V, and v € span(vy, ..., vy). By our definitions
am € F so that v =" | axv.

Let vi,...,
we must have ay, ...,

Question: Are the scalars ai,...,am € F unique?

If they are not, then we can find by,..., b, € F so that

vV = ZT:l bkvk, and

0= V—V Zak—bk
k=1

Clearly ax = by (k =1,..., m) provides one possibility.

The case where that is the only linear combination which gives 0 is
extremely important; we call that /inear independence...
2. Finite Dimensional Vector-Spaces
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Linear Independence :: Definition
Definition (Linear Independence)

@ Alist vi,...,vy € Vis called linearly independent if the
only choice of a1,...,am € F so that 0 = >, ; akvk is
ar =20 (k:].,...,m).

@ The empty list is also linearly independent by definition.

Definition (Linearly Dependent)

@ A list of vectors € V is called linearly dependent if it is not
linearly independent.

@ Alist vi,...,vy € Vis linearly dependent if there exists
ai,...,am € I, not all zeros, such that 0 = >} ; axvk.
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Finite-Dimensional Vector Spaces, ii Spanfandifineaindepsndence

Linear Independence/Dependence :: Examples

@ A single vector v € V is linearly independent if and only if
v #0.

@ u,v € V are linearly independent if and only if neither is a
scalar multiple of the other.

@ The “Standard Coordinate Vectors”
ek = (01ky---,0mk) EF™, k=1,... m are linearly
independent in ™.

@ Thelist 1,z,...,z™ is linearly independent in P(F) for each
non-negative integer m.

© If some vector in a list of vectors € V is a linear combination
of the other vectors, then the list is linearly dependent.

© Every list of vectors € V containing the 0-vector is linearly

dependent. 4 9
“"hN'i.‘,\‘r” “‘N’.h‘;‘“
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Spanfantiinearlindspendence

Linear Dependence

Theorem (Linear Dependence)

Suppose vi, ...,V is a linearly dependent list € V. Then there
exists ¢ € {1,..., m} such that the following hold:

s Vm),

(2) if the ¢*h term is removed from vy, .
remaining list equals span(vy, ...

(1) v € span(vy, ..

.., Vm, the span of the
) Vm)-'

span(vy, ..., Vp—1, Vetl, ... Vm) = span(vi, ..., vpy)

Finite-Dimensional Vector Spaces, i

. " X I Span and Linear Independence
Finite-Dimensional Vector Spaces, ii P P

Proof :: Key Pieces

Sketch-Proof

m
(1) from the expression Z akvk = 0, we can explicitly solve for
k=1
-1
ak
Vyp — — Z — Vk.
a
k=1

(2) we can replace vy by this sum in the expression for u =
m

chvk € V, and thus have an expression for u using only
k=1
(m—1) terms.

N
U
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Length of Linearly Independent List < Length of Spanning List

Theorem (Length of Linearly Independent List < Length of Spanning
List)

In a finite-dimensional vector space, the length of every linearly
independent list of vectors is less than or equal to the length of
every spanning list of vectors.
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Proof :: Length of Linearly Independent List < Length of Spanning List 1/2 Proof :: Length of Linearly Independent List < Length of Spanning List 2/2
Proof (Length of Linearly Independent List < Length of Spanning List) Proof (Length of Linearly Independent List < Length of Spanning List)
Suppose us, ..., Un is linearly independent in V. Suppose also that Step j The list B (of Iength. ”)_ from step (j — 1) spans V. Thus a.djoin—

Wi, ..., w, spans V. We need to prove that m < n. We do so through ing any vector to this list produces a linearly dependent list. In
the multi-step process described below; in each step we add one of the particular, the list of length (n + 1) obtained by adjoining u; to
u's and remove one of the w's. B, placing it just after uy, ..., uj, is linearly dependent. By the
1 ) ] o previous theorem, one of the vectors in this list is in the span of
Step 1 Let B l:.>e the list Wi, .o W, Wh'ch spans V. Thus a<.JIJO|n|ng any the previous ones, and because vy, ..., u; is linearly independent,
vector in V t(.) t.hIS list produces a I|n(.ear|y depen.dent list (b.ecayse this vector is one of the w's, not one of the u’s. We can remove
the newly adjoined vector can be ertten.as a linear combln.atl.on that w from B so that the new list B (of length n) consisting of
of the other vectors). In partlcular,.the list ug, wy,...,wpyis lin- u1,...,u; and the remaining w’s spans V.
early dependent. Thus by the previous theorem, we can remove '
one of the w's so that the new list B (of length n) consisting of After Step m, we have added all the u's and the process stops. At each
uy and the remaining w's spans V. step as we add a u to B, the previous theorem implies that there is some
w to remove. Thus there are at least as many w's as u's.
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Finite-Dimensional Subspaces

Theorem (Finite-dimensional subspaces)

Every subspace of a finite-dimensional vector space is
finite-dimensional.

Rewind (Finite-Dimensional Vector Space)

A vector space is called finite-dimensional if some list [FiniTE
LenGTH, n, BY DEFINITION] Of vectors in it spans the space.
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Span and Linear Independence

Proof :: Finite-Dimensional Subspaces

Proof (Finite-Dimensional Subspaces)
Suppose V is finite-dimensional and U is a subspace of V. We need to
prove that U is finite-dimensional:

Step 1 If U = {0}, then U is finite-dimensional and we are done; oth-
erwise choose a nonzero vector v € U.

Step ¢ If U = span(vy,...,v_1), then U is finite-dimensional and we
are done; otherwise choose a vector v, € U such that v, ¢
span(vy, ..., Vve_1).

After each step, we have constructed a list of vectors such that no vector
in this list is in the span of the previous vectors. Thus after each step we
have constructed a linearly independent list.

This linearly independent list cannot be longer than any spanning list of
V. Thus the process must terminate, which means that U is
finite-dimensional.
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Finite-Dimensional Vector Spaces, i

Finite-Dimensional Vector Spaces, ii Spanfantiinearlindspendence

We have a free variable and linear dependence if and only if (t —2) =0 < t = 2.
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Live Math :: Covid-19 Version 2A-3
2A-3: Find a number t such that
(3,1,4), (2,-3,5), (5,9,1t)
is not linearly independent in R3.
(({ Live Math ))
e.g. 2A-{1, 3} * Strategy: Leverage [Math254] Knowledge *
In the language and notation of [Maru 254], we make the vectors columns
in a matrix (even though we have not formally defined a matrix yet), and
recall that the row-reduced-echelon-form (RREF) reveals whether the
columns of a matrix are linearly (in)dependent. Even simpler, it is
sufficient to forward-reduce to lower-triangular form and look for the
(non)existence of free variables (zeros on the diagonal).
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Finite-Dimensional Vector Spaces, ii pan and Linear Independence Finite-Dimensional Vector Spaces, ii Dimension
Live Math :: Covid-19 Version 2A-3 Bases
* Computations (Row-Reductions) *
3 2 5
M=1]1 -3 9
4 5 t
1 -3 9 1 -3 9
{nenk: |3 2 5, {r+n-3n}: |0 11 -=22{,
4 5 t 4 5 t
1 -3 9 1 -3 9
{B+rn—4n}: |0 11 -22|, {n+ r/11}: |0 1 -2
0 17 t—36 0 17 t—36
1 3 9 Figure: A vector (here in 3D, shown the purple arrow) can be represented
(men—1Tn}: [0 1 2|, in terms of two different bases (green and blue arrows), each basis vector
0 0 t-—2

is scalar-multiplied appropriately so they add to the vector.

Copyright: Creative Commons CCO 1.0 Universal Public Domain.
https://en.wikipedia.org/wiki/Basis_(linear_algebra)
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Basis :: Definition Bases :: Examples
Definition (Basis) Example (Bases)
A ba5|\s/of V is a list of vector € V that is linearly independent and @ ex = (O1ks--.,0mk) EF™ k=1,...,mis a basis of F™,
spans . )
P y called the standard basis.

@ Any two linearly independent vectors € F? is a basis of F?.

Rewind (Linear Independence, Spans)
® 1,z,...,z™is a basis for Pp(z)

@ Alist vq,...,vy € Vis called linearly independent if the only _ _ - ) .
choice of ay,...,am € F so that 0 = S>7  a,v is a =0 © Two linearly independent vectors € F* is NOT a basis of F~,
(k=1,...,m). since they cannot span F3.
@ If V =span(vi,...,vn), then we say that the set of vectors © A list of linearly dependent vectors that span F” is not a basis.
- , 4
{vi,...,Vm}, or if you want the list of vectors vi, ..., v,, spans the
v r V. I : . . .
ector space Application (Signal Processing :: Basis Pursuit)
@ In a finite-dimensional vector space, the length of every linearly https://scholar.google.com/scholar?q=basis+pursuit
independent list of vectors is less than or equal to the length of 7 ’
every Spanning list of vectors. Mnmﬁ See also, “frame” and “tight frame” (requires inner products, which we dont have... yet.) wnwl
AR oveR
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Basis :: Criterion Spanning List Contains a Basis

Theorem (Criterion for Basis)
] ) ) . ) Theorem (Spanning List Contains a Basis)
A list vy, ..., v, of vectors € V is a basis for V' if and only if

Vv € V can be written uniquely in the form Every spanning list in a vector space can be reduced to a basis of

the vector space.

n
V:Zang, where aj,...,ap € F
(=1

Comment

A spanning list in a vector space may not be a basis because it is

Proof (Sketch Proof :: Criterion for Basis)
not linearly independent. The theorem says that given any

@ Pick a basis, show uniqueness Vv € V (just like the proof for linear spanning list, some (possibly none) of the vectors in it can be
independence) discarded so that the remaining list is linearly independent and still
@ Assume uniqueness Vv € V = the collection of vectors vy, ..., v, spans the vector space.
spans V; use v = 0, which forces a; = --- = a, = 0, this shows /

linear independence ~~ a basis of V.
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Proof :: Spanning List Contains a Basis

Proof (Spanning List Contains a Basis)

Suppose vy, ..., Vv, spans V. We want to remove linearly
dependent vectors from vy, ..., v, so that the remaining set form a
basis for V:

0 Start with B = {v1,...,vp}.
1 if vi =0, delete it from B.
k if v € span(vy,...,vk_1), delete v, from B.

Repeat until kK = n. The final list B still spans V' and contains only
linearly independent vectors. = We have a basis.

Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension

Rewind :: Spanning List Contains a Basis Connecting with Previous Classes

Rewind (Spanning List Contains a Basis)
Given a set of spanning vectors in R*:

vi =(2,2,2,4), v» =(2,4,1,3), 3 =(1,4,1,3),
4), Ve = (1,2,2,3)

2 21 211 @o 0 0 29/38 12/19

2 4 4 2 3 2 0@ 0 0 —26/19 —13/19
rref =

2 1 1 4 3 2 0 0@ 0 30/19 15/19

4 3 3 1 4 3 00 0@ 6/19 3/19
The columns with leading ones — {1,2, 3,4} tell us that {v,...,vs}

form a basis for R*.

The fact that we have 4 leading ones confirms that we indeed have a
spanning set of vectors.
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Basis of Finite-Dimensional Vector Space Linearly Independent List Extends to a Basis
Theorem (Basis of Finite-Dimensional Vector Space) Theorem (Linearly Independent List Extends to a Basis)
Every finite-dimensional vector space has a basis. Every linearly independent list of vectors in a finite-dimensional
vector space can be extended to a basis of the vector space.
Proof (Basis of Finite-Dimensional Vector Space)
Comment
By definition, a finite-dimensional vector space has a spanning list. . . .
Y oo p. ) P g We have shown that every spanning list can be reduced to a basis.
The previous result tells us that each spanning list can be reduced . “ " Lo .
_ The statement above is the “dual” that result; giving us a path in
to a basis. . . .
the opposite direction.
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Proof :: Linearly Independent List Extends to a Basis

Proof (Linearly Independent List Extends to a Basis)

., Um is linearly independent in a finite-dimensional
., W, be a basis of V. Thus the list

Suppose ug, ..
vector space V. Let wy,..

u,...,Um,Wi,...,Wp

spans V. Applying the steps from the proof for [SpanninG List
Conrains Basis] to this list produces a list of the vectors uq, . ..
(all of them since they are linearly independent), and some of the
w-vectors. This list must be a basis since wy,...,w, is a basis.

» Um

Bases
Dimension

Finite-Dimensional Vector Spaces, i
Finite-Dimensional Vector Spaces, ii

Rewind :: Linearly Independent List Extends to a Basis
Rewind (Linearly Independent List Extends to a Basis)

Given a set of linearly independent vectors in R>:

Vi = (7a3a7v4a 2)7 V2 = (577777474)a V3 = (335747677)

and let wy, ..., ws be the standard basis for R>:
7 5 3 1 .0 0 0 0
3 7 5 0 1 0 0 0
rref 7 7 4 0 0 1 0 0 =

4 4 6 0 0 0 1 0

2 4 7 0 0 0 0 1
® o 0o o o -1/13 33/52  —1/2
0@ o 0 o0 4/13  —41/52  1/2
0o 0 ® o o —2/13 7/26 0
o 0o 0 ® o -7/13 -17/13 1
o 0o 0o 0 O -15/13 59/26 -2

The columns with leading ones — {1,2,3,4,5} tell us that
.,wa} form a basis for R®.

Connecting with Previous Classes

3 {Vl,...,V3,W1,.. f
N Uversirs
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Proof :: Every Subspace of V is Part of a Direct Sum equal to V 1/2

Every Subspace of V is Part of a Direct Sum equal to V

Theorem (Every Subspace of V is Part of a Direct Sum equal to V)

Suppose V is finite-dimensional and U is a subspace of V. Then
there is a subspace W of V such that V = U & W.

Comment: The proof is a direct application of the previous theo-
rem...

N
U
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Proof (Every Subspace of V is Part of a Direct Sum equal to V)

Construction: Since V is finite-dimensional, so is U. There is a basis

Uy, ...,Uy of U; uy,...,uny is a linearly independent list in V. We can
extend this list to a basis uq, ..., um, wy,...,w, of V; Let
W = span(wy, ..., w,).
To show V = U @& W, we have to show
OQV=U+W, and @UnNW = {0}.
®let v € V. Since u1,...,Un, W1, ..., w, spans V, we can find

ai,...,am,b1,...,b, € F such that

Vv=aith+ -+ amm+biws + -+ byw,.

uel weWw

This shows v € U + W, which shows V = U + W.
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Finite-Dimensional Vector Spaces, i Bases

Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension

Finite-Dimensional Vector Spaces, ii Dimension

Proof :: Every Subspace of V is Part of a Direct Sum equal to V 2/2 Example: Every Subspace of V is Part of a Direct Sum equal to V

Revisiting with the “Rewind” Example (Linearly Independent List

Proof (Every Subspace of V is Part of a Direct Sum equal to V) Extends t Basis)
xtends to a Basis) —

@let ve UNW. Then day,...,am, b1,...,b, € F, so that

v = ajuy + -+ amim = b1W1+"'+ann Let
eu ew —
U =span((7,3,7,4,2), (5,7,7,4,4), (3,5,4,6,7))
O=(v—v)=au1 + -+ amum — bywy — -+ - — byw, _ )
_ o _ the previous example shows that with
Since u1, ..., U, Wi,..., W, is linearly independent, we must have
W = span ((1,0,0,0,0), (0,1,0,0,0))
31:---:am:b1:...b,,:0
we have
which makes v = 0, and therefore UN W = {0} RE=Ue W
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Live Math :: Covid-19 Version 2B-8

2B-8: Suppose U and W are subspaces of V such that V = U & W.
Suppose also that wy,...,uy is a basis of U and wy,...,w, is a
basis of W. Prove that

uy,...,Unpn,wWi,...,Wp
<<< Live Math >>> is a basis of V.
e.g. 2B-{2, 8} % Solution :: Linear Independence *
Suppose we have coeffiecients ai,...,an, and by,..., b,, so that the

“joint” linear combination:

ajly + -+ amm + biwy + -+ - + byw, =0,
then (by well-defined algebra)

ajug + -+ amlm = — (biwy + -+ + byw,)

-~

ev cew
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Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension
Live Math :: Covid-19 Version 2B-8

Since V = U & W, we have UN W = {0}, which makes

au+---+apun =20
bywi + -+ byw, =0

Both the w1, ..., um, and wy, ..., w, are linearly independent (one of the
properties of being a basis); therefore
31:-~~:am:b1:--~:bn:0

it follows that the joint list uy, ..., un, wi,...,w, is linearly independent.
* Solution :: Spanning the Space %
cw,) = V.

We need to show that span (uy, ..., Un, wi, .

SAN DIFGO STATE

UNIVERSITY
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Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension

Live Math :: Covid-19 Version 2B-8

Suppose v € V. Then (since V=U® W), Jue U and w € W:
V=u-+w.

Since span (uy, ..., uy) = U, and span (wy, ..., w,) = W, we can find

ai,...,am,b1,...,b, € F such that
u=ajuy+ -+ amim, w=Dbiwy+---+ byw,
which gives
v=aiui+ -+ amlm -+ biwi + -+ byw,
., Wp) spans V.

which shows that span (u1, ..., Um, w, ..

X Solution :: Basis X

Linearly Independent + Spanning ~~ Basis.
— (50/67)
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Finite-Dimensional Vector Spaces, i Bases
Dimension

Finite-Dimensional Vector Spaces, ii

Dimension

Figure: The 4D-hypercube, layered according to distance from one corner.
As described in "Alice in Wonderland” by the Cheshire Cat, this vertex-
first-shadow of the tesseract forms a rhombic dodecahedron. The two
central vertices would coincide in an orthogonal projection from 4 to 3
dimensions, but here they were drawn slightly apart. .

Copyright: Public Domain.
https://commons.wikimedia.org/wiki/File:Hypercubeorder.svg

N
U
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Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension

Dimension

We have discussed finite-dimensional vector spaces, but not yet
formally defined the dimension of a vector space; it is time to
patch that hole.

There are no big surprises; the dimension of F” is indeed n.

First, we note that the list of standard basis vectors
{ex = (01K, ---,0nk), k=1,...,n} of F" has length n.

However, a finite-dimensional vector space in general has infinitely
many different bases; so if we can show that all bases to have the
same length, we can define the dimension as the length of the
basis.
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Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension

Basis Length Does Not Depend on Basis

Theorem (Basis Length Does Not Depend on Basis)

Any two bases of a finite-dimensional vector space have the same
length.

Proof (Basis Length Does Not Depend on Basis)

Suppose V is finite-dimensional. Let B; and B, be two bases of V. Then
B; is linearly independent in V' and B, spans V, so the length of B is at
most the length of B, (by [LENGTH OF LINEARLY INDEPENDENT LIST <
LENGTH OF SPANNING LisT].)

Interchanging the roles of B; and By, we also see that the length of B; is
at most the length of B;. Thus the length of By equals the length of B;.

Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension

Dimension of a Finite-Dimensional Vector Space

Definition (Dimension, dim(V'))
@ The dimension of a finite-dimensional vector space is the
length of any basis of the vector space.

@ The dimension of V is denoted by dim(V).

Example (Dimensions)

o dim(F") = n.
o dim(Pn(F)) = (m+ 1) since the basis {1,z,...,2z™} has
(m + 1) basis vectors.
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Dimension of a Subspace Linearly Independent List of length dim(V') is a Basis
Theorem (Linearly Independent List of length dim(V/) is a Basis)
Theorem (Dimension of a Subspace e ) ) . .
( pace) Suppose V is finite-dimensional. Then every linearly independent
If V is finite-dimensional and U is a subspace of V, then list of vectors in V' with length dim(V/) is a basis of V.
dim(VU) < dim(V).
Comment: This means the second property “the list spans V" is
automatically satisfied.
Proof (Dimension of a Subspace)
Suppose V is finite-dimensional and U is a subspace of V. Think of a Proof (Linearly Independent List of length dim(V/) is a Basis)
basis of U as a linearly independent list in V/, and think of a basis of V Suppose dim(V) = n, and vy, ..., v, is linearly independent in V. The
as a spanning list in V. Now use [LENGTH OF LINEARLY INDEPENDENT LIST < list v1,...,V, can be extended to a basis of V' (by [LINEARLY INDEPENDENT
LENGTH OF SPANNING List] to conclude that dim(U) < dim(V). List EXTENDS TO A Basis]). However, every basis of V has length n, so in
this case the extension is the trivial one, meaning that no elements are
adjoined to vy,...,v,. In other words, v1,..., v, is a basis of V.
) y "
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Spanning List of length dim(V/) is a Basis

Theorem (Spanning List of Length dim(V/) is a Basis)

Suppose V is finite-dimensional. Then every spanning list of
vectors in V' with length dim(V') is a basis of V.

Comment: This means the first property “the list is linearly inde-
pendent” is automatically satisfied.

Proof (Spanning List of Length dim(V') is a Basis)

Suppose dim(V) = n, and vq,..., v, spans V. The list vi,..., v, can be
reduced to a basis of V (by [SpanninG List ConTaINs A Basis]). However,
every basis of V' has length n, so in this case the reduction is the trivial
one, meaning that no elements are deleted from vy,...,v,. In other
words, vq,...,V, is a basis of V.

Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension

Dimension of a Sum of Subspaces

We close out this discussion of Dimension by stating the result for
subspaces:

Theorem (Dimension of a Sum of Subspaces)

If Uy and U, are subspaces of a finite-dimensional vector space,
then dim( Ui + U2) = dim( Ul) + dim( U2) — dim( Ui N U2)
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Proof (Dimension of a Sum of Subspaces)

Let u1,...,um be a basis of Uy N Uy; thus dim(Uy N ) = m. uy,...,up
must be linearly independent, and can therefore be extended to a basis
[LINEARLY INDEPENDENT LisT EXTENDS TO A Basis] of Uy and Us
(independently):

basis(Ur) = u1,..., Um,V1,..., V] dim(Uy) = m+j
basis(U2) = u1, ..., Un;, Wi, ..., Wk dim(Up) = m+ k
Showing that
Uy, ..., Umy, Vi, ..., Vj, Wy, ..., Wk

is a basis for U; + U, completes the proof; since we will have

dim(Ui + U2) = m+j+k
= (m+j)+(m+k)—m
= dlm(Ul) + dlm( U2) — dim(U1 N U2)

SAN DIEGO STATE
UNIVERSITY
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Proof (Dimension of a Sum of Subspaces)

span(uy, ..., Um, V1,...,Vj, Wi,..., W) contains U; and U, and
span(us, ..., Um,V1,...,Vj, Wi,...,wx) = Ui + U. We need to show
that uy,...,Um, vi,...,Vj,wr,...,w is linearly independent.

Consider (a., bs, cc € F"; we need to show all are 0)

m Jj k
Z:aﬁ,uAY + Z bsvs + ZCCWC =0
=1 6=1 ¢=1
Rearrange

k m J
Z cewe = Z —ayl, + Z —bsvs
¢=1 y=1 5=1

———
cel; clU,

K K
= ZC:l cwe e UinNlh. = 24:1 cewe = Z?Yq:l du,
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Proof :: Dimension of a Sum of Subspaces 3/3

Proof (Dimension of a Sum of Subspaces)

We have Zé:l Cewe = 227:1 dyuy, but uy, ..., Um, wi,. .., w is linearly
independent, which forces ¢;.. x =di,.. . .m=0.

k m J
z Cewe = Z —ayuy + Z —bsvs
(=1 y=1 6=1

——
0 S

but uy,...,Um, v1,...,V; is linearly independent, which forces
ai,...m = by, j=0. Collecting all a, b, cs:

Finite-Dimensional Vector Spaces, i Bases
Finite-Dimensional Vector Spaces, ii Dimension

({( Live Math )))

e.g. 2C-{1, 4, 12, 14, 17}

a,..m=b,. . j=c,. . x=0
which is what we needed. _ _
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Finite-Dimensional Vector Spaces, ii Dimension Suterets
Live Math :: Covid-19 Version 2C-1 Suggested Problems
2C-1: Suppose V is finite-dimensional and U is a subspace of V such
that dim(U) = dim(V/). Prove that U = V.
(V) (V) 2A—1,3,89, 11
2.B—2,3,5,38
* Solution * ) )
2.C—1,4,5,9, 12, 14, 17 (some of these are quite challenging)
Let u1,...,u, be a basis of U. Thus n = dim(U), and therefore
n=dim(V). Thus uy,...,u, is a linearly independent (since it is a basis)
list of vectors in V/, with length dim(V). Using [LINEARLY INDEPENDENT
LisT oF LENGTH dim(V) 18 A Basis], U1, ..., U, must be a basis of V.
Vv € V can be written as a linear combination of v, ..., u,, and since
u e U= U=V.
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Suggested Problems
Assigned Homework
Supplements

HW#2, Due Date in Canvas/Gradescope

Problems, Homework, and Supplements

Assigned Homework

2.A—8§,9, 11
2.B—3,5
2.C—5,9

Note: Assignment problems are not official and subject to change
until the first lecture on the chapter has been delivered (or
virtually “scheduled.”)

Upload homework to www.Gradescope.com
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Suggested Problems
Assigned Homework
Supplements

Problems, Homework, and Supplements

“Frame” Just for Fun!

Definition (Frame — Generalization of bases to linearly dependent sets of vectors)

A frame of an inner product space is a generalization of a basis of a
vector space to sets that may be linearly dependent. In the terminology
of signal processing, a frame provides a redundant, stable way of
representing a signal. Frames are used in error detection and correction
and the design and analysis of filter banks and more generally in applied
mathematics, computer science, and engineering.
[https://en.wikipedia.org/wiki/Frame_(linear_algebra)]
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Suggested Problems
Assigned Homework
Supplements

Problems, Homework, and Supplements

Useless Wiki-Knowledge

Q: “Do our fields have anything to do with the Fields medal?”

A: The Fields medal is named after John Charles Fields (1863 — 1932).

The term “Field” is due to work by (non-exhaustive list) Lagrange
(1770), Vandermonde (1770), Ruffini (1799), Gauss (1801), Abel
(1824), Galois (1832).

Dedekind (1871) introduced the word “Kérper” (German — "Body” /
“Corpus”), and Moore (1893) “Field” (English).
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